
Representations of symmetric and alternating groups and
their double covers that remain irreducible modulo every

prime

Matthew Fayers and Lucia Morotti

Abstract. We classify globally irreducible representations of alternating groups and double covers of
symmetric and alternating groups. In order to achieve this classification we also completely characterise
irreducible representations of such groups which reduce almost homogeneously in every characteristic.
This also allows us to classify irreducible representations that remain irreducible in every characteristic.
In particular we show that, apart from finitely many exceptions, for any of these three questions such
representations are either 1-dimensional or basic spin representations.
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1. Introduction

Globally irreducible representations of finite groups were introduced by Gross in [G], generalising
notations defined by Thompson in [Th], and were studied further by Tiep in [T2]. They are defined
as representations over the field Q which remain irreducible when scalars are extended to R, and
for which certain reductions to positive characteristic p remain irreducible for every prime p, see
Section 2.1 for more details.
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It is a natural and important question to classify the globally irreducible representations of a given
finite group, but this has been accomplished for very few families of groups. For the symmetric
groups Sn, this was done by Kleshchev and Premet, who proved the following.

Theorem 1.1. [KP, Theorem A] Let M be a representation of Sn overQ. Then M is globally irreducible
if and only if M is 1-dimensional.

In fact, since (by [J2, Theorem 11.5]) any field is a splitting field for Sn, it is easy to see from the
definition of globally irreducible representations that any ordinary irreducible representation of Sn
is globally irreducible if and only if it remains irreducible in characteristic p for every prime p. But
for other groups this is not the case. In this paper we address globally irreducible representations
of the proper double covers of the symmetric groups and the alternating groups An. In [T1] Tiep
considered basic spin representations of symmetric and alternating groups and classified the basic
spin representations which are composition factors of globally irreducible representations.

One interesting fact about basic spin representations (shown in [Wa]) is that they reduce almost
homogeneously in every characteristic. Here almost homogeneously means that all composition fac-
tors are labelled by the same partition in the standard labelling. For the double cover of Sn, this
means that any two composition factors are either isomorphic or obtained from each other by tensor-
ing with the sign representation; for the double cover of An, it means that any two factors are either
isomorphic or obtained from each other under the action of the double cover of Sn. It can be checked
using Proposition 2.3 below that if M is a composition factor of a globally irreducible representa-
tion of either an alternating group or a double cover of a symmetric or alternating group, then M
reduces almost homogeneously in every characteristic. Therefore in order to classify representations
appearing in globally irreducible representations we first classify representations that reduce almost
homogeneously in every characteristic. As a by-product, this will also allow us to characterise repre-
sentations that remain irreducible in every characteristic (this was already known for Sn and An, but
is a new result for the double covers).

Our main result on globally irreducible representations is that, with finitely many exceptions, glob-
ally irreducible representations of symmetric and alternating groups and their double covers are ei-
ther 1-dimensional or basic spin representations.

For alternating groups we obtain the following result.

Theorem 1.2. Suppose λ is a partition of n, and let M be an irreducible CAn-module labelled by λ.
The following are equivalent:

(1) M appears in a globally irreducible representation;
(2) the p-modular reduction of M is almost homogeneous for every prime p;
(3) the p-modular reduction of M is irreducible for every prime p;
(4) λ or λ′ equals (n), (2, 1) or (2, 2).

Note that the partitions appearing in (4) are exactly the partitions for which M is 1-dimensional, so
this result is almost directly analogous to Theorem 1.1. However for λ = (2, 1) or (2, 2) the module
M is not itself a globally irreducible representation (as it is not defined over Q), but the representation
Eλ
+ ⊕Eλ

− is globally irreducible.
For spin representations of double covers we have the following results. We write Ŝ±

n and Ân for
the proper double covers of Sn and An (our sign convention for the double covers of Sn is explained
in Section 4.1).

Theorem 1.3. Suppose λ is a strict partition of n, and let M be an irreducible spin CŜ±
n - or CÂn-

module labelled by λ. Then the p-modular reduction of M is almost homogeneous for every prime p
if and only if one of the following occurs:

(1) λ = (n);
(2) λ = (2, 1), (3, 2), (3, 2, 1), (4, 3, 2), (4, 3, 2, 1), (5, 4, 3, 2) or (5, 4, 3, 2, 1).

Theorem 1.4. Suppose λ is a strict partition of n, and let M be an irreducible spin CŜ±
n -module

labelled by λ. Then the p-modular reduction of M is irreducible for every prime p if and only if one
of the following occurs:

(1) λ = (n), where n = 1 or n is even;
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(2) λ = (2, 1), (3, 2) or (3, 2, 1).

Theorem 1.5. Suppose λ is a strict partition of n, and let M be an irreducible spin CÂn-module la-
belled by λ. Then the p-modular reduction of M is irreducible for every prime p if and only if one of
the following occurs:

(1) λ = (n), where n = 0, n = 2 or n is odd;
(2) λ = (2, 1), (4, 3, 2), (4, 3, 2, 1), (5, 4, 3, 2) or (5, 4, 3, 2, 1).

Theorem 1.6. Suppose λ is a strict partition of n, and let M be an irreducible spin CŜ+
n -module

labelled by λ. Then M appears in a globally irreducible representation if and only if one of the
following occurs.

(1) λ = (n) and one of the following holds:
(a) n = 8m2 with m ∈ Z,
(b) n ≡ 2 (mod 4),
(c) n ≡ 3 (mod 8) and every prime divisor of n is congruent to 3 or 5 modulo 8,
(d) n ≡ 5 (mod 8) and every prime divisor of n is congruent to 5 or 7 modulo 8.

(2) λ = (2, 1), (5, 4, 3, 2) or (5, 4, 3, 2, 1).

Theorem 1.7. Suppose λ is a strict partition of n, and let M be an irreducible spin CŜ−
n -module

labelled by λ. Then M appears in a globally irreducible representation if and only if one of the
following occurs.

(1) λ = (n) and one of the following holds:
(a) n = 2(2m + 1)2 with m ∈ Z,
(b) n ≡ 0 (mod 4),
(c) n ≡ 5 (mod 8) and every prime divisor of n is congruent to 3 or 5 modulo 8,
(d) n ≡ 7 (mod 8) and every prime divisor of n is congruent to 5 or 7 modulo 8.

(2) λ = (2, 1), (3, 2) or (3, 2, 1).

Theorem 1.8. Suppose λ is a strict partition of n, and let M be an irreducible spin CÂn-module la-
belled by λ. Then M appears in a globally irreducible representation if and only if one of the follow-
ing occurs.

(1) λ = (n) and one of the following holds:
(a) n = (2m + 1)2 with m ∈ Z,
(b) n ≡ 3 (mod 4),
(c) n = 2m2 with m ∈ Z>0 and every prime divisor of m is congruent to 3 modulo 4,
(d) n ≡ 6 (mod 8) and every odd prime divisor of n is congruent to 3 modulo 4,
(e) n = 0 or 4.

(2) λ = (2, 1), (3, 2), (3, 2, 1), (4, 3, 2), (4, 3, 2, 1), (5, 4, 3, 2) or (5, 4, 3, 2, 1).

Acknowledgements. We thank Sasha Kleshchev for suggesting that we work on this problem, and
Pham Huu Tiep for useful conversations.

2. Background

2.1. Globally irreducible representations. Throughout this section let G be a finite group. Let V be
an irreducible QG-representation. Let K := EndQG(V) and R ⊆ K be a maximal order. Further let
Λ be an RG-lattice in V, that is Λ is the Z-span of a Q-basis of V and Λ is stable under both R and
G. Following [G, T2] we say that V is a globally irreducible representation (or GIR) of G if V ⊗Q R is
irreducible and Λ/IΛ is irreducible as (R/I)G-module for every maximal two-sided ideal I ⊂ R.

We will use the following results on globally irreducible representations. In the following, for any
character χ, χ means the complex conjugate character and ind(χ) is the Frobenius-Schur indicator of
χ. Further, given a prime p, we will view complex characters also as Brauer characters (restricting
them implicitly to the set of p′-elements of G).

We will use the following essential results on GIRs.

Proposition 2.1. [T2, Lemma 2.3] Let χ be the character of a GIR of a finite group G. Then one of the
following holds:
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(1) χ is absolutely irreducible, ind(χ) = 1 and K = Q;
(2) χ = ψ + ψ for ψ an absolutely irreducible character and K = Q(ψ) is an imaginary quadratic

field;
(3) χ = 2ψ for some absolutely irreducible character with ind(ψ) = −1 and K is a definite quater-

nion algebra.

Proposition 2.2. [G, Proposition 4.2] Let ψ be an irreducible complex character of a finite group G.
(1) If Q(ψ) = Q and ψ is an irreducible Brauer character for all primes p, then ψ is the character

of a GIR of G.
(2) If Q(ψ) is an imaginary quadratic field and ψ is an irreducible Brauer character for all primes

p, then ψ + ψ is the character of a GIR of G.
(3) If Q(ψ) = Q, ind(χ) = −1 and for any prime p either ψ is an absolutely irreducible Brauer

character or ψ ≡ ρ + ρp (mod p) for some absolutely irreducible Brauer character ρ with
Fp(ρ) = Fp2 , then 2ψ is the character of a GIR of G.

Proposition 2.3. [T2, Proposition 2.7] Let χ be the character of a GIR of a finite group G, let ψ be
an absolutely irreducible constituent of χ and let p be a prime. Then there exists an absolutely ir-
reducible Brauer character ρ such that ψ ≡ e(ρ1 + · · ·+ ρs) (mod p) with e = 1 or 2 and ρ1, . . . , ρs
distinct conjugates of ρ over Fp. Moreover if e = 2 then K is a quaternion algebra and p is ramified
in R.

2.2. p-modular reductions. Our aim is to study p-modular reduction. Given a finite group G and a
CG-module M, the p-modular reduction of M is not well-defined up to isomorphism, but its com-
position factors are, and for each irreducible module D in characteristic p we write [M : D] for the
multiplicity of D as a composition factor of a p-modular reduction of M.

