Decomposition numbers for abelian defect RoCK blocks of
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double covers of symmetric groups

Abstract. We calculate the (super)decomposition matrix for a RoCK block of a double cover of the sym-
metric group with abelian defect, verifying a conjecture of the first author. To do this, we exploit a
theorem of the second author and Livesey that a RoCK block B¢ is Morita superequivalent to a wreath
superproduct of a certain quiver (super)algebra with the symmetric group &;. We develop the represen-
tation theory of this wreath superproduct to compute its Cartan invariants. We then directly construct
projective characters for B4 to calculate its decomposition matrix up to a triangular adjustment, and
show that this adjustment is trivial by comparing Cartan invariants.
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1. Introduction

In the modular representation theory of the symmetric groups and their double covers, the central
outstanding question is the decomposition number problem: determining the composition factors of
the p-modular reductions of ordinary irreducible representations. Even for the symmetric groups a
solution to this problem seems far out of reach, but there is a remarkable family of blocks for which
the problem has been solved. These are called RoCK blocks. They are defined in a combinatorial
way using the abacus, and were identified by Rouquier [R] as being of particular importance. RoCK
blocks have been pivotal in the proofs of several results, most importantly in the proof of Broué’s
abelian defect group conjecture for symmetric groups [CR]. This hinges on the proof by Chuang
and Kessar [CK] that a RoCK block of defect d < p is Morita equivalent to the principal block of
the wreath product 6,1 &,;. A consequence of this is the formula due to Chuang-Tan [CT?>] for the
decomposition numbers for RoCK blocks. The same formula appears in a computation of certain
canonical basis coefficients, due independently to Leclerc-Miyachi and Chuang-Tan [CT;, LM].

In recent years, the representation theory of double covers of symmetric groups (or equivalently,
the study of projective representations of symmetric groups) has been studied extensively. Let p =
2¢ + 1 be an odd prime (see [Fa] for corresponding results in characteristic 2), and I an algebraically
closed field of characteristic p. Let &, denote one of the proper double covers of the symmetric
group &,, forn > 4, and let z ¢ S, denote the central element of order 2. An irreducible FS,,-
module M is a spin module if z acts as —1 on M, and a block of F&, is a spin block if it contains spin
modules. In fact, for studying spin modules it is more natural to consider F&, as a superalgebra
(i.e. a Z/2Z-graded algebra), and study spin supermodules and spin superblocks. The modular spin
representation theory of &, has been developed by Brundan and the second author in [BK;, BKj]
(using two different approaches which were later unified by the second author and Shchigolev [KS]).
The combinatorial part of this theory revolves around the combinatorics of p-strict partitions.

The definition of spin RoCK blocks for &, was given by the second author and Livesey [KL], who
proved an analogue of Chuang and Kessar’s Morita equivalence result, and used this to show that
Broué’s conjecture holds for spin RoCK blocks. Our purpose in this paper is to give a formula for
the (super)decomposition numbers for spin RoCK blocks of abelian defect; in particular, we prove a
formula conjectured by the first author in [Faz] based on calculations of canonical basis coefficients.

To state our main theorem we briefly introduce some notation. For a strict partition A, we let S(A)
denote a p-modular reduction of the irreducible spin supermodule for C&,, labelled by A, and for a
restricted p-strict partition , we let D(u) denote the irreducible spin supermodule for F&,, labelled
by 1; see Section 5 for details on these.

If A is any partition, we write h(A) for the number of positive parts of A, and a(A) = 0 or 1
as A has an even or odd number of positive even parts. Finally, c(«; 0, T) denotes the Littlewood-
Richardson coefficient corresponding to partitions «, o, T, and K} (q) the inverse Kostka polynomial
corresponding to o, T; see §2.2 and §2.3 for details on these.

Rouquier p-bar-cores are discussed in Section 3 — these correspond to spin RoCK blocks of double
covers of symmetric groups. Now our main theorem can be stated as follows.

Main Theorem. Suppose p = 2¢ 41 is an odd prime and 1 < d < p, and that p is a d-Rouquier
p-bar-core. Suppose A is a strict partition and y a restricted p-strict partition, both with p-bar-core
o and p-bar-weightd. Let (A(?),...,A(0) and (u(9,..., ulY)) be the p-bar-quotients of A, ji. Then the
decomposition number [S(A) : D(u)] equals

I~

2[%<h(A(O))+a(A))J ZK;(})) 0) (_1)

i=1
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where the sum is over all partitions o oD W) 20 and we read o) as @.

We note that the assumption d > 1 made in the theorem is harmless — it simply means that we are
dealing with blocks of non-trivial defect; on the other hand, the assumption d < p is equivalent to
the assumption that the blocks we are dealing with have abelian defect groups.

The proof of our main theorem involves two parts.

First, we use the Morita equivalence result of Kleshchev-Livesey which shows that a RoCK block
BF4 with p-bar-weight d < p is Morita superequivalent to a wreath superproduct W; = A;1 &,
where A/ is an explicitly defined quiver superalgebra. In Section 4 we develop superalgebra ana-
logues of results of Chuang and Tan describing the representation theory of wreath products. In
particular, by explicitly constructing indecomposable projective supermodules we are able to deter-
mine the (super)Cartan matrix of W; when d < p, and hence of B (but without any information on
the labels of rows and columns).

For the second part of the proof (in Section 6) we explicitly consider projective characters for BeA,
The results of Leclerc-Thibon [LT] comparing decomposition numbers with canonical basis coeffi-
cients, together with the first author’s formula for canonical basis coefficients corresponding to spin
RoCK blocks, show that our main theorem is true “up to column operations’, i.e. that the decomposi-
tion matrix of B is obtained from the matrix claimed in our main theorem by post-multiplying by
a square matrix A. By explicitly constructing projective characters by induction and comparing with
known general results on decomposition numbers, we are able to show that A is triangular with
non-negative integer entries. By then calculating the Cartan matrix entries predicted by our main
theorem and showing that they agree with those of W; when d < p, we can deduce that A is the
identity matrix, which gives us our main theorem.

2. Combinatorial preliminaries

We denote N := Z>; and Ny := Z>(. Throughout the paper, we work over an algebraically closed
field I of characteristic p > 2. We write
ol:=(p—-1)/2,
o I1:={0,1,...,¢},
o J:={0,1,...,0—1}.
For n € Ny, we write I" for the set of words i ...i, withiq,...,i, € I.

2.1. Compositions and partitions. A composition is an infinite sequence A = (A1, Ay,...) of non-
negative integers which are eventually zero. Any composition A has finite sum |A|, and we say that A
is a composition of |A|. We write € for the set of all compositions, and for each d € Ny we write ¢ (d)
for the set of all compositions of d. When writing compositions, we may collect consecutive equal
parts together with a superscript, and omit an infinite tail of 0s. We write & for the composition
(0,0,...). A partition is a composition whose parts are weakly decreasing. We write & for the set of
all partitions, and #(d) for the set of partitions of d. For example, (2,0, 1,4) is a composition of 7 and
(4,1,1) = (4,1?) a partition of 6.

A partition is strict if it has no repeated positive parts. We write #)(d) for the set of all strict
partitions of d. Say that a strict partition A is even if A has an even number of positive even parts, and

odd otherwise. Now write
0 if Aiseven,
a(A) = { 1 if Ais odd. 1)

For example, (4,3,1) and (4,2, 1) are strict partitions, while (4,3?) is not. Further (4,3, 1) is odd while
(4,2,1) is even.

For a set S, let 25(d) denote the set of all S-multipartitions of d. So the elements of &°(d) are
tuples A = (A(®)) ¢ of partitions satisfying Y ics |[A(¥)| = d. In the special case S = I, we write the
elements of 2!(d) as tuples A = (A?),...,A(Y), and similarly for 2/ (d). We refer to A(") as the ith
component of A. We identify 2?/(d) with the subset of 2!(d) consisting of those A € 2!(d) with
MO = @. For example, taking p = 5and S = I, ((22), 2, (1)) is a I-multipartition of 5, however
((22),2,(1)) ¢ 27(5). On the other hand, again with p = 5, ((22), (1), @) € 2/(5).

We use the following binary operations on partitions: if A,y € &, then we write A + u for the
partition (A1 + p1,A2 + Ha,...), and A U u for the partition obtained by combining the parts of A
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and p and putting them in weakly decreasing order. For example, (3,1) + (4,1%) = (7,2,1), while
(3,1) U (4,1%) = (4,3,13).

The Young diagram of a partition A is the set { (r,c) € N2 } c < Ar} , whose elements are called
the nodes of A. We draw the Young diagram as an array of boxes using the English convention, in
which r increases down the page and c increases from left to right. We often identify partitions with
their Young diagrams; for example, we may write A C u to mean that A, < p, for all r. Using the
identifications of partitions and Young diagrams, in this case we write u \ A for the set of nodes of y
which are not nodes of A. For example, (4,3,1) \ (12) consists of the marked nodes in the following
diagram.

x | x| x]
X|x

X

If A is a partition, the conjugate partition A’ is obtained by reflecting the Young diagram of A on the
main diagonal. For example, (4,3,1)" = (3, 22,1).

