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Multiple-elimination knockout tournaments with the
fixed-win property

Matthew Fayers
Magdalene College, Cambridge, CB3 0AG, U.K.∗

Abstract
We classify those triples (n, l,w) for which there exists a ‘knockout’ tournament for n

players in which the winner always wins exactly w games and each loser loses exactly l
games.

1 Introduction

In sporting competitions where a winner needs to be chosen in a relatively short time,
a knockout tournament is frequently used. If more time is available, a double-elimination
knockout tournament, in which a player or team is knocked out if it loses twice, may be
employed. More generally, we may define an l-tuple-elimination knockout tournament to be
one in which a player or team is eliminated if it loses l times. Specifically, an l-tuple elimination
knockout tournament is a schedule in which:

• each game involves two players, one of whom wins and one of whom loses;

• the schedule for later games may depend upon the results of earlier games;

• if a player loses l games, he is eliminated from the tournament, and plays no further
games;

• the tournament ends when exactly one player remains.

A great deal of literature is concerned with fairness in single- and (in [2]) double-elimination
tournaments, assessing the probabilities of each player’s winning the tournament given his
probabilities of beating each other player in a single game. Here, we approach the issue of
fairness from a different angle, and consider the number of games a player needs to win in order
to win the tournament. As far as we can tell, this issue has not been considered before. In the
most frequently used double-elimination tournaments (such as in [1]), a player losing a game
at an early stage will tend to need to win many more games in order to win the tournament
than a player winning his early games. We say that an l-tuple elimination tournament for n > 2
players has the fixed-win property if, for some w, the winner of the tournament is guaranteed
to have won exactly w games. We refer to such a tournament as a FW(n, l,w).

The aim of this paper is to classify those triples (n, l,w) for which a FW(n, l,w) exists. Two
obvious examples are as follows.
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• The standard single-elimination knockout tournament for 2w players is a FW(2w, 1,w).

• Two players playing a ‘first to w’ match is a FW(2,w,w).

In fact, these are almost the only examples. Our main theorem is as follows.

Theorem 1.1. Suppose that n > 2, and that l,w are positive integers. Then a FW(n, l,w) exists if and
only if

• l = 1 and n = 2w,

• n = 2 and l = w or

• (n, l,w) = (16, 2, 6).

2 The proof of Theorem 1.1

In order to prove Theorem 1.1, we need to prove a more general result. Given n > 1
and positive integers w1, . . . ,wn, l1, . . . , ln, we ask whether we can arrange a tournament for n
players (numbered 1, . . . ,n) in which n − 1 players are eliminated and the remaining player
wins the tournament, and in which:

• player i is eliminated if and only if he loses li games;

• player i wins the tournament if and only if he wins wi games.

We call such a tournament a T(w1, . . . ,wn, l1, . . . , ln), and say that the matrix(
w1 . . . wn
l1 . . . ln

)
is good if a T(w1, . . . ,wn, l1, . . . , ln) exists. In particular, a FW(n, l,w) exists if and only if the 2× n
matrix (

w . . . w
l . . . l

)
is good. We shall classify good matrices; clearly(

w1 . . . wn
l1 . . . ln

)
is good if and only if (

wσ(1) . . . wσ(n)
lσ(1) . . . lσ(n)

)
is good for some permutation σ.

Given a matrix

M =

(
w1 . . . wn
l1 . . . ln

)
and given 1 6 i < j 6 n, we define the (i, j)-descendants of M to be the matrices(

w1 . . . wi − 1 . . . w j . . . wn
l1 . . . li . . . l j − 1 . . . ln

)
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and (
w1 . . . wi . . . w j − 1 . . . wn
l1 . . . li − 1 . . . l j . . . ln

)
where we delete any column in which the lower entry is 0.

Proposition 2.1. The matrix
(
w1
l1

)
is good if and only if w1 = 0. If n > 2, then the matrix

(
w1 . . . wn
l1 . . . ln

)
is good if and only if for some 1 6 i < j 6 n both of the (i, j)-descendants are good.