3. The alternating groups

In this section we prove our main theorem for the alternating group An. We begin by summarising
the classification of irreducible modules for Sn and An.

3.1. Representations in characteristic 0. It is well known that irreducible representations of Sn over
C are given by the Specht modules Sλ labelled by partitions of n (see for example [J2, JK]). Moreover,
it is also well-known that Sλ ⊗ sgn ∼= Sλ′

; see for example [JK, 2.1.8]. This allows us to describe the
irreducible representations of An over C (see for example [JK, §2.5]).

Theorem 3.1.
(1) The Specht modules Sλ give a complete irredundant list of irreducible CSn-modules as λ

ranges over the partitions of n.
(2) For each partition λ of n with λ ̸= λ′ there is a self-associate irreducible CAn-module Tλ, such

that
Sλ ↓Sn

An
∼= Tλ, Tλ ↑Sn

An
∼= Sλ ⊕ Sλ′

.

(3) For each partition λ of n with λ = λ′ there is an associate pair of irreducible CAn-modules
Tλ
+, Tλ

−, such that
Sλ ↓Sn

An
∼= Tλ

+ ⊕Tλ
−, Tλ

± ↑Sn
An

∼= Sλ .

(4) The modules Tλ (for λ ̸= λ′) and Tλ
± (for λ = λ′) together give a complete list of irreducible

CAn-modules. The only non-trivial isomorphisms between these modules are those of the
form Tλ ∼= Tλ′

for λ ̸= λ′.

3.2. Representations in positive characteristic. Now let p be a prime. The irreducible represen-
tations of Sn in characteristic p are labelled by the set Pp(n) of p-regular partitions of n, that is
partitions where no part is repeated p or more times. For each λ ∈ Pp(n), James [J2, Section 11]
constructs a module Dλ such that the following holds.

Theorem 3.2 [J2, Theorem 11.5]. The modules Dλ for λ ∈ Pp(n) give a complete irredundant list of
irreducible FpSn-modules.
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If λ is a p-regular partition then Dλ ⊗ sgn is also irreducible, so there is a p-regular partition λM

such that Dλ ⊗ sgn ∼= DλM

. The function λ 7→ λM is called the Mullineux map, and admits several
combinatorial descriptions (which we shall not need here). If p = 2 then by definition λM = λ for
every λ ∈ P2(n).

We can now describe the classification of irreducible representations of An in characteristic p. For
odd p this was given by Ford [Fo], while for p = 2 the classification was obtained by Benson [B].
Their results can be combined in the following theorem. (Part 1 of the theorem uses the fact that
(writing triv for the trivial module for any group) [triv ↑Sn

An
] = [triv] + [sgn] in the Grothendieck

group of Sn over any field.)

Theorem 3.3. For each prime p, there is a subset PA
p (n) of Pp(n) such that the following hold.

(1) For each λ ∈ Pp(n) \PA
p (n) there is a self-associate irreducible FpÂn-module Eλ, such that

Dλ ↓Sn
An

∼= Eλ, [Eλ ↑Sn
An
] = [Dλ] + [DλM

] (in the Grothendieck group of FpSn).

(2) For each λ ∈ PA
p (n) there is an associate pair of irreducible FpAn-modules Eλ

+, Eλ
− such that

Dλ ↓Sn
An

∼= Eλ
+ ⊕Eλ

−, Eλ
± ↑Sn

An
∼= Dλ .

(3) The modules Eλ (for λ ∈ λ ∈ Pp(n) \PA
p (n)) and Eλ

± (for λ ∈ PA
p (n)) give a complete list of

irreducible spin FpAn-modules. The only non-trivial isomorphisms between these modules
are exactly those of the form Eλ ∼= EλM

for p ̸= 2 and λ ∈ Pp(n) \PA
p (n).

In fact when p is odd, PA
p (n) is just the set

{
λ ∈ Pp(n)

∣∣ λM = λ
}

of fixed points of the Mullineux
map. The set PA

2 (n) also admits a simple combinatorial description, but we will not need this.
In view of the above result, when p is understood we say that a p-regular partition λ splits if

λ ∈ PA
p (n), as this is exactly the situation where Dλ ↓Sn

An
is reducible.

3.3. Proof of the main result for alternating groups. In this subsection we prove Theorem 1.2. Recall
from the introduction that a module M for FpAn is homogeneous if its composition factors are all
isomorphic, or almost homogeneous if its composition factors can all be labelled by the same partition;
that is, either M is homogeneous or there is λ ∈ PA

p (n) such that each composition factor of M is
isomorphic to Eλ

+ or Eλ
−.

If M is a CAn-module and p is a prime, then we say that M is (almost) homogeneous in character-
istic p if a p-modular reduction of M is (almost) homogeneous.

To prove Theorem 1.2 we need to recall James’s regularisation theorem. For this, recall the domi-
nance order Q on partitions of n: µ Q λ if µ1 + · · ·+ µr ⩾ λ1 + · · ·+ λr for every r.

Theorem 3.4 [J1, Theorem A]. Suppose λ is a partition and p a prime. Then there is a p-regular
partition λR such that [Sλ : DλR

] = 1 while µ Q λR for any composition factor Dµ of Sλ.

We start by proving a fixed characteristic version of the equivalence of conditions (2) and (3) in
Theorem 1.2. We prove only one direction, since the other holds by definition.

Theorem 3.5. Let λ be a partition and p a prime. If Tλ
∗ is almost homogeneous in characteristic p then

it is irreducible in characteristic p.

Proof. Assume that Tλ
∗ is almost homogeneous. Then there is a p-regular partition µ such that (in

the Grothendieck group of Fp) either [Tλ
∗ ] = a[Eµ] with µ ̸∈ PA

p (n) or [Tλ
∗ ] = a[Eµ

+] + b[Eµ
−] with

µ /∈ PA
p (n). Now Theorem 3.3 gives [Tλ

∗ ↑Sn ] = a[Dµ] + a[DµM

] or (a + b)[Dµ].
In characteristic 0, Theorem 3.1 shows that Sλ appears as a composition factor of Tλ

∗ ↑Sn , and there-
fore in characteristic p every composition factor of Sλ is a composition factor of Tλ

∗ ↑Sn . So every
composition factor of Sλ in characteristic p is either Dµ or DµM

. Since DλR

is a composition factor of Sλ

with multiplicity 1 by Theorem 3.4, it follows that [Sλ] = [DλR

] + c[D(λR)M ], with c = 0 if λR = (λR)M.
If c = 0, then Sλ is irreducible in characteristic p, and hence so is Tλ

∗ , by [Fa1, Proposition 2.11].
So suppose c ⩾ 1. Then λR ̸= (λR)M, and in particular p ̸= 2. In addition, Theorem 3.4 gives
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(λR)M ▷ λR. Now consider Sλ ⊗ sgn. As noted above, Sλ ⊗ sgn ∼= Sλ′
in characteristic 0, and therefore

[Sλ ⊗ sgn] = [Sλ′
] in characteristic p. Hence

[Sλ′
] = c[DλR

] + [D(λR)M ].

Since (λR)M ▷ λR we deduce (again using Theorem 3.4) that (λ′)R = λR and c = 1. In particular
[Sλ] = [Sλ′

], so that λ = λ′ by [Wi, Theorem 1.1.1(i)]. Now again [Fa1, Proposition 2.11] shows that
Tλ
∗ is irreducible in characteristic p. □

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Write M = Tλ
∗ , where Tλ

∗ equals Tλ if λ ̸= λ′, or one of the modules Tλ
± if

λ = λ′.
(1)⇒(2): Let p be a prime, and suppose Dµ is a composition factor of Sλ in characteristic p. By

definition Dµ ↓An
is isomorphic to Eµ or Eµ

+ ⊕Eµ
−, and so Eµ or Eµ

± is a composition factor of Tλ
∗

in characteristic p. By [J2, Theorem 11.5] Dµ can be defined over Fp, so the set of composition
factors of Dµ ↓An

is closed under Fp-conjugation. Since Tλ
∗ appears in a GIR, it then follows

by Proposition 2.3 that the only possible composition factors of Tλ
∗ are of the form Eµ

∗ , so Tλ
∗ is

almost homogeneous.
(2)⇒(3): This holds by Theorem 3.5.
(3)⇒(4): By [Fa2, Theorem 8.1] if Tλ

∗ is irreducible in every characteristic, then Tλ
∗ is 1-dimensional.

It is then an easy exercise with the hook-length formula to see that λ or λ′ is one of (n), (2, 1)
or (22).

(4)⇒(1): If λ = (n) then Tλ is the trivial representation. In particular its character is defined over
Q. So by Proposition 2.2(1) Tλ is a GIR. If λ = (2, 1) or (2, 2) then the character field of
Tλ
± is Q(

√
−3). Furthermore, Tλ

± remains irreducible in every characteristic because it is 1-
dimensional. So Tλ

± appears in a GIR by Proposition 2.2(2). □

4. Double covers of the alternating and symmetric groups

4.1. Definition of double covers. Let Sn denote the symmetric group of degree n, and An the alter-
nating group. Double covers of these groups were discovered by Schur [Sc] in the study of projective
representations. Let Ŝ+

n denote the group with generators s1, . . . , sn−1, z, subject to the relations

s2
i = z, z2 = 1, siz = zsi, sisjsi = sjsisj if j = i + 1, sisj = sjsiz if j > i + 1.

The group Ŝ−
n is defined in the same way, but with the relation s2

i = 1 in place of s2
i = z. The

groups Ŝ±
n are double covers of Sn, and are Schur covers of Sn provided n ⩾ 4. (Ŝ+

n is the group
denoted S̃n in [HH, St], while Ŝ−

n is denoted Ŝn in [HH] and S̃′
n in [St]. Tiep [T1] uses the opposite

sign convention to ours: the group 2±Sn in [T1] is our Ŝ∓
n .)

To prove Theorems 1.3 and 1.4 we will not need to distinguish between Ŝ+
n and Ŝ−

n , so we will
use the notation Ŝn to mean either of these groups, until the end of Section 5. To prove Theorems 1.6
and 1.7 in Section 6 we will have to distinguish between the two double covers. If we need to distin-
guish between generators of Ŝ+

n and Ŝ−
n , we will write si,± instead of si.