The dominance order is a partial order > defined on &?. We set A > u (and say that A dominates
wif [A| = |pland Ay +---+ A, = p3 + -+ -+ p, for all ¥ > 1. This can be interpreted in terms of
Young diagrams in the following way: A > u if and only if the Young diagram of u can be obtained
from the Young diagram of A by moving some nodes further to the left, see [JK, 1.4.10]. By [JK,
1.4.11], the dominance order is reversed by conjugation: A & y if and only if 4’ = A’. For example,
(42,1) = (4,3,1%) but (4,1%) % (32).

Now we introduce the prime p into the combinatorics. Say that a partition is p-strict if its repeated
parts are all divisible by p. A p-strict partition A is restricted if for all r either A, — A, < p or
Ay = Arp1 = pand p { A,. We write &, (n) for the set of p-strict partitions of n, and # 7 ,(n) for the
set of restricted p-strict partitions of n. For example, for p = 5, (10%,2) is 5-strict while (10,8?%,1) is
not. Further (10%,2) and (15,10, 6,1) are not 5-restricted, while (102,6,1) is.

We also introduce some new terminology: say that a p-strict partition A is a p’-partition (or simply
that A is p’) if it has no positive parts divisible by p. For example, for p = 5, (8,7,5,2) is not 5, while
(8,7,2) is.

Suppose A is a p-strict partition. Removing a p-bar from A means either:

¢ replacing a part A, > p with A, — p, and rearranging the parts into decreasing order, or

¢ deleting two parts summing to p.
In the first case we assume that either p | A, or A, — p is not a part of A, so that the resulting partition
is p-strict. For example, if p = 5and A = (16,5,3,2,1), then the partitions which can be obtained
from A by removing a 5-bar are (11,5,3,2,1), (16,3,2,1) and (16,5,1). The corresponding 5-bars are
marked in the following diagram through x, y and z respectively.

LD Ixdxdx]x[x]

YIVIVIVIY
rAVAY/

Z|Z

Note that parts might have to be rearranged after having removed the corresponding nodes from the
diagram.

The p-bar-core of A is the partition obtained by repeatedly removing p-bars until it is not possible
to remove any more — this is well defined thanks to [MY;, Theorem 1]. The p-bar-weight of A is
the number of p-bars removed to reach its p-bar-core. For example, if p = 5 then the 5-bar core of
(16,5,3,2,1) is (6,1) and its 5-bar weight is 4.

If p is a p-bar-core and d > 1, we write:

o ﬁg’d for the set of p-strict partitions with p-bar-core p and p-bar-weight d;
o %ﬁ@f{d for the set of restricted partitions in " A ;
o 926)’d for the set of strict partitions in P A ;

o QZZ;d for the set of p’-partitions in 335"1.

Note that 2/ € 24",



Decomposition numbers for RoCK blocks of double covers 5
Now we look at individual nodes. The residue of a node in column c is the smaller of the residues
of c — 1 and —c modulo p. So the residues of nodes follow the repeating pattern
o1,...,4-1¢¢-1,...,1,0,0,1,...,¢4—-1,¢,¢—1,...,1,0,...

from left to right in every row of a Young diagram. Note that the residue of a node is always inter-
preted as an element of I. For i € I, an i-node means a node of residue i. For example, in the next
diagram the nodes of the partition (11,5,2) have been marked with their residues for p = 5.

ol1][2]1]o0]o[1][2]1]0]0]
o[1]2[1]0
0[1

In particular this partition has eight 0-nodes, seven 1-nodes and three 2-nodes.

2.2. Littlewood-Richardson coefficients, Specht modules and permutation modules. For parti-
tions A, ]/ll, ..., 1" we denote by c(A; ]/tl, ..., 1") the corresponding Littlewood-Richardson coefficient,
which is zero unless |A| = [u!| + -+ + |p|. In fact, c(A; 4!, ..., 4") does not depend on the order of
the partitions !,..., u" and depends only on the multiset {u!,...,u"}. So we will also use the no-
tation c(A; M) for any multiset M of partitions. If M = {u!,..., 4"} and N = {v!,...,1°} are two
multisets of partitions, we can also consider

c(A; M,N) = c(/\;ptl,...,7/,1/1,...,1/5).

Below we will use various standard results on Littlewood-Richardson coefficients which can be
found for example in [Mj, 1.9] or [Fu, Section 5].

We will often use calculations involving representations of the symmetric group in characteristic
zero. For any group G, let 1 denote the trivial G-module. For the group algebra C&, the irreducible
modules are the Specht modules S for A € Z(n). In particular, S (1) is the trivial &,-module, and
S(1") is the sign module, which we also denote sgn. It is well-known that

S' @ sgn > SV (2.2)

for all A, see [J», 6.7]. Given a C&,-module M and any partition A, we write [M : S A] for the multi-
plicity of S* as a composition factor of M if |A| = n, and 0 otherwise.

We often induce and restrict modules between &, and its Young subgroups. If « = (aq,...,a,) €
% (n), then the Young subgroup &, is the naturally embedded subgroup &,, x - - - X &,, of &,. Now
given modules My, ..., M, for &,,, ..., 8,, respectively, we obtain a module M; X - - - X M, for &,
and the induced module

M100M7~:InngMl|X|XM7'

For example, if A € € (n), then S (M) 6 §(2) 6 ... is the permutation module M? defined in [J»,
4.1], nowadays called the Young permutation module. In general, given partitions a!,...,a” and A,
the multiplicity [8"‘1 o---08% . S*] is the Littlewood-Richardson coefficient c(A;al,...,a"). By
SPSV R RKSY.

Frobenius reciprocity, this can also be written as [ResG(

[a1],....[a])

Later we will need the following results.

Lemma 2.1. Supposea € & and B,y € €. Then
c(a; (171), (1), (), (72),..) = | (MP @ sgn) o M7 1 8]
Proof. The left-hand side equals

§1M o816 )0 (SMosMo...): 8]

(
= [((s®) @ sgn) 0 (SB) @ sgn)o---) 0 (SM 08N o) Sa]
_((S(/Sl) oS(ﬁz) O ) ® sgn) o (8(71) oS(’Yz) o--- ) . S“}

(
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Lemma 2.2. Suppose A € ¢ and 7,0 € &. Then
Y MY 8H[STeST S = Y [MPSTIIMTY : 8.
uey BeTC
B+y=A
Proof. Letn = |A|. We may assume that | 7| + |o| = n as well (since otherwise both sides are obviously
zero) and we may restrict the range of summation on the left-hand side to u € #?(n). The definition
of M* gives [M* : S#] = [S™M) 0 SM2) 6. : S¥]. On the other hand, if we define K to be the Young
subgroup & ;| ||), then Frobenius reciprocity gives [ST o S7 : SF] = [ResgSF : ST S7]. Since the
irreducible C&,-modules are precisely the modules S* for y € £(n), the left-hand side gives the
multiplicity
[ResxInd®"1g, : ST S].
By Mackey’s Theorem, this is the same as
Y [Ind“1p : STRS],
H
summing over K-conjugacy class representatives of subgroups H < K of the form (&,)* N K for
x € &;,. We can take these representatives to be the groups G5 x &, as B,y range over compositions
satisfying |B| = |1|, || = |o| and B, + 7, = A, for each r. Now the definition of the modules M?
and M7 gives the result. O

We have the following ‘Mackey formula’ for Littlewood-Richardson coefficients.

Lemma 2.3. Suppose «, 8,7, € &. Then
Y chwB)e(hv, o)=Y, cwex)cBy,w)elre p) (s x w).

AP exX Y weP
Proof. The special case where a = (r) is proved by Chuang and Tan [CT;, Lemma 2.2(3)], but their
proof works in the general case. O

2.3. Kostka polynomials. Given A,c € &, we write KA’; (t) for the inverse Kostka polynomial indexed
by A, o; this polynomial arises in the theory of symmetric functions: it is the coefficient of the Schur
function s, when the Hall-Littlewood symmetric function P, is expressed in terms of Schur functions.
We refer to [M;, IIL.6] for more information on Kostka polynomials, but we note in particular that
K, }(t) is zero unless A & ¢ and that K| (t) = 1; see [Fas, Lemma 3.4].

Of special importance for us will be the evaluation of K;; (t) att = —1. So KA’; (—1) is the coeffi-
cient of s, in the Schur P-function P,.

We note two lemmas that we will need later.

Lemma 2.4. Suppose ¢ € #(n). Then K, }(—1) € Ny for all A € Py(n), and there is at least one
A € Py(n) for which K 1 (—1) > 0.

Proof. Stembridge [S, Theorem 9.3(b)] shows that K, | (—1) equals the number of tableaux of a certain
type, which means in particular that K; ! (—1) € Ny. Stembridge’s formula shows in particular that
K);Tl (—1) > 0 when A is the strict partition whose parts are the diagonal hook lengths of . 0

Lemma 2.5. Suppose ¢, w € &. Then
Y 2K (DK (=) = ¥ c(&B) el ).