Proof. For n = 1, the result is obvious: since there is only one player to begin with, this player
has won the tournament winning no games. If n > 2, suppose that we wish to construct a
T(w1, . . . ,wn, l1, . . . , ln) in which the first game is between players i and j. If i beats j, then the re-
mainder of the tournament may be viewed as a T(w1, . . . ,wi−1,wi−1,wi+1, . . . ,wn, l1, . . . , l j−1, l j−

1, l j+1, . . . , ln), while if j beats i, then the remainder of the tournament is a T(w1, . . . ,w j−1,w j −

1,w j+1, . . . ,wn, l1, . . . , li−1, li − 1, li+1, . . . , ln). So a T(w1, . . . ,wn, l1, . . . , ln) exists if and only if both
the latter two tournaments exist, for some i and j. �

Proposition 2.2. The matrix
(
w1 w2

l1 l2

)
is good if and only if w1 = l2 and l1 = w2.

Proof. This follows easily by induction and Proposition 2.1. �

It will turn out that there are remarkably few good matrices. We begin with the case where
each li equals 1.

Proposition 2.3. The matrix

M =

(
w1 . . . wn
1 . . . 1

)
is good if and only if

∑n
k=1 2−wk = 1.

To prove this, we need the following simple lemma.

Lemma 2.4. If n > 1 and a1, . . . , an are integers such that 2a1 + · · · + 2an = 2a for some integer a, then
ai = a j for some i , j.

Proof. If the ai are all distinct, let am be the smallest. Then 2a1 + · · · + 2an is an odd integer
multiple of 2am , and so cannot be a power of 2 (since it does not equal 2am). �

Proof of Proposition 2.3. The case n = 2 follows from Proposition 2.2. For n > 2, suppose that
M is good, and let i and j be as in Proposition 2.1. Then by induction we must have

2−(wi−1) +
∑
k,i, j

2−wk = 1 (1)

and

2−(w j−1) +
∑
k,i, j

2−wk = 1. (2)
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In particular, we have wi = w j, and so

n∑
k=1

2−wk = 1. (3)

Conversely, suppose that n > 3 and that (3) holds. By Lemma 2.4 we can find i and j such that
wi = w j; then equations (1–2) above hold, and so by induction both of the (i, j)-descendants of
M are good. �

Now we consider the case where some of the li equal 2.

Proposition 2.5. Suppose n > 3. Then the matrix

M =

(
u1 . . . un−1 v
1 . . . 1 2

)
is good if and only if

v = 1 or 2 and
n−1∑
k=1

2−ui =
v
4
.

Proof. We begin with the case n = 3. The (1, 2)-descendants of M are(
u1 − 1 v

1 2

)
and

(
u2 − 1 v

1 2

)
,

and these are both good if and only if v = 1 and u1 = u2 = 3. The (1, 3)-descendants are(
u1 − 1 u2 v

1 1 1

)
and

(
u2 v − 1
1 2

)
,

and these are both good if and only if u2 = 2, v − 1 = 1 and 2−(u1−1) + 2−u2 + 2−v = 1, i.e. if and
only if (u1,u2, v) = (2, 2, 2); similarly for the (2, 3)-descendants.

Now we assume n > 3, and suppose that the (i, j)-descendants of M are both good. There
are two cases to consider.

[i, j < n] By induction we have

2−(ui−1) +
∑
k,i, j

2−uk =
v
4

= 2−(u j−1) +
∑
k,i, j

2−uk ,

and so ui = u j. Thus
∑n−1

k=1 2−uk equals v
4 as well, and so M satisfies one of the above

criteria.

[i < j = n] Now the (i, j)-descendants of M are(
u1 . . . ui−1 ui − 1 ui+1 . . . un−1 v
1 . . . 1 1 1 . . . 1 1

)
and

(
u1 . . . ui−1 ui+1 . . . un−1 v − 1
1 . . . 1 1 . . . 1 2

)
,
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so by induction we must have v − 1 = 1 or 2 and∑
k,i

2−uk =
v − 1

4
,

∑
k,i

2−uk + 2−(ui−1) + 2−v = 1.