We write Ân for the pre-image of An under the covering map Ŝn → Sn. Then Ân is a double cover
of An, and is a Schur cover of An provided n ⩾ 4 and n ̸= 6, 7.

We will also need to consider lifts of Young subgroups: if α is a composition of n then we define Ŝ±
α

to be the subgroup of Ŝ±
n generated by z and all si with i ̸= ∑

j
k=1 αk for any j ⩾ 1. When considering

explicit α we will omit the parentheses. For example, Ŝ±
4,2,3 = ⟨z, s1, s2, s3, s5, s7, s8⟩. We also define

Âα = Ŝ±
α ∩ Ân to be the corresponding subgroup of Ân.

4.2. Combinatorics of strict and p-strict partitions. Now we describe the combinatorics of partitions
that underpins the representations of Ŝn and Ân.

Suppose λ is a partition. We write h(λ) for the length of λ, i.e. the largest r for which λr > 0.
We say that λ is strict if λr > λr+1 for all 1 ⩽ r < h(λ) (so “strict” is just a synonym for the term
“2-regular” used in Section 3.2). A partition λ is even if it has an even number of positive even parts,
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and odd otherwise. Given two partitions λ and µ and a natural number n, we may write λ + nµ for
the partition (λ1 + nµ1, λ2 + nµ2, . . . ). We also define λ ⊔ µ to be the partition whose parts are the
combined parts of λ and µ, written in decreasing order.

The Young diagram of a partition λ is the set

[λ] =
{
(r, c) ∈ N2 ∣∣ c ⩽ λr

}
whose elements are called the nodes of λ. We draw Young diagrams as arrays of boxes using the
English convention, in which r increases down the page and c increases from left to right.

If λ is a strict partition, then a node (r, c) ∈ [λ] is removable if [λ] \ {(r, c)} is also the Young diagram
of a strict partition. A pair (r, c) /∈ [λ] is an addable node of λ if [λ] ∪ {(r, c)} is the Young diagram of
a strict partition.

Warning. The definition of addable and removable nodes we have used here is not universal: some-
times for dealing with representations in characteristic p, a more liberal definition of addable and
removable nodes is used which depends on p. But because we allow p to vary, we stick with the
more restrictive definition above.

We now define residues and ladders for a given prime p. For p = 2 the 2-residue of a node (r, c) is
0 if c ≡ 0 or 1 (mod 4), and 1 otherwise. So the 2-residue of a node depends only on its column, and
the residues follow the repeating pattern

0, 1, 1, 0, 0, 1, 1, 0, . . .

from left to right.
Ladders for p = 2 were introduced by Bessenrodt and Olsson [BO], and are defined as follows. For

each k ⩾ 0, we define the kth ladder to be the set of nodes

Lk =
{
(r, c) ∈ N2

∣∣∣ ⌊ c
2

⌋
+ 2(r − 1) = k

}
.

For example the first ladders can be illustrated in the following diagram, where we label all the nodes
in Lk with k.

0 1 1 2 2 3 3 4 4 5 5
2 3 3 4 4 5 5
4 5 5

Now let p = 2l + 1 be an odd prime. The p-residue of a node (r, c) is the smaller of the residues
of c − 1 and −c modulo p. So again the p-residue of a node depends only on its column, and the
residues follow the repeating pattern

0, 1, . . . , l − 1, l, l − 1, . . . , 1, 0, 0, 1, . . . , l − 1, l, l − 1, . . . , 1, 0, . . .

from left to right. We say that a partition λ is p-even if it has an even number of nodes of non-zero
residue, and p-odd otherwise.

Ladders for p odd were introduced by Brundan and Kleshchev [BK], and are defined as follows.
For each k ⩾ 0, we define the kth ladder to be the set of nodes

Lk =

{
(r, c) ∈ N2

∣∣∣∣ ⌊ (p − 1)c
p

⌋
+ (p − 1)(r − 1) = k

}
.

For example, when p = 5, the ladders can be illustrated in the following diagram, where we label all
the nodes in Lk with k.

0 1 2 3 4 4 5 6 7 8 8 9
4 5 6 7 8 8 9
8 9

The ladder Lk depends on the prime p as well as on k, but p will always be clear from the context.
For any p, if k1 < k2, then we say that the ladder Lk2 is longer than Lk1 .

For any prime and any residue i, an i-node means a node of residue i.
When p is odd, we need to recall some more definitions. We say that a partition λ is p-strict if for

every r either λr > λr+1 or p | λr. A p-strict partition λ is p-restricted if for each r either λr < λr+1 + p
or λr = λr+1 and p | λr.
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4.3. Representations in characteristic 0. Now we describe the classification of irreducible represen-
tations of Ŝn and Ân. On an irreducible module for Ŝn or Ân over any field, the central element z
must act as either 1 or −1. Modules on which z acts as 1 reduce to modules for Sn or An, while
modules on which z acts as −1 are called spin modules. By [St, p. 93] absolutely irreducible spin
representations of Ŝ+

n and Ŝ−
n are essentially the same, though their characters are not (one only has

to adjust the action of the generators by a scalar).
If M is a module for Ŝn (over any field), the associate module is obtained by tensoring with the

one-dimensional sign module sgn (on which each si acts as −1, and z acts as 1). If M is a module
for Ân, the associate module is obtained by conjugating the action of each element of Ân by an odd
element of Ŝn.

The irreducible spin representations of Ŝn and Ân over C were classified by Schur. (In fact Schur
only found the irreducible characters; the modules themselves were constructed – at least for Ŝn –
by Nazarov [N].) Schur’s classification can be stated as follows.

Theorem 4.1.
(1) For each even strict partition λ of n, there is a self-associate irreducible CŜn-module S(λ). For

each odd strict partition of n there is an associate pair of irreducible spin CŜn-modules S(λ)+,
S(λ)−. The modules constructed in this way give a complete irredundant list of irreducible
spin CŜn-modules.

(2) For each odd strict partition λ of n, there is a self-associate irreducible CÂn-module T(λ). For
each even strict partition of n there is an associate pair of irreducible spinCÂn-modules T(λ)+,
T(λ)−. The modules constructed in this way give a complete irredundant list of irreducible
spin CÂn-modules.

(3) If λ is an even strict partition of n then S(λ)↓Ŝn
Ân

∼= T(λ)+ ⊕ T(λ)− and T(λ)±↑Ŝn
Ân

∼= S(λ). If λ

is an odd strict partition of n then S(λ)±↓Sn
An

∼= T(λ) and T(λ)↑Sn
An

∼= S(λ)+ ⊕ S(λ)−.

If λ is a strict partition, we will write S(λ)∗ to mean S(λ) if λ is even, or either of the modules
S(λ)± if λ is odd. We use the notation T(λ)∗ similarly.

We also need notation for irreducible spin representations of Ŝα for a combination α = (α1, . . . , αh).
In [St, §4], Stembridge introduces the reduced Clifford product (S(λ1)⊗· · ·⊗S(λh))∗, where λj is a strict
partition of αj for each j. See in particular [St, (4.3)] for the construction and [St, Proposition 4.2] for
the characters of these modules. In [St, Theorem 4.3] it is shown that these representations are exactly
the irreducible representations of Ŝα. In this paper we will need them only in the case where the λj

are all even partitions.

4.4. Representations of Ŝn and Ân in positive characteristic. In characteristic 2, the central element
z acts as 1 on every irreducible module for Ŝn or Ân, which means that the irreducible modules for Ŝn
reduce to modules for Sn (and similarly for Ân and An). This means that when a spin representation
of CŜn or CÂn is reduced modulo 2, the composition factors of the resulting module are all modules
of the form Dλ or Eλ or Eλ

± introduced in Section 3.2.
When p is odd, however, the composition factors of the reductions modulo p of spin represen-

tations are still spin representations. The representation theory of Ŝn and Ân over a field of odd
characteristic has been developed over a long period. Labelling sets for irreducible spin modules in
odd characteristic were found by Brundan and Kleshchev. We summarise the results we need (with
minor changes to notation) as explained in Kleshchev’s book [Kl, §22.3].

A typical modern approach in this subject is to regard the group algebra of Ŝn as a superalgebra
(i.e. a Z/2Z-graded algebra), with the generators s1, . . . , sn−1 in odd degree and z in even degree, and
to work with irreducible supermodules. Then to derive results on irreducible modules, one can use
the well-understood relationship between modules and supermodules. In particular, Theorem 4.1(1)
can be expressed by saying that there is an irreducible spin CŜn-supermodule S(λ) for each strict
partition λ of n. As modules (i.e. forgetting the Z/2Z-grading) S(λ) coincides with S(λ) if λ is even,
or with S(λ)+ ⊕ S(λ)− if λ is odd. We also similarly define T(λ) to be either of T(λ) or T(λ)+ ⊕
T(λ)−.
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Now we fix an odd prime p, and suppose F is a splitting field for Ŝn of characteristic p. For each
p-restricted p-strict partition λ of n, Kleshchev defines the following:

⋄ a supermodule D(λ) for FŜn;
⋄ a module D(λ) for FŜn and modules E(λ)± for FÂn, if λ is p-even;
⋄ modules D(λ)± for FŜn and a module E(λ) for FÂn, if λ is p-odd.

These modules provide a classification of irreducible spin (super)modules, as in the following theo-
rem, which is a combination of Theorem 22.3.1 and p.267 in [Kl].

Theorem 4.2.
(1) The modules D(λ) for λ a p-even p-restricted p-strict partition of n and D(λ)± for λ a p-

even p-restricted p-strict partition of n give a complete irredundant list of irreducible spin
FŜn-modules.

(2) The modules E(λ)± for λ a p-even p-restricted p-strict partition of n and E(λ) for λ a p-even
p-restricted p-strict partition of n give a complete irredundant list of irreducible spin FÂn-
modules.

(3) The modules D(λ) for λ a p-strict p-restricted p-module give a complete irredundant list of
irreducible spin FÂn-supermodules.