AEPy BrEP
Proof. We consider symmetric functions in an infinite set of variables X. Let s; denote the Schur
function indexed by 7t € &2. Since the Schur functions are linearly independent, it suffices to show
the following equality of symmetric functions, for each ¢:

Y 2K (DK (-Dse = Y e(GB) el B v)sn

AEP, By,meP
neEP

Working with an indeterminate ¢, consider the symmetric function

Y ba(OKE(OK (s,
A TeP
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where b, (t) is the polynomial defined in [Mj, (2.12) on p.210]. According to the transition matrix
in [My, p.241], this coincides with the ‘dual Schur function” S¢(t). Now specialize t to —1. It is
immediate from the definition of b, () that

ba(—1) = 2hN)if A e B
A o otherwise,

so we find that

Se(<1) = ¥ 20K (DK~
AP
ey

Let us write S¢(—1) as S_g. According to [M;, IIL.8, Example 7(a)], S_g equals the function sz (X/—X)
defined in [M;, 1.5, Example 23]. From equation (1) in [loc. cit.] we obtain

Sg(X/—X) = Z SﬁSg//ﬁ/,
ez

where the skew Schur function sz, g equals Y, c » ¢(¢'; B, v)s,- Inaddition sgs, = ¥ rc 5 (71 B, 7)s7
(indeed, this is the most usual definition of the Littlewood—Richardson coefficients), so that

Y, VK (DK (Vs = Y, (@3B, 7) (7B, )5

)\G.@U ‘5,’)/632
ney
Now the standard result that ¢(¢'; B/, v) = ¢(&; B, ) gives the required equality. O

3. Rouquier bar-cores

3.1. Definition and first properties. For any p-strict partition p, define

ri(p) == {r e N[ pr =i (mod p)}|
fori e {1,...,p—1}. If pis a p-bar-core, then p is determined by the integers r;(p). Following [KL],
given d > 1, we say that a p-bar-core p is d-Rouquier if
o r1(p) = d, and
o ri(p) = ric1(p) +d—1for2 <i< /.
(This automatically implies that r;(p) = 0 for i > ¢, since a p-bar-core cannot have two parts whose
sum is divisible by p.)

Assume that p is a d-Rouquier p-bar-core, and A € Wg’d. We want to define the p-bar-quotient of A.
First note that 7;(A) = r;(p) for each 1 < i < ¢, since r;(p) > d, cf. [KL, Lemma 4.1.1.(i)]. Now define
M0 to be the partition obtained by taking all the parts of A divisible by p and dividing them by p.
For1 <i </ letr:=ri(A), let Ay, > --- > Ay be the parts of A congruent to i modulo p, and define
the partition

7 R

p p p
The p-bar-quotient of A is the multipartition (A(%),...,A(0)) € 21(q).

)\(l) — ()\kl—(i’—l)p—i )\kz—(T—Z)p—i )\kr—i>

Example. Suppose p = 5 and p = (32,27,22,17,16,12,11,7,6,2,1). Then p is 4-Rouquier, with
(r1(p),72(0), 73(p), 74(p)) = (4,7,0,0). The partition A = (37,32,22,17,16,12,11,10,7,6,2,1) lies in
9’8’4, and has 5-bar-quotient (A0, AV, A\(?)) = ((2), 7, (12)).

Lemma 3.1. Suppose p is a d-Rouquier p-bar-core, and A € 95"1, with p-bar-quotient (A%, ..., A(0).
Then:
(i) A is strict if and only if AO) s strict;
(ii) A is p' ifand only if \(0) = &;
(iii) A is restricted if and only if AO = &,
Proof. The first two statements follow directly from the definition, so we need only prove the third.

Note that by the given properties of the integers r;(p), the d largest parts of p are all congruent to ¢
modulo p, and py < p1 — (d — 1)p for any k with Ay # ¢ (mod p).
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We obtain A from p by adding d p-bars. So any part A, for which Ay # ¢ (mod p) satisfies Ay <
p1+p. If A = g then A < p1+ p, while A contains all the integers £,/ + p, ..., p1, 50 A is restricted.

If instead /\gg) # 0, choose a such that Ab(f) > )‘5(21' Then |A(Z)| > a, so that |A(i)| < d — a for any

i # (. This means that any part Ay # ¢ (mod p) satisfies Ay < p1 — (a —1)p = ps. So A contains the
part A, = p, + /\gg)p, but does not contain any parts Ay with p, + ()\y) —Dp <A <pat )\g)p, so is
not restricted. ]

Clearly A € ﬁg’d is determined by p and the p-bar-quotient (A(%), ..., A()); conversely, given a

multipartition (A(?), ..., A(0) € 21(d), there is a partition A € @g’d with p-bar-quotient (A(®), ..., A(9)).
In view of this and Lemma 3.1, we see that

,d ,d ,d
|2y =12 d)|  and |2 = |22} = |2 (d)|. 3.1)

3.2. Rouquier bar-cores and dominance order. For our calculations in RoCK blocks, it will be help-
ful to introduce a partial order on 2! (d): given two multipartitions (A(®), ..., A(0)and (@, ..., ()

in 21(d), we write (A, ..., A0 = (u©, ., ul0)if

|A(0)|_|_...+ ’/\(k—l)|+)\(k);+...+/\(k)i > |V(O)‘ _}_..._|_|‘u(k—1)‘ +y(k);—|—---+y(k)£

forall 0 < k < Zand ¢ > 1. This order can be visualized by drawing the Young diagrams of
A0, A in a row from left to right; then (A(), ..., A)) = (u(©), ..., u®)ifand onlyif (A(?),...,A(0)
can obtained from (19, ..., u(¥)) by moving nodes further to the left.

Lemma 3.2. Let p be a d-Rouquier p-bar-core. Suppose that the partitions A and u in ﬁg’d have p-
bar-quotients (A%),...,A() and (u©,...,u")), respectively. Then (A0),..., A1) = (u©®,..., ul9)
itand only if A < .

Proof. Fori = 0,...,¢ let r; be the largest part of p congruent to i modulo p. We also denote A :=
A, 2O, i (a0, 0,

We construct A from p by successively adding p-bars. Correspondingly, the p-bar-quotient A is
obtained from (&,...,@) by adding nodes; adding the node (r,c) to A() corresponds to adding
nodes to A in columns

{rﬁ—(c—r)p+1,r1-+(c—r)p+2,...,rl-+(c—r+1)p ifi >0 (3.2)

(c—=1)p+1(c—1)p+2,...,cp ifi =0.

We now prove the ‘only-if” part of the lemma. It is easy to see that if A = u then we can reach A
from p by a sequence of moves in which a single node is moved further to the left; so it suffices to
consider a single such move, and show that this move corresponds to moving nodes to the left in .
So suppose A is obtained from p by replacing the node (s, ¢) in the jth component with the node (r, D)
in the ith component, where i < ;.

If0 <i=jthenb—r < c—s,soby (3.2) A is obtained from u by moving p nodes further to
the left. If 0 = i = j, then a similar argument applies using the inequality b < c. If 0 < i < j, then
b—r<c—s+d—1, because ygl) + ;4(]'); < d. Now (3.2) and the fact that 7; < rj + (d — 1)p means
that A is obtained from y by moving p nodes further to the left. If 0 = i < j, then we use a similar
argument via the inequality b < ¢ —s +d.

In any case, we obtain A <1 y, as required.

We now prove the “if” part of the lemma. Assume A # p; then we must show that A ¢ p.

Case 1: there is k € I such that |AQ)] + - 4+ A < [uO] 4. .. 4 [0,

Note that in this case k < £. Leta = [AQ| 4 ... +|A®] and b = |u@] 4 .- + |u®|. Now let
v,G € L@g’d be given by

(17) ifi=0 (b) ifi=k
v =@ty ifi=k+1 (D=0 (d-b) ifi=¢
1) otherwise, 1] otherwise.
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Then (1/(0), o, 1/(5)) =Aand u = (C(O), e, é‘(g)). So (from the ‘= part of the lemma) in order to show
that A 4 y it suffices to show that v ¢ ¢. To do this, we let r be such that p, = 11 — (d —a —1)p,
and compare v; + - - - + v, with 1 + - - - + . We obtain

ity =14t o+ (d—a)p,
G+ +&=p+ - +p+@d-b)p+max{ry—r,1+@d+b—a—1)p0},

and now the assumptions ry,1 > 1y + (d —1)pand a < bgivev; +--- +v, > & + - -+ + §,, so that

v
Case 2: MO+ 4 A0 > |uO@| 4 .. 4 |u®)| for every k € I.
The assumption that A * py means that we can find k € I and c > 1 for which

Z]/\ | + A0 <Z\y |+ +y(k)2. (3.3)
i=0

First we assume that k > 0.