This gives

2−(ui−1) = 1 − 2−v
−

v − 1
4

;

if v − 1 = 2, then we get 2−(ui−1) = 3
8 , which is impossible, so we have v − 1 = 1, which

gives 2−(ui−1) = 1
2 , whence ui = 2 and we have v = 2,

∑n−1
k=1 2−uk = 1

2 .

Conversely, suppose that M satisfies the conditions of the proposition. By Lemma 2.4 we must
have ui = u j for some 1 6 i < j < n; then the (i, j)-descendants of M both satisfy this criterion
as well. �

In order to deal with the case where two or more of the li equal 2, we need to introduce
a certain function. Suppose S is a finite multiset of integers such that

∑
a∈S 2−a = 1

4 . Then we
define

h(S) =
3
4
−

∑
a∈S

a2−a−1.

For example, we have

h({2}) =
1
2
, h({3, 3}) =

3
8
, h({3, 4, 4}) =

5
16
,

h({3, 4, 5, 5}) =
9
32
, h({4, 4, 4, 4}) =

1
4
.

Note that the function h satisfies

• h({2}) = 1
2 , and

• h({a1, a1, a2, . . . , an}) = h({a1 − 1, a2, . . . , an}) − 2−a1 .

Since by Lemma 2.4 any finite multiset S consisting of at least two integers and satisfying∑
a∈S 2−a = 1

4 must contain two equal elements, these rules are enough to compute h recursively.
A special case of h is the following.

Lemma 2.6. For a > 2, let S be the multiset with 2a−2 elements all equal to a. Then

h(S) =
6 − a

8
.

Now we can deal with the general case in which each li equals 1 or 2.

Proposition 2.7. Suppose that n > 3 and 0 6 r 6 n − 2. Then the matrix

M =

(
u1 . . . ur vr+1 . . . vn
1 . . . 1 2 . . . 2

)
is good if and only if

n∑
k=r+1

2−vk =
1
4

and
r∑

k=1

2−uk = h({vr+1, . . . , vn}).
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Proof. For the ‘if’ part, we have by Lemma 2.4 that vi = v j for some i , j. Then, by the
recursive description of h and by induction (or by Proposition 2.5 in the case r = n − 2), the
(i, j)-descendants of M are both good.

For the ‘only if’ part, we proceed by induction on n − r and r, beginning with the case n =

3, r = 1; notice that the conditions of the proposition cannot hold here. The (1, 2)-descendants
of (

u1 v2 v3

1 2 2

)
are (

u1 − 1 v2 v3

1 1 2

)
and

(
v2 − 1 v3

2 2

)
.

For both of these to be good we should need v2 = 3, v3 = 2 and 2−(u1−1) + 2−v2 = v3
4 , which is

impossible. Similarly for the (1, 3)-descendants. The (2, 3)-descendants are(
u1 v2 − 1 v3

1 2 1

)
and

(
u1 v2 v3 − 1
1 1 2

)
;

similarly, these cannot both be good.
Now we examine the case r > 1,n − r = 2, and we suppose that the (i, j)-descendants of M

are both good. We look at the various possibilities for i, j.

[i, j 6 r] By induction we have 2−vn−1 + 2−vn = 1
4 and∑

k,i, j

2−uk + 2−(ui−1) = h({vn−1, vn}) =
∑
k,i, j

2−uk + 2−(u j−1),

so that ui = u j and thus
r∑

k=1

2−uk = h({vn−1, vn})

and M satisfies the criteria of the proposition.

[(i, j) = (n − 1,n)] By Proposition 2.5 we have

vm − 1 = 1 or 2,
r∑

k=1

2−uk + 2−v2n−1−m =
vm − 1

4

for m = n − 1,n. This gives a contradiction unless we have vn−1 = vn = 3, whence
2−vn−1 + 2−vn = 1

4 and
∑r

k=1 2−uk = 3
8 , as required.

[i 6 r < j] By induction we must have

v j − 1 = v2n−1− j = 3,
∑
k,i

2−uk =
3
8

while by Proposition 2.5 we need

v2n−1− j = 1 or 2,

a contradiction.
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Finally, we examine the case where n − r > 2, and suppose that the (i, j)-descendants of M
are good.