(4) If λ is a p-even p-restricted p-strict partition λ of n then D(λ)↓Ŝn
Ân

∼= E(λ)+ ⊕ E(λ)− and

E(λ)±↑Ŝn
Ân

∼= D(λ). If λ is a p-odd p-restricted p-strict partition λ of n then D(λ)±↓Sn
An

∼= E(λ)

and E(λ)↑Sn
An

∼= D(λ)+ ⊕ D(λ)−.
(5) If λ is a p-even p-restricted p-strict partition λ of n then D(λ) ∼= D(λ). If λ is a p-odd p-

restricted p-strict partition λ of n then D(λ) ∼= D(λ)+ ⊕ D(λ)−.

For any p-restricted p-strict partition of n we also define a module E(λ) of Ân by E(λ) := E(λ) if
λ is p-even, or E(λ) := E(λ)+ ⊕ E(λ)− if λ is p-odd. Further we define D(λ)∗ to be either D(λ) or
either of D(λ)±, and define E(λ)∗ similarly.

5. Homogeneous reductions for double covers

In this section we study (almost) homogeneous reductions and prove Theorems 1.3 to 1.5. As
with modules for An, we say that a (super)module M for Ŝn or Ân is homogeneous if its composition
factors are all isomorphic, or almost homogeneous if its composition factors are all labelled by the same
partition. If M is defined over C and p is a prime, then we say that M is (almost) homogeneous in
characteristic p if a p-modular reduction of M is (almost) homogeneous.

If M is a supermodule, then we say that M is homogeneous in characteristic p if the composition
factors of a p-modular reduction of M (as a supermodule) are isomorphic. (For p = 2, there is a
one-to-one correspondence between simple modules and simple supermodules, so this condition is
equivalent to saying that M is homogeneous as a module.)

Lemma 5.1. Suppose λ is a strict partition of n and p is a prime. Then the following are equivalent:
⋄ S(λ) is homogeneous in characteristic p;
⋄ S(λ)∗ is almost homogeneous in characteristic p;
⋄ T(λ)∗ is almost homogeneous in characteristic p.

Proof. Consider first the case p = 2, and recall from Section 3.2 that we write PA
2 (n) for the set of

partitions µ os n such that the restriction of Dµ to An is reducible. The relationship between irre-
ducible modules and supermodules for Ŝn, and between irreducible modules for Ŝn and Ân, means
that (writing [S(λ) : Dµ] for the composition multiplicity of Dµ in S(λ) as a module)

[S(λ) : Dµ] = 2[T(λ)± : Eµ] = [S(λ) : Dµ] if λ is even and µ /∈ PA
2 (n),

[S(λ) : Dµ] = [T(λ)± : Eµ
+] + [T(λ)± : Eµ

−] = [S(λ) : Dµ] if λ is even and µ ∈ PA
2 (n),

[S(λ)± : Dµ] = [T(λ) : Eµ] = 1
2 [S(λ) : Dµ] if λ is odd and µ /∈ PA

2 (n),

[S(λ)± : Dµ] = [T(λ) : Eµ
±] =

1
2 [S(λ) : Dµ] if λ is odd and µ ∈ PA

2 (n).
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The proof in odd characteristic p is similar. Given a restricted p-strict partition µ, we write [S(λ) :
D(µ)] for the multiplicity of D(µ) as a (super)composition factor of a p-modular reduction of S(λ).
Then

[S(λ) : D(µ)] = [T(λ)± : E(µ)+] + [T(λ)± : E(µ)−] = [S(λ) : D(µ)] if λ is even and µ is p-even,

[S(λ) : D(µ)±] = [T(λ)± : E(µ)] = [S(λ) : D(µ)] if λ is even and µ is p-odd,

[S(λ)± : D(µ)] = [T(λ) : E(µ)±] = 1
2 [S(λ) : D(µ)] if λ is odd and µ is p-even,

[S(λ)± : D(µ)+] + [S(λ)± : D(µ)−] = [T(λ) : E(µ)] = [S(λ) : D(µ)] if λ is odd and µ is p-odd.

□

In order to exploit Lemma 5.1, we use the following proposition.

Proposition 5.2. [FM, Proposition 4.10] Suppose p = 2l + 1 is an odd prime, and λ is a strict partition
of n. Suppose that there is some residue i ∈ {0, . . . , l} such that λ has a removable i-node and an
addable i-node in a longer ladder. Then S(λ) is inhomogeneous in characteristic p.

We deduce the following useful corollary.

Corollary 5.3. Suppose λ is a strict partition and p is an odd prime, and there are r, s ∈ N with r < s
such that:

⋄ λ has both addable and removable nodes in rows r and s; and
⋄ λr + λs is divisible by p with λr − λs ̸= p(s − r).

Then S(λ) is inhomogeneous in characteristic p.

Proof. The fact that p | λr + λs means that the addable node in row r has the same residue as the
removable node in row s, and that the removable node in row r has the same residue as the addable
node in row s. If λr − λs > p(s − r), then the addable node in row r lies in a longer ladder than
the removable node in row s, and Proposition 5.2 gives the result. On the other hand, if λr − λs <
p(s − r), then the addable node in row s lies in a longer ladder than the removable node in row r, and
again Proposition 5.2 applies. □

For p = 2 we have the following similar statement, which holds with the same argument as the
previous result, using [Fa4, Proposition 4.17].

Corollary 5.4. Suppose λ is a strict partition, and there are r, s ∈ N with r < s such that:

⋄ λ has both addable and removable nodes in rows r and s; and
⋄ λr + λs is divisible by 4 and λr − λs ̸= 4(s − r).

Then S(λ) is inhomogeneous in characteristic 2.

We are now ready to prove our main results on homogeneous and irreducible reductions for dou-
ble covers.

Proof of Theorem 1.3. In view of Lemma 5.1 we just need to show that S(λ) is homogeneous in
every characteristic if and only if λ = (n) or

λ ∈ {(2, 1), (3, 2), (3, 2, 1), (4, 3, 2), (4, 3, 2, 1), (5, 4, 3, 2), (5, 4, 3, 2, 1)}.

By [FM, Theorem 1.1] S(λ) is homogeneous in characteristic 3 only if one of the following holds:

(1) λ = (n);
(2) λ1 ≡ · · · ≡ λh(λ) ≡ a (mod 3) with a ∈ {1, 2} and h(λ) ⩾ 2;
(3) λ = (3k + a, 3k + a − 3, . . . , a) ⊔ (3) with a ∈ {1, 2} and k ⩾ 0;
(4) λ is one of the partitions (2, 1), (3, 2, 1), (4, 3, 2), (4, 3, 2, 1), (5, 3, 2, 1), (5, 4, 3, 1), (5, 4, 3, 2),

(5, 4, 3, 2, 1), (7, 4, 3, 2, 1), (8, 5, 3, 2, 1).

So we just need to show that the theorem holds in each of these four cases.

(1) If λ = (n), then S(λ) is homogeneous in every characteristic by [Wa, Table III].
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(2) Suppose λ1 ≡ · · · ≡ λh(λ) ≡ a (mod 3) with a ∈ {1, 2} and h(λ) ⩾ 2. Then in particular
λi − λi+1 ⩾ 3 for every 1 ⩽ i < h(λ), so there are addable and removable nodes in every row
of λ.

If there exists 1 ⩽ i < h(λ) with λi ̸≡ λi+1 (mod 2), then λi + λi+1 > 1 is odd and not
divisible by 3. Further λi − λi+1 is divisible by 3. So we can apply Corollary 5.3 with r = i,
s = i + 1 and p any prime dividing λi + λi+1.

If λi is even for all 1 ⩽ i ⩽ h(λ) and λ1 ≡ λ2 (mod 4), then we can apply Corollary 5.4 with
r = 1 and s = 2 (note that λ1 − λ2 is divisible by 3, so cannot equal 4).

If λi is even for all 1 ⩽ i ⩽ h(λ) and λ1 ̸≡ λ2 (mod 4) then λ1 + λ2 = 2c with c > 1 odd. As
λ1 − λ2 is also even, we can apply Corollary 5.3 with r = 1, s = 2 and p any prime dividing c.

We are left with the case where λi is odd for all 1 ⩽ i ⩽ h(λ). In this case, [BO, Theorem
5.1] shows that the 2-modular reduction of S(λ) has a composition factor appearing with
multiplicity 1. So S(λ) is homogeneous in characteristic 2 if and only if S(λ) is irreducible in
characteristic 2. By [Fa3, Theorem 3.3] it then in particular follows that λ1 ≡ λ2 (mod 4). So
again λ1 + λ2 = 2c with c > 1 odd and we can conclude as in the previous case.

(3) Suppose λ = (3k + a, 3k + a − 3, . . . , a) ⊔ (3) with k ⩾ 0 and a ∈ {1, 2}. If a + k ⩽ 3 then we
can just check the known decomposition numbers [MY, GAP, M], together with the fact that
S(λ) is automatically homogeneous in characteristic p when p > |λ|. If a = 1 and k ⩾ 3, then
we can apply Corollary 5.3 with r = k − 1, s = k and p = 17. If a = 2 and k ⩾ 2 then we can
apply Corollary 5.3 with r = k, s = k + 1 and p = 13.

(4) Suppose λ is one of (2, 1), (3, 2, 1), (4, 3, 2), (4, 3, 2, 1), (5, 3, 2, 1), (5, 4, 3, 1), (5, 4, 3, 2), (5, 4, 3, 2, 1),
(7, 4, 3, 2, 1), (8, 5, 3, 2, 1). In all but the last case we can just check the known decomposition
numbers [MY, GAP, M]. In the last case we can apply Corollary 5.3 with r = 1 and s = 2. □

Proof of Theorems 1.4 and 1.5. We may assume that λ is one of the partitions appearing in Theo-
rem 1.3. For the seven sporadic partitions in Theorem 1.3(2), we can just check the known decompo-
sition numbers [MY, M] to verify the result.