Letr = A®) and s = rp + (c — r + 1)p; then we claim that A+ + AL < pi+ -+ pl, so that
A

We calculate A} + - - -+ AL — (0} + - - - + p) using (3.2). For 0 < i < k each node of A()) contributes
p to this sum. In addition, each node (¢, b) of AK) for which b — t < ¢ — r contributes p to the sum.
(The nodes of A()) for i > k do not contribute, because of the inequality 741 — i > (d — 1)p.) Writing
T,c = Y'_} min{x, c}, we obtain

S

k-1
Ea-fo (Enie £ mafre-n)s
=0

i=1 i=1 t>max{1,r—c}
k-1 ) c ,
=Y A + Z)‘(k)d_ T | p,
i=0 d=1

with the second equality coming from the fact that A(k); =r.

We calculate .”/1 + ool — (0} 4 -+ pl) in the same way. The assumption that |u(®] + - +
| =V < JAO)] ... 4 |]A=1D | means that each node of u") for i < k contributes p to this sum, while
the nodes of 1)) for i > k do not contribute. So, as with A, we obtain

S

k=1
ZVZ Zp; <Z W+ min{],tfk),tvLc — r}) p
i=0

i=1 i=1 t>max{1,r—c}

It follows that
Y min{u t+ec—r}> Y u® - T,
t>max{1,r—c} d=1

and then

S

k—1 ) c
Z 2])/<ZhWW+ZH®}—DJn
i=1 i=0 d=1

i=1
We obtain A} + - - + AL < pj + - - - + pl, as required.

Now assume instead that k = 0. Then we claim that A} + - + Ag, < pj + -+ pg,. As for the
case above, we calculate A} + - - - + AL — (o} + - - - + p!) using (3.2). Each node (t,b) of A" with b < ¢
contributes p to this sum, and the nodes of A0 for i > 1 do not contribute, because of the inequality
r1 > dp and the fact that |A(0)| > ¢. So we obtain

cp cp c ,
Y A=Y pi=Y A0
i=1 i=1 i=1

The same formula with y in place of A gives the result. l
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3.3. Rouquier bar-cores and containment of partitions. We will need the following generalization
of [KL, Lemma 4.1.2].

Proposition 3.3. Suppose p is a d-Rouquier p-bar-core. Suppose A € 95’” and o € ﬂﬁ’b, wherea, b <
d, and let (/\(0), e, )\([)) and (uc(o), .., (x(@) be the p-bar-quotients of A and «. Then the following are
equivalent:
i) ACa;
i) AV C al) forallj € I;
(iii) & can be obtained from A by successively adding p-bars.

Proof. 1t is trivial that (iii)=(i). It is also very easy to see that (ii)=>(iii): adding a node to a component
of the p-bar-quotient corresponds to increasing one of the parts of the partition by p, which is a way
of adding a p-bar.

So it remains to show that (i)=-(ii). (We remark that the case where b —a = 1 is proved in [KL,
Lemma 4.1.2].)

We use induction on a. The case a = 0 is trivial, so we assume a > 0, and that the result is true
with a replaced by any smaller value. Assume A C a.

Suppose u € 95’”4 and that the p-bar-quotient (u(%),..., u(9)) of u is obtained from the p-bar-
quotient of A by removing a single node. Then u C A (from the fact that (ii)=(iii)=(i)), so  C &, and
the inductive hypothesis gives u!/) C al) for all j. So the only node of (A(?), ..., A(¥)) which can fail
to be a node of ((x(o), ., uc(g)) is the node removed to obtain y. In particular, if there are at least two
such partitions y (that is, if (A(O), e, A(f)) has at least two removable nodes), then A0 C al) for all j
as required.

So we can assume that (A(?),...,A(Y)) has only one removable node. This means there is k € I
such that AY) is a rectangular partition (x¥) with x,y > 1, while AU) = & for j # k. From the
argument in the previous paragraph, we can assume that a*) contains the partition (x¥~1,x — 1). If
we suppose for a contradiction that A¥) ¢ «®), then a¥) has fewer than min{x,y} nodes (r,c) for
whichc —7r=x—y.

For each j we define r; to be the largest part of p congruent to j modulo p. As observed in
Lemma 3.2, adding the node (,c) to the jth component of AU} corresponds to adding nodes to A
in columns

ri+(c—=)p+1Lri+(c—=p+2, ..., rj+(c—7+1)p,
where we write 7 = 1if j = 0, and # = r otherwise.

Assume first that k > 1. Then the assumption A C « and the paragraph above give
“:k-k(x—y)p—&—l - p;k-i-(x—y)p—i-l 2 Ar/’k+(x—y)p+l - p;kﬂ—(x—y)p—ﬁ—l = min{x/ y}

Since a¥) has fewer than min{x, y} nodes (r,c) for which ¢ — r = x — y, there must be some j # k
such that 1) has a node (r, ¢) for which

ritc—tp+k—j+1 ifj <k,
tit(c—rp+p+k—j+1 ifj>k
In fact this is impossible for j > k, since it gives

(r—c=1+x—yp+j—k=ri—n=>d-1)p+j—k

rk+(x—y)P+1:{

and therefore
r—c+x—y=>d.
But [«)| > r —c+1and [a®| > x +y — 2, and we obtain |« | + |a)| > d + 1, which contradicts
the assumption that a € @g’b with b < d.
So instead j < k. Now we obtain

(c—t+y—x)p+k—j=n-r=2@d-1p+k—j,

so that
c—f+y—x>d—-1
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But [¢0)] > c—#+1and [a®| > x+y —2and |« | 4 |aF)| < d, so we have equality everywhere,
and in particular |a)| + |a®)| = 4.

Now we perform a similar calculation using the fact that a/ P ol oyt )p = min{x, y}.
Now there is j' # k such that (writing # = 1 if j/ = 0 and ¥ = r otherwise)

r]/+(c—7’)p+k—]’ 1f]l<k,

— 1)p =
et oyt lp {r]-/—I—(c—r)p—l—p—I—k—j’ if j/ > k.

Now the case j' < k leads to an impossibility (in a similar way to the case j > k above), so j' must be
greater than k. But now we have indices j < k < j' with [a)| + |[a®)| 4 |aU)| > d + 1, which again
contradicts the assumption o € ﬁﬁ’d. The result follows in the case k > 1.
The case k = 0 is similar but simpler. In this case
lxl(x—l)p—&-l - p/(x—l)p—&-l 2 A/(x—l)p—i-l - p/(x—l)p—&-l =Y
but #(9) has fewer than y nodes in column x, so there is j > 0 such that /) has a node (r, ¢) with
(x=Dp+l=ri+(c—r)p+p+1—j
and therefore
(r—ct+x—=2)p+j=ri=z(d—-1)p+j
so that
r—c+x—2>d-1.
But now the fact that [«(®)| > x — 1 and |a!)| > r — ¢ 4 1 gives a contradiction. So the result follows
in the case k = 0 as well. O

4. Superalgebras, supermodules and wreath superproducts

The representation theory of double covers of symmetric groups is best approached via superal-
gebras. In this section we recall the general theory and then study representations of some special
wreath superproducts A, ! &; which play a crucial role for RoCK (super)blocks of double covers of
symmetric groups, cf. Theorem 5.4. Our aim is to compute the Cartan invariants for Ay ! &, in the
case where d < p in terms of Littlewood-Richardson coefficients, cf. Corollary 4.11.

4.1. Superspaces. We write Z/27 = {0,1}. If V is a vector space over F, a Z/2Z-grading on V is a
direct sum decomposition V = V; @ V;i. A vector superspace is a vector space with a chosen Z/2Z-
grading. For e € Z/2Z, if v € V; we write |v| = € and say that v is homogeneous of parity .

If V and W are superspaces and ¢ € Z/27Z then a linear map f : V — W is called a homogeneous
superspace homomorphism of parity € if f(Vs) C Wy, for all 6 € Z/27Z. A superspace homomorphism
f:V — Wmeans amap f = f;+ fi, where for e = 0,1 the map f; : V — W is a homogeneous
superspace homomorphism of parity e. We will use the term ‘even homomorphism’ to mean homo-
geneous homomorphism of parity 0’, and similarly for odd homomorphisms.

We write IT for the parity change functor, see e.g. [K1, §12.1]. Thus, for a superspace V, the super-
space I1V equals V as a vector space, but with parities swapped. We define an odd isomorphism of
superspaces

oy V— TV, v — (=1%o,

If V4,...,V; are superspaces then V] ® - - - ® V; is a superspace with |01 ® - - - @ v4| = |vg| 4+ - -+ +
|vg]. (Here and below in similar situations we assume that the elements v, are homogeneous and
extend by linearity where necessary.) If f; : V; = W; is a superspace homomorphism fori =1,...,d,
then

f1®“'®fd1V1®"'®Vd—>wl®"'®wd
is a superspace homomorphism defined from

(fl Q.- ®fd)(vl Q- - ®Ud) — (_])Zlgmsgd |f~*‘””"f1(01) X - - ®fd(vd)-
Let V = V5 @ V; be a superspace, and d € N. The symmetric group &, acts on V4 via

Y(01®@ - ®0y) 1= (~1)0y @ @),
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where forw € &5 and vy,...,v; € V, we have

[w;01,..,04] i = ) oalle]-
1<a<ce<d
w(a)>w(c)
It is now easy to check that
o (P(01 @ - ®0y)) = sgn(w) (w(‘fx(?d(vl ® - ® Ud)))- (4.1)

4.2. Superalgebras. An F-superalgebra is an F-algebra A with a chosen Z/27Z-grading A = Ay @ Az
such that ab € A,y (Whenever a,b € A are both homogeneous). If A and B are F-superalgebras, a
superalgebra homomorphism f : A — B is an even unital algebra homomorphism.
If Ay,..., Ay are superalgebras then the superspace A; ® - - - ® A, is a superalgebra with multipli-
cation
(@ Rag) (1 ® - @by) = (=1L lollrlg by @ - @ agby.
The following superalgebras will play a major role in this paper:

Definition 4.1. We consider the quiver

1,0 2,1 3,2 a[—S,[—Z aé—l,é—Z

) /\ /\ /\ ___________ /\.{\.H
\/ \/ \/ NS

and define the Brauer tree algebra A, to be the path algebra of this quiver generated by length 0 paths
{é/ | j € ]}, and length 1 paths u and {a"*+1, &+ | 0 < k < ¢ — 2}, modulo the following relations:

(i) all paths of length three or greater are zero;

(ii) all paths of length two that are not cycles are zero;
(iii) the length-two cycles based at the vertexi € {1,...,{ — 2} are equal;
(iv) u> = %1 a0 if] > 2.