[i, j 6 r] Exactly as above we find that ui = u j and that M satisfies the criteria of the proposition.

[i, j > r] By induction we have∑
k,i, j

2−vk + 2−(vi−1) =
1
4

=
∑
k,i, j

2−vk + 2−(v j−1)

so that vi = v j, and

r∑
k=1

2−uk + 2−vi = h(vr+1, . . . , vi−1, vi+1, . . . , v j−1, v j+1, . . . , vn, v j − 1)

= h(vr+1, . . . , vn) + 2−v j ,

as required.

[i 6 r < j] In this case we have ∑
k, j

2−vk =
1
4

=
∑
k, j

2−vk + 2−(v j−1),

a contradiction.

�

Now we consider those cases where one of the li is at least 3.

Proposition 2.8. If n > 2 and x > 3, then the matrix

M =

(
u1 . . . un−1 v
1 . . . 1 x

)
is good if and only if

v = 1 and
n−1∑
k=1

2−uk = 2−x.

Proof. We use induction on n and x, with the case n = 2 being a special case of Proposition 2.2.
If n > 2 and M satisfies the hypotheses, then ui = u j for some i , j, and the (i, j)-descendants
are good, by induction.

Now suppose that n > 2 and that the (i, j)-descendants of M are both good. If i, j < n, then
by induction we have v = 1 and

2−(ui−1) +
∑
k,i, j

2−uk = 2−x = 2−(u j−1) +
∑
k,i, j

2−uk ,

so that ui = u j and M satisfies the hypotheses. If i < j = n, then by induction we have both
v − 1 = 1 and v = 1 – contradiction – unless x = 3, when we may have

v = 2,
∑
k,i

2−uk = 2−x,
∑
k,i

2−uk + 2−(ui−1) =
1
2

;

but this gives 2−(ui−1) = 3
8 , also a contradiction. �
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Now we show that we have found all good matrices.

Proposition 2.9. If n > 3 and li > 3, l j > 2 for some i , j, then the matrix

M =

(
w1 . . . wn
l1 . . . ln

)
is not good.

Proof. Suppose that the (i, j)-descendants of M are both good. Then by induction neither of
the (i, j)-descendants can satisfy the conditions of the proposition, and so we must have li = 3,
l j = 2 and lk = 1 for all k , i, j (if n = 3 then are two extra possible cases, but these are easily dealt
with). But then we require wi = w j − 1 = 3 by Proposition 2.7, while wi − 1 = 1 by Proposition
2.8. Contradiction. �

Proof of Theorem 1.1. As noted above, a FW(n, l,w) exists if and only if the matrix

M =

(
w . . . w
l . . . l

)
is good. For n = 2, this is true if and only if l = w, by Proposition 2.2. For l = 1, we need
n.2−w = 1, so that n = 2w. If n > 2 and l = 2, then by Proposition 2.7 we need n.2−w = 1

4 , and
h(w, . . . ,w) = 0. By Lemma 2.6, this happens if and only if n = 16,w = 6.

If n, l > 2, then M is not good, by Proposition 2.9. �

3 Tournaments with multiple winners

An interesting extension to this problem is to ask about tournaments which produce mul-
tiple winners; this is applicable to the situation where a set of players is chosen to proceed
to the next stage of a competition. We define a FWr(n, l,w) to be a competition for n players
which produces r winners, each of whom has won exactly w games, and n − r losers, each of
whom has lost exactly l games. Classifying such tournaments seems to be rather harder than
in the case r = 1; the following simple observations provide lots of ‘trivial’ examples of these
tournaments:

1. a FWr(n, l,w) exists if and only if a FWn−r(n,w, l) exists;

2. if a FWr(n, l,w) and a FWs(m, l,w) exist, then a FWr+s(n + m, l,w) exists.

But there are other examples. For instance, it is fairly easy to show that for any r > 1 a
FWr(28r−4, 2, 8r − 2) exists. Of course, the case r = 1 gives the ‘sporadic’ case (16, 2, 6) of
Theorem 1.1. We hope to be able to say more about tournaments with multiple winners in a
future paper.
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