This leaves the partition λ = (n), for which S(λ)∗ is the so-called basic spin module. The reducibil-
ity of a p-modular reduction of the basic spin module was determined completely by Wales [Wa,
Theorem 7.7]: S(λ)∗ is irreducible in characteristic p if and only if n is even or p ∤ n. So if n is even or
n = 1, then S(λ)∗ is irreducible in every characteristic. If n ⩾ 3 is odd, then S(λ) is reducible modulo
any prime factor of n. So we have the desired result for S(λ)∗.

For T(λ)∗ we have a little more work to do. From [Fa4, Theorem 4.3] we see that T(λ)∗ is irre-
ducible in characteristic 2 if and only if n = 0 or n ̸≡ 0 (mod 4). To examine T(λ)∗ in odd charac-
teristic, we note that in odd characteristic p, Wales’s results (together with an analysis of when the
partition (n) is p-even) can be stated as saying that S(λ) is an irreducible supermodule (isomorphic
to D(µ), say) in characteristic p. As a consequence, if p is odd, then T(λ)∗ is reducible in characteris-
tic p if and only if λ is odd and µ is p-even. Obviously λ is odd if and only if n is even. On the other
hand, the block classification for the double covers of symmetric and alternating groups in terms of
residues [Kl, Theorem 22.3.1(iii)] shows that µ is p-even if and only if λ is, and it is easy to check that
if n is even, then λ is p-even if and only if p | n. We conclude that if p is odd, then T(λ)± is irreducible
in characteristic p if and only if n is odd or p ∤ n.

So if n is odd or if n ⩽ 2, then T(λ)± is irreducible in every characteristic. If n is divisible by 4 and
n > 0, then T(λ) is reducible in characteristic 2. If n ≡ 2 (mod 4) and n > 2, then T(λ) is reducible
modulo p, where p is any odd prime factor of n. □

6. GIRs for double covers

Now we study GIRs for the double covers of Sn and An. Here it will be important to distinguish the
two double covers Ŝ+

n and Ŝ−
n . Given a strict partition λ of n, we write Sε(λ) for the representation

S(λ) considered as a Ŝε
n-representation.

We will be concerned with the representations S(λ)∗ and T(λ)∗ that are almost homogeneous in
every characteristic; that is, those appearing in Theorem 1.3. The case λ = (n) for n ⩾ 7 is addressed
in [T1], so we just need to look at the partition (n) for n ⩽ 6, together with the seven partitions
in Theorem 1.3(2). In Table I we list some essential information on the characters labelled by these
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partitions, including their Frobenius–Schur indicators, character fields and reductions modulo p.
For a strict partition λ, we write ⟨λ⟩ or ⟨λ⟩± for the ordinary character of S(λ) or S(λ)±. In prime
characteristic p, we write φ(µ) or φ(µ)± for the Brauer characters of the appropriate simple modules
labelled by µ (that is, the modules Dµ, or Eµ

∗ if p = 2, or the modules D(µ)∗ or E(µ)∗ if p is odd).
In fact, most of this section will be devoted to studying the modules S(4, 3, 2), S(4, 3, 2, 1), S(5, 4, 3, 2)

and S(5, 4, 3, 2, 1), which are difficult to deal with. In particular we need to determine whether they
are defined over Q or Qp as Ŝε

n-representations for specific p and ε.

6.1. Quaternion algebras. We will need several results on quaternion algebras. We use the standard
notation (a, b | F) for the quaternion algebra over a field F with parameters a, b ∈ F; that is, the
F-algebra generated by two elements i and j with defining relations i2 = a, j2 = b, ji = −ij.

We begin with the following result, which studies the structure of certain quaternion algebras over
Q. We give a proof of it, as we are unaware of any previous proof. For d ∈ Q with

√
d /∈ Q we write

m 7→ m for the non-trivial automorphism of the field Q(
√

d). As usual, Matm(A) denotes the algebra
of m × m matrices over a commutative algebra A.

Lemma 6.1. Suppose D is a Q-subalgebra of Mat2(Q(
√

d)) and is a quaternion division Q-algebra.

(1) There exist f ∈ Q(
√

d), m ∈ Q(
√

d)× and h ∈ Q× such that
(√

d f
0 −

√
d

)
,
(

0 m
hm 0

)
∈ D.

(2) If f = 0, then there is k ∈ Q× such that

D =

〈(
1 0
0 1

)
,
(√

d 0
0 −

√
d

)
,
(

0 1
k 0

)
,
(

0
√

d
−k

√
d 0

)〉
Q

,

so that D ∼= (d, k | Q).

Proof. Throughout this proof we write ⟨a1, . . . , ar⟩ for the Q-span of a1, . . . , ar ∈ Mat2(Q(
√

d)). By
assumption we can write D = ⟨I, A, B, AB⟩, where A2 = aI, B2 = bI, and AB = −BA, and a, b ∈ Q.
Then (AB)2 = −abI, and the matrices A, B, AB pairwise anti-commute.

Claim 1: If C ∈ ⟨A, B, AB⟩, then C2 ∈ ⟨I⟩.
To see this, write C = rA + sB + tAB with r, s, t ∈ Q. Then the assumptions on A and B give

C2 = (r2a + s2b − t2ab)I, with r2a + s2b − t2ab ∈ Q.
Claim 2: If C ∈ ⟨A, B, AB⟩, then C has trace 0.

To see this, write C =
(

c1 c2
c3 c4

)
. Claim 1 implies in particular that (c1 + c4)c2 = (c1 + c4)c3 = 0,

so that either c1 + c4 = 0 or c2 = c3 = 0. But in the latter case the diagonal entries of C2 are c2
1 and

c2
4, so we get c1 = ±c4. So either c1 = −c4 (as required) or C = c1 I for some c1 ∈ Q(

√
d)×. Now

c1 cannot be rational, because I, A, B, AB are linearly independent over Q. But if c1 is irrational,
then D contains Q(

√
d)I, so is a Q(

√
d)-subalgebra of Mat2(Q(

√
d)). Then dimQ(

√
d) D = 2, which

forces D to be commutative, a contradiction.

Claim 3: There exist m ∈ Q(
√

d)× and h ∈ Q× such that
(

0 m
hm 0

)
∈ D.

To see this, note that the upper-left entries of the matrices A, B and AB are linearly dependent
over Q (because they lie in Q(

√
d)). So we can find a non-trivial Q-linear combination C of A,

B and AB such that the upper-left entry of C (and hence the lower-right entry, by Claim 2) is
zero. The off-diagonal entries of C are non-zero because C is invertible, so we can certainly write

C =
(

0 m
hm 0

)
with h, m ∈ Q(

√
d)×. Now C2 = hmmI, and mm ∈ Q, so h ∈ Q by Claim 1.

Claim 4: There exists f ∈ Q(
√

d) such that
(√

d g
0 −

√
d

)
∈ D.

Using the fact that the lower-left entries of A, B and AB are linearly dependent over Q we can

find a non-zero upper-triangular matrix E ∈ ⟨A, B, AB⟩. By Claim 2 we can write E =
(

e f
0 −e

)
for e, f ∈ Q(

√
d), and e ̸= 0 because E is invertible. Now E2 = e2 I, so e2 is rational by Claim 1,
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Â
2

1
Q

1
φ
(2
)

⟨3
⟩

Ŝ
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Ŝ
− 6

4
Q
(√

3)
−

1
φ
(6

,4
)

φ
(3

,2
,1
)

φ
(5

,1
) ±

⟨6
⟩

Â
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Ŝ
+ 9

96
Q

1
2φ

(6
,3
)

φ
(4

,3
,2
) +

+
φ
(4

,3
,2
) −

φ
(4

,3
,2
)

φ
(4

,3
,2
)

⟨4
,3

,2
⟩

Ŝ
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Â
14

45
76

Q
(√

−
30
)

0
φ
(8

,5
,1
)

φ
(5

,4
,3

,2
)

φ
(5

,4
,3

,2
)

φ
(5

,4
,3

,2
) ±

⟨5
,4

,3
,2

,1
⟩

Ŝ
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which means that either e ∈ Q or e ∈
√

dQ. But if e ∈ Q then D contains the non-invertible matrix

E + eI =
(

2e f
0 0

)
, a contradiction. So e ∈

√
dQ, and by rescaling we may assume e =

√
d.

This completes the proof of part 1 of the lemma. Now suppose f = 0. Then

D =

〈(
1 0
0 1

)
,
(√

d 0
0 −

√
d

)
,
(

0 m
km 0

)
,
(

0 m
√

d
−km

√
d 0

)〉
.

Because the two matrices
(

0 m
km 0

)
and

(
0 m

√
d

−km
√

d 0

)
are linearly independent over Q, the upper-

right entries m and m
√

d of these matrices are linearly independent over Q (otherwise we would be

able to find a non-zero matrix of the form
(

0 0
∗ 0

)
in D, contradicting the assumption that D is a

division algebra). Hence there is a Q-linear combination of
(

0 m
km 0

)
,
(

0 m
√

d
−km

√
d 0

)
of the form(

0 1
k 0

)
, and k ∈ Q× because of Claim 1 and the assumption that D is a division algebra. So

D =

〈(
1 0
0 1

)
,

(√
d 0

0 −
√

d

)
,
(

0 1
k 0

)
,

(
0

√
d

−k
√

d 0

)〉
. □

Now we collect a few lemmas on ramification of quaternion algebras. Recall that the quaternion
algebra (a, b | Q) is ramified at a prime p if the algebra (a, b | Qp) is a division algebra.

As with Lemma 6.1, we give a proof of the following lemma, although we do not know whether it
is new.

Lemma 6.2.
(1) Suppose a, b ∈ Z, with a ≡ 2 (mod 8) and b odd. Then the algebra (a, b | Q) is ramified at

p = 2 if and only if b ≡ ±3 (mod 8).
(2) The algebra (−2,−15 | Q) is ramified at p = 5.

Proof. By [GS, Lemma 1.1.3] the algebra (a, b | Qp) fails to be a division algebra if and only if we can
find a non-zero element x + yi + zj + wk ∈ (a, b | Qp) with norm zero, i.e. a solution to the equation

x2 − ay2 − bz2 + abw2 = 0

for x, y, z, w ∈ Qp not all zero.
(1) First suppose b ≡ 1 (mod 8), and let (y, z, w) = (0, 1, 0). Then the above equation becomes

x2 = b. Clearly this equation has a solution for x modulo 8, and therefore (by [Ko, Exercise 6
on p.19]) has a solution for x ∈ Z2.