For example, if / = 1 then the algebra A, is the truncated polynomial algebra F[u]/(u®). The
algebra A, is considered as a superalgebra by declaring that u is odd and all other generators are
even.

Definition 4.2. For d € N, we consider the wreath superproduct W, := A, &;. As a vector super-
space this is just A?d ®F&,, with FS, concentrated in degree 0. The multiplication is determined by
the following requirements:

Z—=zQ efines a superalgebra embeddin — X 4, we 1denti with a
(1) 1 defi peralgeb bedding AJ" — A @ F& identify Ay with
subsuperalgebra of W, via this embedding.
x — 1 ® x defines a superalgebra embeddin 4= ® F&,,; we identi 4 with a
) 1 defi peralgeb bedding F& Af?d F& identify F&,; with
subsuperalgebra of W, via this embedding.
B uwz® - ®z)="(271Q - Qzy)wforallw € Sy and all z,...,z; € Ay.

4.3. Supermodules. Let A be a superalgebra. An A-supermodule means an A-module V with a cho-
sen Z/2Z-grading V = V @ V7 such that av € V), |, for all (homogeneous)a € Aand v € V.

If V and W are A-supermodules then a homomorphism f : V. — W of superspaces is a homomor-
phism of A-supermodules if f(av) = (—1)fll#laf(v) fora € Aand v € V.

For an A-supermodule V, the superspace I1V is considered as an A-supermodule via the new
action a-v = (—1)1av fora € Aand v € TIV = V. The map oy : V — IIV is then an odd
isomorphism of supermodules; in particular, oy (av) = (—1)/%a - oy (v) fora € Aand v € V.

We write ‘~" for an even isomorphism of A-supermodules, and ‘=’ for an arbitrary isomorphism
of A-supermodules, cf. [Kl, Chapter 12].

A subsupermodule of an A-supermodule V is an A-submodule W C V such that W = (W N V) @&
(W N Vq). An A-supermodule is irreducible if it has exactly two subsupermodules.

Irreducible supermodules come in two different types: an irreducible supermodule is of type M if
it is irreducible as a module, and of type Q otherwise (in which case as a module it is the direct sum
of two non-isomorphic irreducible modules, see for example [KI, Section 12.2]). Every irreducible
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module arises in one of these ways from an irreducible supermodule (see for example [KI, Corollary
12.2.10]), so understanding the irreducible supermodules (together with their types) is essentially
equivalent to understanding irreducible modules.

If L is a finite-dimensional irreducible A-supermodule, then L is of type M if and only if L # IIL,
see [K1, Lemma 12.2.8].

If Ay,..., Ay are superalgebras and Vi, ..., V; are supermodules over Aj, ..., A; respectively, we
have a supermodule V1 X --- X V; over A ® - -+ ® Az, whichis V] ® - - - ® V;; as a superspace with
the action defined by

(M Q - ®a) (@ ®vy) = (=)Dl @ . @ a0,
If f; : Vi = W;is an A-supermodule homomorphism fori =1,...,d, then
i @f: i - KV; =W K- - KW,
is a homomorphism of supermodules over A; ® - - - ® A,. In particular,
oy, @ @oy, ViR RV; — (TTV) K- - - K (TTV,) 4.2)

is an isomorphism of (A1 ® - - - ® A)-modules (of parity d (mod 2)).

If V is a finite-dimensional A-supermodule, a composition series of V is a sequence of subsuper-
modules 0 = Vyp C V; C --- C V,; = V such that Vi /V}_; is an irreducible supermodule for all
k=1,...,n.1fLy,...,L, are irreducible A-modules (not necessarily distinct) such that Vi /V}_; ~ L
for k = 1,...,n, we say that V has composition factors Ly, ..., L. These are well defined up to even
isomorphisms and permutation. So if L is an irreducible A-supermodule we have a well-defined
composition multiplicity

[V:L]:=|{k| Ly = L}|.

(If L is of type Mso that L ¢ I1L, we could consider the more delicate graded composition multiplicity
[V:Lz=m+nmtwherem = |{k| Ly ~L}|and n = |[{k | Ly ~ IIL}|, so that [V : L] = m + n, but
this will not be needed.)

If A is a finite-dimensional superalgebra and L is an irreducible A-supermodule, we denote the
projective cover of L by Pr. This is a direct summand of the regular supermodule with head L,
see [KI, Proposition 12.2.12]. The composition factors of the principal indecomposable supermodules
Pr will be of central importance in this paper. In particular, the super-Cartan invariants of A are defined
as the multiplicities

CLL ‘= [PL : LI]

for all irreducible A-supermodules L, L'. The super-Cartan matrix of A is then the matrix (cy, /) of all
super-Cartan invariants of A.

For the superalgebra A, of Definition 4.1, up to even isomorphisms and parity shifts I1, a complete
set of irreducible A/-supermodules is

{Liljie]} (4.3)
where L; is spanned by an even vector v; such that ejv; = v; and all other standard generators of
Ay act on v; as zero. Now, note that for each j, the supermodule L; is of type M, and P; := Aye; is a
projective cover of L;. We can easily write down a basis for each P;:

Py = (eo, uey, alle, u2e0> (omitting aeyif £ = 1),
P = (ej, aj_l’je]-, aj+1'je]-, aj'j+1aj+1'jej) for1<j< (-2,

Py g = (eg_l,aé*M*leg_l,agfl'éfzaffzfgfleg_ﬁ 0> 2.

From this, we can immediately read off the composition factors of each P;:

Lemma 4.3. Py has composition factors Lo, I1Lg, L1, Lo (omitting Ly if { = 1), P; has composition
factors L;,L;_1,Li+1,L; for1 < i < ¢ —2, and P;,_1 has composition factors Ly_1,Ly_»,Ly_1 if £ > 2.
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4.4. Representations of wreath superproducts W,;. We suppose from now until the end of Section 4
that d < p or p = 0. Our aim is to develop the representation theory of the wreath superprod-
uct algebra W; from Definition 4.2, and ultimately to compute the super-Cartan matrix for W,;. We
take inspiration from the paper [CT;] by Chuang and Tan; many of our results are straightforward
adaptations of their results to supermodules.

Givenj =ji...j; € J%, we define the idempotent

g =g, -Qej € Ag@d CW,.
Then we have the orthogonal idempotent decomposition in W/:
1= e (4.4)
j€r

For a composition § = (¢4, ..., ) of d, we have a Young subgroup §; = S5, X - - x G5 < 64 and

the corresponding parabolic subalgebra
W; = AP @ F&5 C W,.

Note that Ws = W3 @ - - - ® Wy, (tensor product of superalgebras). If V3, . .., Vi are supermodules for
Ws,, ..., Ws, respectively, then we have the supermodule Vi X - - - X Vi over Ws, @ - - - @ W5, = W,
so we can form the Wy-supermodule

Viow o Vii=Indy!(Vi & K V).

Note that the operation ‘o’ is commutative in the sense that Vo V' ~ V' o V.

Recall that if A € 2(d), we write S* for the corresponding Specht module for F&;. Our assump-
tions on p mean that S is irreducible, and we can fix a primitive idempotent f* € F&; such that
F&,f* = SN

Now given A € 2/(d), define 6 := (&, ...,01—1) = (JAQ|,...,|]A=D]). Then we have a primitive
idempotent

A=A .0 cFe,® - @F6,,  =F&,
from which we define an idempotent
e(A)i=ef" @@ @ fF e W, (4.5)
Let V be a finite-dimensional Aj-supermodule and A € &?(d). Denote:
V(A) = V¥ g8
considered as a W;-supermodule via
(@ RuRY)=z(11 Q- Quy) VY,
W - QueYy)="(11® Qv wy

forallz € AYY, w € &4,01,...,04 € V,y € Sh. Important special cases of this construction where
V = Ljand V = P; are the simple A;-module and its projective cover constructed in Section 4.3, yield
the W,-supermodules L;(A) and P;(A). For a general V we have the following two results.

Lemma 4.4. Let V be a finite-dimensional Aj-supermodule and A € 2 (d). Then (ITV)(A) = V(\).

Proof. By (2.2), we have S} = S* ® sgn, so we can identify S* with S* as vector spaces but with
the new action w - d = sgn(w)wd. Now, we consider the linear isomorphism

=0 @id: V(\) = V¥ o SY = (V)% @ S* = (ITV)(A).
As pointed out in (4.2), ¢ is an isomorphism of A%d—supermodules. On the other hand, for vy, ...,v; €
V,y e S" andw € &4, we have
(w1 @ - Rv;0Y)) = ¢(“(1 @+ ®vy) ® (sgn(w)wy))
= sgn(w)oy? (Y(01 ® - ®04)) @ wy
=03 (01 ® - ®vg)) @ wy
:w¢(01®"'®0d®y)
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where we use (4.1) for the penultimate equality. So ¢ is also an isomorphism of F&;-modules. It
follows that ¢ is an isomorphism of Wy-supermodules. O

Lemma 4.5. Let V be a finite-dimensional Ay-supermodule, and 6 = (43, ..., d) be a composition of d.
(i) For A € #(d), we have
Respf/V() = @ (V) BBV,
ULeP (1), ke 2(8)
(i) Foru' € 2(51),...,u* € P2(5), we have
VooVt = @ VAT,
rAeP(d)
Proof. The proof is identical to that of [CT,, Lemma 3.3] paying attention to the superalgebra signs.
O
Given A = (A0, A=) ¢ 2](d), we now define the Wy-supermodules
L(A) = Lo(AD) oo Ly (A7),
P(A) := Py(A@) o 0P (A,

Proposition 4.6. The set {L(A) | A € #J/(d)} is a complete irredundant set of irreducible W -

supermodules up to even isomorphism and parity shift. Moreover, P(A) is a projective cover of
L(A) foreach A € 2/ (d).

Proof. The first statement is easy to see and is well-known, see e.g. [M;, Theorem A.5]. For the second
statement, note using Frobenius reciprocity that P(A) ~ Wge(A) for the idempotent e(A) € W,
defined in (4.5). We now also deduce that dim Hom, (P(A), L(#)) = J, , completing the proof. [

Now we determine the composition factors of the modules L(A!) o - - - o L(A¥).

Lemma 4.7. Let u € 2/(d) and let (6y,...,0;) be a composition of d. Forr = 1,...,k, suppose
A= (A0, ALY € 21(6,). Then
[L(A") o+ o L(A") : L(p)] = [ T c(u; A7), ..., AlkD),
j€]
Proof. This follows from Lemma 4.5(ii) using commutativity of ‘o’. O]

4.5. The super-Cartan matrix for W;. In this subsection we continue to assume that d < p or p = 0.
Having explicitly constructed the irreducible and projective indecomposable supermodules for Wy,
we now proceed to compute its super-Cartan invariants.

Lemma 4.8. Let V, W be finite-dimensional A;-supermodules and U be a subsupermodule of V such
that V/U ~ W. Then for A € Z(d), the W;-supermodule V(A) has a filtration with subfactors
U(p) o W(v) each appearing exactly c(A; u, v) times.

Proof. For 0 < ¢ < d, we denote by V, the subsupermodule of V(1) = V®¥ @ S spanned by the
vectors of the form v1 ® - - - ® v; ® x such that at least c of the vectors vy,...,v; € V belong to U and
x € S*. This gives a filtration V(A) =V, D V4 D --- D V; D V41 = 0 with

s gy (oW,
c+1 ]/16,@(6)
veP(d—c)
cf. the proof of [CT, Lemma 4.2]. O

Lemma 4.9. Let A € #(d), and V be an Ay-supermodule with composition series
V=WDViD-DVyuy =0.
SetK :={0,...,m}. Forv= (v\,... ,vm) ¢ #K(d) and j € ], define multisets
M(j,v) == v |k € K, Vi/ Vs ~ L}
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M'(jv) == {(w®) |k € K, Vi/Viyq ~ I1L;}.
Then for any u = (9, ..., u*~V) € 2J(d), we have

V)Ll = Y, c(iv© ") [Te(u v), M'(j,v)).
veK(d) j€j]
Proof. This follows by induction from Lemma 4.8, using Lemmas 4.4 and 4.5. ]

The following result is a ‘superversion” of [CT», Proposition 4.4].

Proposition 4.10. Let V, . . ., V;_1 be finite-dimensional A,-supermodules and A = (A(O),. ey /\(5*1)) IS
21 (d). Set
V(A) :== Vo(AD) o 0V (ALY,
Let Vi =Vjo D> Vj1 O -+ D Vjm+1 = 0 be a composition series of Vj for each j € J. Set
K= {(j;s) € ] x No | s < my}.

Fori € Jandv € 2K(d), let

M(i,v) := {v'®) | (j,s) € K and Vis/Vist1 =~ Li}

M'(i,v) :== {(vU9)) | (js) € K and V5/ V541 ~ IIL;}.
Then forany u = (u©,...,u""1) € @](d) we have

V) Ll = ¥ L@, v0m)) el M(j,v), M (j,v)).

vepK(d) je]
Proof. For j € ], we set
M(i,v,j) == {vU®) |0 <s < mjand Vis/ Vo1 ~ Li}
M (i,v,j) == {(vU*) | 0 < s < mjand Vjs/ V541 ~ I1L;},
so that M(i,v) = iy M(i,v,j) and M'(i,v) = J;
By Lemma 4.9, for each j € ], setting ; := AU

VAN = Y aqull@)),

wel(é)

e M'(i,v,j).
|, we have in the Grothendieck group

Nabl ey

where

6, = Z C()L(]) Go) . ]mj Hc (i,v,7), M'(i,v,])).

v(f'o),...,v(j’”’f) i€]
Now,
V)] =[VA©D)o- oV 1 (AD)]
= Z q”o A qyé—l [Lluo ©---0 Ly[—l]-
u0e2I(%),..u 1 €PI(6,-1)

It remains to apply Lemma 4.7 and use the following identity involving Littlewood-Richardson co-
efficients:

c(u; M(i,v), M'(i,v)) = e(u; @, u ) [Te(ub; MG, v, ), MG, v, ),
j€]
which in turn follows from the description of the Littlewood-Richardson coefficient in terms of in-
duction for symmetric groups using the transitivity of induction. 0
Corollary 4.11. Let A,y € &/ (d). Then
[P(A ZHC ), pUHD =1 50)) c(/\(j);oc(j),[%(j),'y(j),é(j)),
i€l

where the summation is over all partitions ali) ﬁ(i), 'y(i), 50 withi e J, reading 'y(_l) = (5(0))’ and
B = 4=1) = & (If ¢ =1 this formula is interpreted as CAp = Lapsc(pa, B, 0)c(Aa,B,6).)

Proof. Apply Proposition 4.10 to the case V(A) = P(A), using Lemma 4.3. O
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5. Representations of double covers of symmetric groups

5.1. The double cover of the symmetric group. Let &, denote a proper double cover of the sym-
metric group &,,. Then &, contains a central element z of order 2, with &,/ (z) = &,,.

The central involution z yields a central idempotent e, = (1 — z), and direct sum decomposition

F&, = e, FS, ® (1- ez)Fén.

The algebra (1 — ez)]F@n is isomorphic to FS,,, so we concentrate here on representations of e,[F S,
often called the spin representations of &,. We identify e,F&, with the twisted group algebra 7,
see [KI, Section 13.1], where a superalgebra structure is defined on 7, by letting e,c be even or odd
depending on whether the image of ¢ in &, is even or odd.

The classification of irreducible spin supermodules in characteristic 0 goes back to Schur (though
Schur worked with modules rather than supermodules, and only constructed characters; the corre-
sponding modules were constructed much later, by Nazarov [N]). For each strict partition A of n
there is an irreducible spin supermodule S¢(A) for C&,, and {Sc(A) | A € Py(n)} is a complete ir-
redundant set of irreducible spin supermodules. Moreover, recalling (2.1), the supermodule S¢(A) is
of type Mif a(A) =0, and of type Qif a(A) = 1.

The classification of irreducible supermodules in characteristic p is due to Brundan and the sec-
ond author [BK;]. (Another classification is obtained in [BK;], and [KS, Theorem B] shows that
the two classifications agree.) For each restricted p-strict partition p of n, there is an irreducible
Tu-supermodule D(u), and {D(u) | p € #%,(n)} is a complete irredundant set of irreducible 7,,-
supermodules. Moreover, D(y) is of type M if ;1 has an even number of nodes of non-zero residue,
and of type Q otherwise.

Since we shall be interested exclusively in representations in characteristic p, we use the notation
S(A) for a p-modular reduction of Sc(A), viewed as a T,-supermodule. Note that S(A) is not well-
defined as a supermodule, but its composition factors are. The (super) decomposition number problem
then asks for the composition multiplicities [S(A) : D(u)] for A € Py(n) and y € #F,(n).