When b ≡ −1 (mod 8), let (y, z, w) = (1, 1, 0). Then the above equation becomes x2 =
a + b. Again, this has a solution modulo 8, and therefore has a solution in Z2.

Now suppose b ≡ ±3 (mod 8), and suppose x, y, z, w ∈ Q2 are not all zero. By rescaling,
we can assume x, y, z, w ∈ Z2, and that x, y, z, w are not all divisible by 2. Now we can just
check all possibilities for x, y, z, w modulo 16 to show that x2 − ay2 − bz2 + abw2 ̸≡ 0 (mod 16),
and hence x2 − ay2 − bz2 + abw2 ̸= 0.

(2) We have to show that the equation

x2 + 2y2 + 15z2 + 30w2 = 0

has no non-trivial solution in Q5. Assume x, y, z, w ∈ Q5 are not all zero. By rescaling, we
can assume x, y, z, w ∈ Z5 and at least one of them is not divisible by 5. By checking all
possibilities for x, y, z, w modulo 25, we can check that x2 + 2y2 + 15z2 + 30w2 ̸≡ 0 (mod 25),
and therefore x2 + 2y2 + 15z2 + 30w2 ̸= 0. □

6.2. The cases (4, 3, 2) and (4, 3, 2, 1). Now we look at our first two difficult cases.

Lemma 6.3. Suppose that λ = (4, 3, 2) or (4, 3, 2, 1). Then S+(λ) is defined over Q.
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Proof. Table I shows that the character of S+(λ) is real-valued, so by [Fe, Corollary 2.4] the Schur
index of S+(λ) over Q is either 1 or 2. So there certainly exists an irreducible QŜ+

n -representation
V with V ⊗Q C ∼= S+(λ)⊕2. Now consider the algebra EndQŜ+

n
(V). Since EndQŜ+

n
(V) ⊗Q C =

EndCŜ+
n
(V ⊗Q C) ∼= Mat2(C), the algebra EndQŜ+

n
(V) is a 4-dimensional central Q-algebra. So by

[GS, Proposition 1.2.1], EndQŜ+
n
(S+(λ)) is a quaternion algebra.

In view of [Fe, Theorem 2.14], in order to show that S+(λ) is defined over Q it is enough to show
that is defined over R and over Qp for every prime p. For R this holds by [Fe, Theorem 2.7]. Further-
more, if p is a prime for which S+(λ) is absolutely irreducible modulo p, then S+(λ) is defined over
Qp by [Fe, Theorem 2.10]. From Table I, this only leaves us to consider the primes p = 2 and 3.

In fact for p = 3 we can still use [Fe, Theorem 2.10], since for p = 3 the character field of D(λ)± is
F3. To see this note that, looking at known decomposition matrices, we see that, in the Grothendieck
group, [D(λ)±] = [V±]− [W±] with V± and W± spin representations in characteristic 0 of dimension
160 and 112 if λ = (4, 3, 2), or 448 and 400 if λ = (4, 3, 2, 1). Using [GAP] to compute the character
table of Ŝ+

n , we see that any entry in the character values of such modules V± or W± is either integer,
±
√

10 or ±
√

7.
So for λ = (4, 3, 2) or (4, 3, 2, 1) the algebra EndQŜ+

n
(V) is unramified at 0 and at any odd prime.

But by [V, Corollary 14.2.3] any quaternion Q-algebra is ramified at an even number of places, and
therefore is unramified at 2 as well. So for F = R or Qp with p any prime, the algebra EndFŜ+

n
(V) is

not a division algebra, so is isomorphic to Mat2(F), and therefore S+(λ) is defined over F. □

Lemma 6.4. Suppose that λ = (4, 3, 2) or (4, 3, 2, 1) and let n = |λ|. Then S−(λ) does not appear in a
GIR of Ŝ−

n .

Proof. By Lemma 6.3 S+(λ) can be defined over Q. Let ρ be such a matrix representation. Then
(following [St, p. 93]) we obtain a matrix representation for S−(λ) over Q(i) via sj,− 7→ iρ(sj,+).

Mapping A + iB ∈ Matm(Q(i)) with A, B ∈ Matm(Q) to A ⊗
(

1 0
0 1

)
+ B ⊗

(
0 1
−1 0

)
, we obtain a

representation ρ of Ŝ−
n over Q, such that extending scalars to C gives S(λ)⊕2 (though ρ is irreducible

over Q).
We can view Ân as a subgroup of Ŝ+

n and of Ŝ−
n . We will use the isomorphism between these two

copies of Ân given by

g+ = sj1,+ · · · sj2h,+ 7→ zhsj1,− · · · sj2h,− = g−.

Under this isomorphism, we obtain ρ(g−) =
(

ρ(g+) 0
0 ρ(g+)

)
for g− ∈ Ân.

By Proposition 2.2 and Table I, T(λ)+ ⊕T(λ)− = S(λ)↓Ân
is a GIR for Ân. Since the modules T(λ)±

both have character field Q(
√
−6), Proposition 2.1 gives EndQÂn

(ρ) ∼= Q(
√
−6). Since ρ(g−) =(

ρ(g+) 0
0 ρ(g+)

)
for g− ∈ Ân, it follows that EndQÂn

(ρ) = Mat2(EndQÂn
(ρ)).

Assume for a contradiction that S−(λ) appears in a GIR V, and let K = EndQŜ−
n
(V) as in Sec-

tion 2.1. Then K is a definite quaternion algebra by Proposition 2.1. If we fix an isomorphism
EndQÂn

(ρ) ∼= Q(
√
−6), then under the resulting isomorphism Mat2(EndQÂn

(ρ)) ∼= Mat2(Q(
√
−6)),

K corresponds to a Q-subalgebra D ⊂ Mat2(Q(
√
−6)), with D being a quaternion division algebra.

By Lemma 6.1(1) D contains matrices of the form
(√

−6 f
0 −

√
−6

)
,
(

0 m
hm 0

)
, where f ∈ Q(

√
−6),

m ∈ Q(
√
−6)× and h ∈ Q×. Now the matrix in K corresponding to

(√
−6 f
0 −

√
−6

)
commutes with

ρ(g) for every g ∈ Ŝ−
n . In particular, it commutes with ρ(s1,−) =

(
0 ρ(s1,+)

−ρ(s1,+) 0

)
, which forces

f = 0. Now we can apply Lemma 6.1(2) to get

D =

〈(
1 0
0 1

)
,
(√

−6 0
0 −

√
−6

)
,
(

0 1
k 0

)
,
(

0
√
−6

−k
√
−6 0

)〉
Q
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for some k ∈ Q×. Because the matrix in K corresponding to
(

0 1
k 0

)
commutes with ρ(s1,−) =(

0 ρ(s1,+)
−ρ(s1,+) 0

)
, we deduce that k = −1. So K is the quaternion algebra (−6,−1 | Q). By

Lemma 6.2(1) R is unramified at p = 2, so S(λ) does not appear in a GIR of Ŝ−
n , by Proposition 2.3

and Table I. □

6.3. The cases (5, 4, 3, 2) and (5, 4, 3, 2, 1). Now we come to the modules S+(λ) for λ = (5, 4, 3, 2) or
(5, 4, 3, 2, 1). In the following lemma, which is a fixed-characteristic version of Proposition 2.2(3), we
use the same notation as in Section 2.1.

Lemma 6.5. Let G be a finite group and V be an irreducible QG-representation with EndQG(V) a
quaternion division algebra. Let W be an irreducible composition factor of V ⊗Q C and χ be the
character of W. Assume that for some prime p one of the following holds:

⋄ χ ≡ ρ (mod p) for some absolutely irreducible p-Brauer character ρ;
⋄ χ ≡ ρ + ρp (mod p) for some absolutely irreducible p-Brauer character ρ with Fp(ρ) = Fp2 .

Then Λ/IΛ is an irreducible (R/I)G-representation.

Proof. Note that in either case χ is irreducible as an FpG-character. Let K := EndQG(V). By Proposi-
tion 2.1 we have V ⊗Q C ∼= W⊕2.

Assume first that K is ramified at p. Then R/I = Fp2 , by the proof of [T2, Proposition 2.7]. Further
if ψ is the character of Λ/IΛ as an (R/I)G-representation, then the character φ of Λ/pΛ as an FpG-
representation satisfies φ ≡ 2(ψ + ψp) (mod p). Since ψ = 2χ this gives χ ≡ ψ + ψp (mod p). This
means that we are in the second case in the lemma and ψ ≡ ρ or ρp (mod p) is absolutely irreducible.
In particular Λ/IΛ is irreducible as as (R/I)G-representation.

Assume now that K is unramified at p. By the proof of [T2, Proposition 2.7] R/I = Mat2(Fp)
in this case. Further as χ is irreducible as an FpG-character, and in the Grothendieck group of FpG-
representations [Λ/pΛ] = 2[D] with D irreducible. Let W ⊆ Λ/pΛ with W irreducible as an (R/I)G-
representation. By [T2, Lemma 2.5], [W] = 2[E] with E irreducible. So W = Λ/pΛ is an irreducible
(R/I)G-representation. So the lemma follows, as I ⊆ (p). □

Lemma 6.6. Suppose that λ = (5, 4, 3, 2) or (5, 4, 3, 2, 1) and let n = |λ|. Let V be a representation
of QŜ−

n with V ⊗Q C ∼= (S−(λ))⊕2. Then EndQŜ−
n
(V) is a quaternion algebra, which is ramified at

p = 2 and 5 and unramified at all other places.

Proof. Let K := EndQŜ−
n
(V). Then K is a quaternion algebra, as in the first paragraph of the proof

of Lemma 6.3. By definition K is unramified at a prime p if and only if K ⊗Q Qp is not a division
algebra. This is then equivalent to V ⊗Q Qp being reducible, which in turn is equivalent to S+(λ)
being defined over QpŜ

−
n . The same applies for p = 0, with R in place of Qp.