The block classification for spin modules is due to Humphreys [H]. Here we prefer to deal with
spin superblocks, i.e. indecomposable direct summands of 7, as a superalgebra; in fact blocks and
superblocks coincide except in the trivial case of simple blocks, so we ignore this distinction, and say
‘block’ to mean ‘superblock’, see [KL, §5.2b] for more details on this. With this convention, each S(A)
belongs to a single block, and the 7,-supermodules S(A) and D(y) lie in the same block if and only if
A and u have the same p-bar-core. This automatically means that they have the same p-bar-weight,
so blocks are labelled by pairs (p, d), where p is a p-bar-core and d € Ny with |p| + pd = n. We write
BeA for the block corresponding to the pair (o, d).

An alternative statement of the block classification can be given using residues: in view of [MYj,
Theorem 5], two p-strict partitions of n have the same p-bar-core if and only if they have the same
number of i-nodes for each i € I. So we may alternatively label a block of 7, with a multiset con-
sisting of n elements of I, corresponding to the residues of the nodes of any partition labelling an
irreducible module in the block. We write Bs for the block labelled by the multiset S. An important
consequence of this is that all the irreducible supermodules in a block have the same type; so we say
that a block has type M or Q accordingly.

We also have a double cover 21, C &, of the alternating group whose twisted group algebra e, F<l,,
can be identified with the even component (7,);. Moreover, by [Ke, Proposition 3.16], the even

component Bg’d of Bf4 is a single block of FSl,,, unless d = 0 and B¢ is of type M. We refer the reader
to [KL, §5.2b] for more on this.

5.2. Branching rules and weights. The block classification using multisets of residues allows us to
define restriction and induction functors E; and F;. Suppose M is a 7,-supermodule lying in the
block Bs. Giveni € I, we define a 7,,1-module F;M by inducing M to 7,1 and then taking the
block component lying in the block Bg;y (if there is such a block; otherwise we set ;M := 0). The
restriction functor E; is defined in a similar way by restricting to 7,1 and removing a copy of i from
S. The functors E;, F; (which are called res; and ind; in [K1, (22.17),(22.18)]) are defined for all n, so
we can consider powers EJ, F for r > 0.
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Given A € Z(n),let M(A, i) be the set of strict partitions of 7 + 1 which can be obtained by adding
an i-node to A. Then, in view of [MY;, Theorem 3], in the Grothendieck group of 7,1 we have
[ES(M] =}, awlS(w)l, (5.1)
HEM(A,i)
where a,, equals 2 if A is odd and y is even, and 1 otherwise. Frobenius reciprocity yields a corre-
sponding result for E;S(A). (This description of [E;S(A)] and [F;S(A)] can also be deduced by consid-
ering the p > n case of [Kl, Theorems 22.3.4, 22.3.5].)

We can now apply the operators E; and F; to characters of supermodules (either ordinary characters
or p-modular Brauer characters) as well as to supermodules. For example, if x* denotes the character
of an irreducible supermodule Sc (1), we define Fx* = YueM(ni) dapx". We define E; X" similarly.

The modular branching rules of Brundan—Kleshchev and Kleshchev-Shchigolev give information
on the modules E;D(u). We just need one result, and to state this we need some more combinatorics.
Recall that in Section 2.1, for partitions « C B, B\ a has been defined to consist of the nodes of B
which are not contained in a. Suppose y is a p-strict partition and i € I. Let = denote the smallest
p-strict partition such that p~ C pand p \ u~ consists of i-nodes. These nodes are called the removable
i-nodes of y. Similarly, let u* denote the largest p-strict partition such that y™ O pand u™ \ u consists
of i-nodes. These nodes are called the addable i-nodes of y.

The i-signature of y is the sequence of signs obtained by listing the addable and removable i-nodes
of u from left to right, writing a + for each addable i-node and a — for each removable i-node.
The reduced i-signature is the subsequence obtained by successively deleting adjacent pairs +—. The
removable nodes corresponding to the — signs in the reduced i-signature are called the normal i-nodes
of u.

The result we will need below is the following (see [KS, Theorem A(ii)]).

Lemma 5.1. Suppose 1 € Z%,(n) andv € #%,(n — 1), and that v is obtained from y by removing
a normal i-node. Then D(v) is a composition factor of E;D ().

Now given a 7,-supermodule and a word i = i;...i, € I", we say that i is a weight of M if
E; ...E;, M # 0. The fact that the functors E; are exact, together with the results above, yields the
following.

Proposition 5.2. Supposei € [ and iy ...i,_1 € -t
(i) Suppose A € Py(n) and u € Py(n — 1) is obtained from A by removing an i-node. If
i1...1,—1 is a weight of S(u), then iy . ..i,_1i is a weight of S(A).
(ii) Supposey € #Z,(n) andv € £ ,(n — 1) is obtained from yu by removing a normal i-node.
Ifiy ...i,_1 is a weight of D(v), then iy .. .i,_1i is a weight of D(p).

For (much) more information on branching rules for 7, see [KIl, Part II] and [KS].

5.3. Virtual projective characters. Given A ¢ 22 “ we write X" for the character of the irreducible
supermodule S¢(A), and we denote by Ch? 7 the Q-span of the set {x* | A € #{ ’d} of class functions
on S 4ap-

Foreach y € # ,@%d we have an indecomposable projective supermodule P(u) with simple head
D(u). Lifting the idempotents as in the classical theory we deduce that P(y) lifts to characteristic
zero, yielding the character ¥ € Ch*?. We denote by PCh* the Q-span of the set {¢/ | u € % @;’d}
and refer to the elements of PCh?* as virtual projective characters.

Note that {x* | A € @g’d} is a basis for Ch*? since each x* is either an irreducible character
or a sum of two irreducible characters y** + x*~, and all the irreducible characters xy*, x* are
distinct (cf. [K1, Corollary 12.2.10]). Moreover, {¢" | p € ﬁﬂz’d} is a basis for PCh"?. This is
proved as for the x*. First, note that each ¢ is either an indecomposable projective character or a
sum of two indecomposable projective characters p** + ¢, and all the indecomposable projective

characters qo/\'i, @t are distinct in view of [KI, Proposition 12.2.12 and Lemma 12.2.16]. Then use
linear independence of the indecomposable projective characters [CR, Theorem 18.26(iii)].

Given ¢ = ¥, _ n ayx" € Ch*?, we write the coefficient a, as [¢p : x*]. We say that x* occurs

in ¢ if [¢ : x"] is non-zero. Below we will use a superversion of Brauer reciprocity to compute



Decomposition numbers for RoCK blocks of double covers 19

decomposition numbers for B4 in terms of the multiplicities [¢" : x*]:
P P Pt X

2[p" : x| if Sc(A) is of type Q and D() is of type M,
[S(A) : D(u)] = 4 3le" : x*] if Sc(A) is of type Mand D(y) is of type Q, (5.2)
[p": x}]  otherwise.

This follows from the classical Brauer reciprocity taking into account that when S¢(A) is of type Q
we have x* = x}* + x*~, and when D(u) is of type Q we have ¢* = g™ + ¢*~, and moreover,
D(p) = D(u,+) @ D(u, —) for non-isomorphic irreducible modules D(y, +) and D(u, —) obtained
from each other by tensoring with sign.

5.4. Projective characters from the g-deformed Fock space. Leclerc and Thibon [LT] show how one
can use canonical basis vectors to obtain another basis for the space PCh**; we briefly outline the
background. Let g be an indeterminate. The level-1 Fock space of type Ag) is a Q(gq)-vector space .#
with a standard basis

{|A) | A a p-strict partition} .
. We note that the conventions

(2))

This space is naturally a module for the quantum group U,(A,;
for residues (and for simple roots in type AS)) used here are as in [KL], [Faz] and differ from those
in [LT]. The submodule of .# generated by the vector | &) possesses a canonical basis

{G(u) | p arestricted p-strict partition} .

Expanding the canonical basis vectors in terms of the standard basis, one obtains the g-decomposition
numbers d,,(q), indexed by pairs of p-strict partitions A, y with p restricted:

Gu)= ). du(@lA).
A p-strict
In fact [LT, Theorem 4.1] implies that d,(q) is zero unless A and y have the same p-bar-core and the
same size, so for u € %ﬁg’d we actually have

G(u) = ). du(@lA). (53)

Ae ,@g’d

By [LT, Theorem 4.1(i)] each d,,(q) is a polynomial in g with integer coefficients. So given a strict
partition A and a restricted p-strict partition y, recalling (2.1), we can define the integers

Dy, = 2[%(hp(A)+1*a(A))Jd/w(l),

where /1,(A) denotes the number of positive parts of A that are divisible by p. Then the discussion
in [LT, Section 6] shows the following.

Proposition 5.3. Suppose i is a restricted p-strict partition of n. Then the character

¢' =Y Dax* (54)

A strict
is a virtual projective character of &,,. Moreover, {$" | u € # @g’d} is a basis for PCh?.

In fact, the character ¢* coincides with ¢ quite often, and our main aim in this paper is to show
that " = ¢! when € %’@‘;’d and B* is an abelian defect RoCK block.