From [Fe, Theorems 2.7, 2.10] and Table I it then follows that K can only be ramified at p = 2 or 5.
Since K is ramified at an even number of places, it is thus enough to show that it is ramified at p = 5.

Recall the reduced Clifford products introduced in Section 4.3. Stembridge’s spin version of the
Littlewood–Richardson rule [St, Theorem 8.1] shows that S−(λ) appears exactly once in S−(4, 2)⊗
S−(5)⊗ S−(3)↑Ŝ

−
n

Ŝ−
6,5,3

. So by [Fe, Theorem 2.1] to show that S−(λ) is not defined over Q5 it suffices to

show that S−(4, 2)⊗ S−(5)⊗ S−(3) is not defined over Q5 (both representations have integer-valued
characters by [HH, Theorems 8.8 and 10.1] and [St, Proposition 4.2]).

Let W be a Q(i)Ŝ−
6,5,3-representation with W ⊗Q(i) C ∼= (S−(4, 2)⊗ S−(5)⊗ S−(3))⊕2 and let H :=

EndQ(i)Ŝ−
6,5,3

(W). Then H is a quaternion algebra over Q(i) (with the same proof as K over Q).
Note that −1 is a square modulo 5 and thus also in Q5 by [Ko, Theorem 3], so that Q(i) ⊆ Q5. Let

W := W ⊗Q(i) Q5 and H := EndQ5Ŝ
−
6,5,3

(W). As H ∼= H ⊗Q(i) Q5, it is also a quaternion algebra.
We can give a direct construction of the module W. For 1 ⩽ j ⩽ 5 let ρ(sj,−) be the matrices defined

in Appendix A. Similarly for j ∈ {1, 2, 3, 4, 6, 7} let ψ(sj,−) be the matrices defined in Appendix B. It
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can be checked through direct computation that π(z) = −I and

π(sj,−) =


ρ(sj,−)⊗ I ⊗

(
1 0
0 −1

)
j ∈ {1, 2, 3, 4, 5},

I ⊗ ψ(sj−6,−)⊗
(

0 1
1 0

)
j ∈ {7, 8, 9, 10, 12, 13}

satisfy the braid relations for Ŝ−
6,5,3 and thus define a representation of Q(i)Ŝ−

6,5,3. Comparing char-
acters it follows that π ⊗Q(i) C ∼= (S−(4, 2)⊗ S−(5)⊗ S−(3))⊕2. Thus we may take W = π.

If A and B are the matrices in Appendices A and B then it can be checked again by direct compu-
tation that the matrices

I ⊗ I ⊗
(

1 0
0 1

)
, A ⊗ I ⊗

(
0 1
1 0

)
, I ⊗ B ⊗

(
1 0
0 −1

)
, A ⊗ B ⊗

(
0 1
−1 0

)
commute with the images of all standard generators of Ŝ−

6,5,3 under π (which coincide with their
images under π) and are thus in EndQ5Ŝ

−
6,5,3

(π). As this endomorphism ring is 4-dimensional and the
four matrices above are linearly independent, it follows that

H = EndQ5Ŝ
−
6,5,3

(π) =

〈
I ⊗ I ⊗

(
1 0
0 1

)
, A ⊗ I ⊗

(
0 1
1 0

)
, I ⊗ B ⊗

(
1 0
0 −1

)
, A ⊗ B ⊗

(
0 1
−1 0

)〉
Q5

.

Using the fact that A2 = −2I and B2 = −15I it follows that H is isomorphic to the quaternion algebra
(−2,−15 | Q5). By Lemma 6.2(2), H is ramified at p = 5. □

Now we can prove our main result about the cases λ = (5, 4, 3, 2) and (5, 4, 3, 2, 1).

Lemma 6.7. Suppose that λ = (5, 4, 3, 2) or (5, 4, 3, 2, 1) and let n = |λ|. Then S+(λ) appears in a GIR
of Ŝ+

n .

Proof. By Proposition 2.2 and Table I, T(λ)+⊕T(λ)− is a GIR for Ân, and in particular can be defined
over Q. So let M be a QÂn-module such that M ⊗Q C ∼= T(λ)+ ⊕ T(λ)−, and let ρ : Ân → GL(M)

be the corresponding representation. We want to construct the induced module M↑Ŝ
±
n

Ân
. Note that

s1,+g = s1,−g for any g ∈ Ân; this can be seen using the identification sj,∓ = isj,± ∈ CŜ±
n from [St,

p.92]. This means that we can unambiguously write s1,±g as s1 g for g ∈ Ân.

Using the coset representatives {1, s1,±} we obtain matrix representations ψ± = ρ↑Ŝ
±
n

Ân
defined over

Q, with

ψ±(g) =
(

ρ(g) 0
0 ρ(s1 g)

)
for g ∈ Ân, ψ±(s1,±) =

(
0 I
∓I 0

)
.

Viewed as a representation over C, ψ± is isomorphic to the underlying representation of

M↑Ŝ
±
n

Ân
⊗Q C ∼= (M ⊗Q C)↑Ŝ

±
n

Ân

∼= (T(λ)+ ⊕ T(λ)−)↑Ŝ
±
n

Ân

∼= S±(λ)⊕2.

Since s1 M ∼= M, there exists a matrix C, defined over Q, such that C(ρ(s1 g))C−1 = ρ(g) for every
g ∈ Ân. Now define another representation π± by

π±(g) :=
(

I 0
0 C

)
ψ±(g)

(
I 0
0 C−1

)
.

Then (as a representation over C) π± is also isomorphic to the underlying representation of S±(λ)⊕2.
Furthermore,

π±(g) =
(

ρ(g) 0
0 ρ(g)

)
for g ∈ Ân, π±(s1,±) =

(
0 C−1

∓C 0

)
.

Now let K± := EndQŜ±
n
(π±). Then K± is a quaternion algebra (as at the beginning of the proof of

Lemma 6.6), and

K± ⊆ EndQÂn
(π±↓Ŝ

±
n

Ân
) = Mat2(EndQÂn

(ρ)).
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By Proposition 2.1 and Table I, EndQÂn
(ρ) ∼= Q(

√
−30). Let D± be the image of K± under the

corresponding isomorphism Mat2(EndQÂn
(ρ)) ∼= Mat2(Q(

√
−30)). Then D± is a quaternion algebra,

with D± ⊂ Mat2(Q(
√
−30)). By Lemma 6.1(1) D± contains a matrix of the form

(√
−30 f±

0 −
√
−30

)
.

Since the corresponding matrix in K± commutes with π±(s1,±), it follows that f± = 0. Then by
Lemma 6.1(2),

D± =

〈(
1 0
0 1

)
,
(√

−30 0
0 −

√
−30

)
,
(

0 1
k± 0

)
,
(

0
√
−30

−k±
√
−30 0

)〉
Q

for some k± ∈ Q×. Note that
(

0 1
k± 0

)
corresponds to

(
0 I

k± I 0

)
in K±. As this matrix commutes

with π±(s1,±), it follows that k±C−1 = ∓C. In particular k− = −k+, so we will write k := k+, with
k− = −k. Then

K± ∼= D± ∼= (−30,±k | Q).

Furthermore, by repeatedly applying the isomorphism (−30,±k | Q) ∼= (−30,± 15
2 k | Q), we can

assume k is odd. Now Lemma 6.2(1) shows that (−30, k | Q) is ramified at p = 2 if and only if
(−30,−k | Q) is. We know from Lemma 6.6 that K− is ramified at p = 2, and therefore K+ is as well.

Since S+(λ) has Frobenius–Schur indicator −1 by Table I, it is not defined over R by [Fe, Theorem
2.7]. So π+ remains irreducible on extension of scalars to R. Now fix a prime p and let Λ and
I ⊆ R ⊆ K+ be as in Section 2.1 for π+ and p. If p is odd then Λ/IΛ is irreducible as (R/I)Ŝ+

n -
representation by Lemma 6.5 and Table I.

So we may assume that p = 2. Table I shows that [Λ/2Λ] = 4[Dµ] in the Grothendieck group of
F2Ŝ

+
n , with µ = (8, 5, 1) or (9, 5, 1). By the arguments in the proof of [T2, Proposition 2.7] we then

have R/I ∼= F4 and Λ/IΛ ∼= Dµ is irreducible as (R/I)Ŝ+
n -representation. □

6.4. Proof of the main result for GIRs. Finally we can complete the classification of GIRs for Ŝn and
Ân, and prove Theorems 1.6 to 1.8.

Proof of Theorems 1.6 to 1.8. Notice that the characters of S(λ) and T(λ) are integer valued (this is
most easily seen from Morris’s analogue of the Murnaghan–Nakayama formula, as given by Hoff-
man and Humphreys [HH, Theorems 8.7 and 10.1]). Recall from Section 4.3 that S(λ) ∼= S(λ)⊗ sgn
and S(λ)+ ∼= S(λ)− ⊗ sgn, where sgn is the sign representation of Sn, and similarly that T(λ) ∼=
T(λ)σ and T(λ)+ ∼= T(λ)σ

− for any σ ∈ Ŝn \ Ân. From Section 4.4 similar formulas holds for D(µ)∗
and E(µ)∗ in odd characteristic. It follows from these properties that (in the Grothendieck group)
[D(µ)] can be written as a Q-linear combination of the modules [S(λ)], and similarly for [E(µ)]. So
the Brauer characters of D(µ) and E(µ) are rational (and then also integer) valued. Furthermore, in
characteristic 2, the Brauer characters of Dµ and either Eµ or Eµ

+ ⊕Eµ
− are integer valued (in view of

Theorem 3.3 and the fact that Dµ is defined over F2 by [J2, Theorem 11.5]).
Assume that S(λ)∗ or T(λ)∗ is a composition factor of a GIR with character χ. Then by Proposi-

tion 2.3 all constituents of χ, viewed as a p-Brauer character for any prime p, are conjugate under the
Galois action of Fp. By the above paragraph it follows that S(λ)∗ or T(λ)∗ is almost homogeneous in
characteristic p. This applies for every p, so λ is one of the partitions appearing in Theorem 1.3.

If λ = (n) with n ⩾ 7, then we can simply use [T1, Theorems 1.1, 1.1’, 1.2]. (Recall that [T1] uses
the opposite sign convention to ours.)

So we are left with the cases where λ = (n) for 0 ⩽ n ⩽ 6 or one λ is of the partitions in case (2) of
Theorem 1.3, which are exactly the cases considered in Table I. Assume M = S(λ)∗ or T(λ)∗ is one of
these modules, and let ψ be the character of M. If Q ̸= Q(ψ) ⊆ R then M does not appear in a GIR
by Proposition 2.1. If Q(ψ) is an imaginary quadratic field then Table I shows that ψ is absolutely
irreducible when reduced modulo any prime, so M appears in a GIR by Proposition 2.2.

This leaves the cases where Q(ψ) = Q. Consider first the cases where ind(ψ) = 1. If ψ is absolutely
irreducible modulo every prime then M appears in a GIR by Proposition 2.2. On the other hand if the
2-modular reduction of ψ has two isomorphic composition factors then M does not appear in a GIR
by Proposition 2.3. The only remaining case is the module S−(3). In this case the 3-modular reduction
of ψ is φ(2, 1)+ + φ(2, 1)−, and the Brauer characters φ(2, 1)± are integer valued (since Ŝ−

3 is just the
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direct product of S3 and the group of order 2). So the Brauer characters φ(2, 1)+ and φ(2, 1)− cannot
be conjugate under the action of F3, so M does not appear in a GIR by Proposition 2.3.

Now consider cases where Q(ψ) = Q and ind(ψ) = −1. Unless λ is one of (4, 3, 2), (4, 3, 2, 1),
(5, 4, 3, 2) or (5, 4, 3, 2, 1), Table I shows that for any prime p the p-modular reduction of ψ is either
irreducible or is a sum ρ1 + ρ2 of two distinct irreducible Brauer characters. In the latter case, it
is easily checked (since ρ1 and ρ2 have degree at most 2) that (ρ1)

p ≡ ρ2 (mod p) and Fp(ρ1) =
Fp(ρ2) = Fp2 . So M is a constituent of a GIR, by Proposition 2.2. The remaining four cases, where
M is one of S−(4, 3, 2), S−(4, 3, 2, 1), S+(5, 4, 3, 2) or S+(5, 4, 3, 2, 1), have been checked in Lemmas 6.4
and 6.7. □

Appendix A. Matrices for S−(4, 2)

We give matrices for generators of Ŝ−
6 for a matrix representation ρ of S−(4, 2) defined over the

field Q(i), together with a matrix A which anticommutes with ρ(g) for g ∈ Ŝ−
6 \ Â6 and commutes

with ρ(g) for g ∈ Â6. As this is a spin representation ρ(z) = −I.
To enable the reader to compute with these matrices, we present them as GAP code which can be

pasted into a GAP session. (The reader should invoke i:=E(4); in GAP to define i =
√
−1.)

ρ(s1,−) =

[[0,i,-i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,-i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[i,0,0,-i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,i,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,1,-1,0,0,0,0,0,0,0,-1+i,1-i,0,0,i,-1-i,0],

[0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,1-i,0,0,0,-1-i],

[0,0,0,0,0,0,-1,1,0,0,0,0,i,0,0,1-i,-1+i,0,0,-i],

[0,0,0,0,0,0,0,1,0,0,0,0,0,i,1,0,0,-1+i,0,0],

[0,0,0,0,0,0,0,0,1,-1,0,0,0,-1/2+i/2,1/2-i/2,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,-1,0,0,-1/2,0,0,1/2-i/2,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,-1,1,i/2,0,0,1/2-i/2,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,1,0,i/2,1/2,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,1,-1/2-i/2,-1/2+i/2,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,1/2,-1,0,-1/2+i/2,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,-i/2,0,-1,1/2+i/2,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,-i/2,-1/2,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]]

ρ(s2,−) =

[[0,i,-i,0,0,0,0,0,0,1-i,-1+i,0,0,0,0,0,0,0,0,0],

[0,0,0,-i,0,0,0,0,1,0,0,-1+i,0,0,0,0,0,0,0,0],

[i,0,0,-i,0,0,0,0,-i,0,0,-1+i,0,0,0,0,0,0,0,0],

[0,i,0,0,0,0,0,0,0,-i,-1,0,0,0,0,0,0,0,0,0],

[0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0],
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[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,i,-i,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-i,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,i,0,0,-i,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0]]

ρ(s3,−) =

[[1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0],

[1,-1-i,i,0,0,1/2-i/2,-1/2+i/2,0,0,i,-i,0,0,0,0,0,0,0,0,0],

[0,-1,0,i,1/2,0,0,-1/2+i/2,0,0,0,-i,0,0,0,0,0,0,0,0],

[-i,0,-1,1+i,-i/2,0,0,-1/2+i/2,i,0,0,-i,0,0,0,0,0,0,0,0],

[0,-i,0,1,0,-i/2,-1/2,0,0,i,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,-1/2+i/2,1/2-i/2,0,0,0,0,0,0,i,-i,0,0,i,-1-i,0],

[0,0,0,0,-1/2,0,0,1/2-i/2,0,0,0,0,0,0,0,-i,0,0,0,-1-i],

[0,0,0,0,i/2,0,0,1/2-i/2,0,0,0,0,i,0,0,-i,-1+i,0,0,-i],

[0,0,0,0,0,i/2,1/2,0,0,0,0,0,0,i,0,0,0,-1+i,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0]]

ρ(s4,−) =

[[0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
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[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,i,-i,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,-i,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,i,0,0,-i,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,i,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,-1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,-1+i,1-i,0,0,i,-i,0],

[0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1-i,0,0,0,-i],

[0,0,0,0,0,0,0,0,0,0,0,0,i,0,0,1-i,i,0,0,-i],

[0,0,0,0,0,0,0,0,0,0,0,0,0,i,1,0,0,i,0,0]]

ρ(s5,−) =

[[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[-1,1+i,-i,0,0,0,1,0,0,1-i,-1+i,0,0,0,0,0,0,0,0,0],

[0,1,0,-i,0,0,0,1,1,0,0,-1+i,0,0,0,0,0,0,0,0],

[i,0,1,-1-i,1,0,0,0,-i,0,0,-1+i,0,0,0,0,0,0,0,0],

[0,i,0,-1,0,1,0,0,0,-i,-1,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,1/2-i/2,1/2+i/2,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1/2,0,0,1/2+i/2,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1-i/2,0,0,-1/2+i/2,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,1-i/2,-1/2,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,-1/2+i/2,1/2-i/2,0,0,0,1,0,0,0,0,0],

[0,0,0,0,0,0,0,0,-1/2,0,0,1/2-i/2,0,0,0,1,0,0,0,0],

[0,0,0,0,0,0,0,0,i/2,0,0,1/2-i/2,1,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,i/2,1/2,0,0,1,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,i,-i,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-i],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,i,0,0,-i],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,i,0,0]]

A =

[[1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[2,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,1,-2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,2,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0],
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[0,0,0,0,0,1,-2,1,0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1,-1,-1,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,2,-1,0,-1,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,1,0,-1,1,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,1,-2,1,0,0,0,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,2,-1,0,-1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,1,0,0,0,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-1,0,-1],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,1],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,1]]

Appendix B. Matrices for S−(5)⊗ S−(3)

We give matrices for generators of Ŝ−
5,3 for a matrix representation ψ of S−(5)⊗ S−(3) defined over

Q(i), together with a matrix B which anticommutes with ψ(g) for g ∈ Ŝ−
5,3 \ Â5,3 and commutes with

ρ(g) for g ∈ Â5,3. As this is a spin representation, ψ(z) = −I.

ψ(s1,−) =

[[1,-1,0,0,0,0,0,0],[0,-1,0,0,0,0,0,0],

[0,0,-1,1,0,0,0,0],[0,0,0,1,0,0,0,0],

[0,0,0,0,-1,1,0,0],[0,0,0,0,0,1,0,0],

[0,0,0,0,0,0,1,-1],[0,0,0,0,0,0,0,-1]]

ψ(s2,−) =

[[0,1,-1,0,0,0,0,0],[1,0,0,-1,0,0,0,0],

[0,0,0,-1,0,0,0,0],[0,0,-1,0,0,0,0,0],

[0,0,0,0,0,-1,1,0],[0,0,0,0,-1,0,0,1],

[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]

ψ(s3,−) =

[[0,0,1,0,-1,0,0,0],[0,0,0,1,0,-1,0,0],

[1,0,0,0,0,0,-1,0],[0,1,0,0,0,0,0,-1],

[0,0,0,0,0,0,-1,0],[0,0,0,0,0,0,0,-1],

[0,0,0,0,-1,0,0,0],[0,0,0,0,0,-1,0,0]]

ψ(s4,−) =

[[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],

[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1],

[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],

[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0]]

ψ(s6,−) =

[[0,0,i,0,-i,0,0,0],[0,0,0,i,0,-i,0,0],

[0,0,0,0,0,0,-i,0],[0,0,0,0,0,0,0,-i],
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[i,0,0,0,0,0,-i,0],[0,i,0,0,0,0,0,-i],

[0,0,i,0,0,0,0,0],[0,0,0,i,0,0,0,0]]

ψ(s7,−) =

[[0,i,-i,0,0,0,0,0],[0,0,0,-i,0,0,0,0],

[i,0,0,-i,0,0,0,0],[0,i,0,0,0,0,0,0],

[0,0,0,0,0,-i,i,0],[0,0,0,0,0,0,0,i],

[0,0,0,0,-i,0,0,i],[0,0,0,0,0,-i,0,0]]

B =

[[-3,2,2,0,2,0,0,0],[-6,3,0,2,0,2,0,0],

[-4,0,3,-2,0,0,2,0],[0,-4,6,-3,0,0,0,2],

[-2,0,0,0,3,-2,-2,0],[0,-2,0,0,6,-3,0,-2],

[0,0,-2,0,4,0,-3,2],[0,0,0,-2,0,4,-6,3]]
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