5.5. RoCK blocks for double covers and the Kleshchev-Livesey Morita equivalence. Now, fol-
lowing [KL], we can define RoCK blocks: given a p-bar-core p and d > 0, we say that B is a RoCK
block if p is d-Rouquier. The term ‘RoCK’ is borrowed from the corresponding theory for (non-spin)
representations of symmetric groups, and stands for ‘Rouquier or Chuang-Kessar’.

The definition of spin RoCK blocks is a natural analogue of the non-spin situation, and we expect
that RoCK blocks will play a similarly important role. This has already begun with the use of RoCK
blocks in proving Broué’s conjecture for double covers [KL, BK4, ELV]. Our purpose in this paper is
to emulate the work of Chuang and Tan in the non-spin case and find the decomposition numbers
for RoCK blocks.
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Recall the material of Section 4, in particular, the wreath superproduct W; = A, 1 &;. One of the
main results of [KL] is a Morita superequivalence relating a RoCK (super)block B with d < p and
W, . This easily implies the following theorem:

Theorem 5.4. Suppose 1 < d < p, and p is a d-Rouquier p-bar-core. Then we have a Morita equiva-
lence
BeAif BPA s of type M,
Wd ~Mor {Bp/d pr,d . f
o 1 is of type Q.

Proof. By [KL, Proposition 5.4.10(i)], we have a Morita superequivalence

0d Wy if B°4 is of type M,
B ~smor . d:
W; ®Cy  if B* is of type Q.

where C; is the Clifford superalgebra of rank 1. If B4 is of type M the result follows immediately
since Morita superequivalence implies Morita equivalence, see [KL, §2.2¢]. If B4 is of type Q, then
we obtain B4 ® C1 ~emor Wy ® C1 ®C1 ~ Wy ® Cp, and we apply [KL, Lemmas 2.2.19 and 2.2.20]. [

5.6. The regularization theorem. One of the early general results concerning decomposition num-
bers for symmetric groups is James’s regularization theorem [J1]. Later we will need the analogue
for spin modules, which was proved by Brundan and the second author [BK3, Theorem 1.2]. They
define (in a combinatorial way) a function A +— A™8 from Zy(n) to #%,(n) and prove the following
statement.

Theorem 5.5. Suppose A is a strict partition. Then D(A™8) occurs as a composition factor of S(A), and
D(v) is a composition factor of S(A) only if A™8 & v.

We will not need the exact definition of regularization, since we use an alternative description of
regularization in RoCK blocks, as follows.

Lemma 5.6. Suppose p is a d-Rouquier p-bar-core, and A € ﬁg’d with p-bar-quotient (A(0), ..., A1),
Then A™8 is the partition in % ;@g’d with p-bar-quotient

(MO, AED 7D L A0 ),

Lemma 5.6 is not very hard to prove directly from the combinatorial definition of A™8, but we will
give a proof using canonical basis coefficients in Section 6.1.

6. Projective characters

Having summarized all the background we need, we now work towards our main result. Through-
out this section we fix an integer d > 1 and a d-Rouquier p-bar-core p. Our aim is to work with
projective characters in B%4; our main result in this section is to find the decomposition matrix for
B4 up to multiplying by a non-negative unitriangular matrix. Note that the results of this section
do not require d < p.

6.1. Projective characters ¢" in RoCK blocks. Recall the virtual projective characters ¢* defined
in (5.4). One of the main results of the first author’s paper [Faz] is an explicit determination of the
canonical basis vectors G(u) for partitions in RoCK blocks. As a result of this, we can give the
characters ¢* in B4 explicitly.

First, we give the formula for the canonical basis coefficients in a weight space corresponding to a
RoCK block. Recall the notation of Section 2.3.

Theorem 6.1 ([Fas, Theorem 8.2]). Suppose p is a d-Rouquier p-bar-core, A & 935"1 and pu € %@f{d.
Then

- : i i i i— i— i)’ e 1A=
d)‘ﬂ(q):ZK/\(%)U(O)(_q2>HC(A( );g(),T()>C<y( 1);(7( 1),T())q22,61 (|AW ] =1 I),

1

=1
where the sum is over all partitions (7(0), e, U((Z*l), T(l), e, T(Z), and we read o) as @.
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As a consequence we can write down the characters ¢ in RoCK blocks; this follows from Theo-
rem 6.1, (5.3) and the definition (5.4).

Corollary 6.2. Suppose p is a d-Rouquier p-bar-core and yu € % @g’d. Then

¢
N LAY 41—¢ Z - H iy, (i) (i i i i)’
q)” — E dZI.%(h()LO)"Fl (/\))J K/\(%)U-(O)(_]') | 1C(A( )’0—( )/T())C(‘M( 1),0—( 1),T() )X/\/
rely =

-1) (1)

where the second sum is over all partitions c0 o= ) () and we read 0¥ as @.

Corollary 6.3. Suppose p is a d-Rouquier p-bar-core and y € %L@Z’d. Then ¢" is a non-negative

integral linear combination of irreducible characters x* with A € Wg’d.
Proof. Follows from Corollary 6.2 and Lemma 2.4. 0]

We now use Theorem 6.1 to give the deferred proof of Lemma 5.6. This relies on the following
regularization theorem for canonical basis coefficients.

Theorem 6.4 ([Fa;, Theorem 3.2]). If A € #(n) and p € Z P ,(n) thendypws(q) # 0, and dy,(q) = 0
unless A™8 > p.

Proof of Lemma 5.6. The lemma asserts that A™® is the partition v € ﬁg’d defined by

A ifo<i<(-2,
v = LA A0 =1,
%] ifi="4.

Theorem 6.4 shows that A™# is the most dominant p-strict partition y for which d,,(gq) # 0. So to
show that ™8 = v we must show that d),(q) # 0, and that if y & v with dj,(q) # 0 then y = v.
Showing thatd,,(q) # 0is straightforward: in order to obtain a non-zero summand in the formula

in Theorem 6.1, we must take ¢() = A for0<i< /-1, 70 =@ for1 <i<l—1,and T = A,
giving dy, (4) = g2l
Now take a p-strict partition such that u &> v and d,,(q) # 0. From (5.3), 4 must lie in %@f{d.

Choose partitions O'(i), () for which the summand in Theorem 6.1 is non-zero. We assume for the
rest of the proof that p > 5; a minor modification is needed when p = 3, which we leave to the reader.
In view of Lemma 3.2, the assumption that y = v means that

O+ [ < A 4 |20

for 0 < r < ¢ — 2. On the other hand, the non-vanishing of the polynomial K;(}))U((]) (—¢?) and of the

Littlewood-Richardson coefficients c(A(®); o), 7)) and c(u(-1; o (-1, T(i),) implies that
O+ [ = A 4 A |

for0 <r</f—1.%0 |tV =-.. = |7 V| = 0and |t(V)| = |A(¥)]. Again by the non-vanishing of the
Littlewood-Richardson coefficients it then follows that T = ... = ¢((=1) = @, while &) = A0,
This in turn gives o) = y(i) for0<i</¢—2,and o) = A1) for1 <i < ¢ —1,so that

© K;(%)V(O)(t) # 0,

o y(i) =2 for1<i<l—2,

o c(]/t(g_l);/\(f_l),)\(ﬁ)l) # 0.
In particular, |u)| = |v{?)] for all i, so (again using Lemma 3.2) the assumption # > v amounts to
the statement that () = v() for all i. But now the only way that K;(}Dy(()) (1) = Kv’(g)ﬂ(o) (t) can be
non-zero is if 4(© = v(© = A A standard result about Littlewood-Richardson coefficients is that
the most dominant partition ¢ for which C(C;/\([_l),)\(f)/) # 0is A=) 4 )\(Z)/, so we also obtain
p=1 = y=1) ‘and therefore u = v. ]
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6.2. Gelfand-Graev induction. Our aim is to explore the relationship between the characters ¢* and
" by considering a third set of projective characters obtained by inducing the projective character
X’ along special words which we call thick Gelfand-Graev words. Recall the induction operators F;
from Section 5.2.

Giveni € J and k > 1, we define the corresponding thick Gelfand—Graev word (cf. [KL, (4.2.1)])

gk =R — 1) (i 1)k kR, Lk (6.1)
and the corresponding induction operator
F(i k) := FF ... FFFZ*Ff .. FFF2 . F2% FF. (6.2)

We want to know what these operators do to characters in a RoCK block.

Remark 6.5. We could define divided power induction operators Fi(r) = f—f,r and use them in place

of the usual powers in the definition of F(i,k). This would produce slightly simpler formulas in
Propositions 6.6 and 6.7 below but would not make things any easier, since a priori, Fi(r) is defined
on the Grothendieck groups with scalars extended from Z to Q (although one can check, using [KI,
Lemma 22.3.15] for the case of large p, that in fact Fi(r)
without extending scalars; we will not pursue this).

is always defined on the Grothendieck groups

Proposition 6.6. Takei € |, A € @g’c and « € Wg’chk, wherek > 1 and c + k < d. Then x* occurs in
F(i,k)x" if and only if the p-bar-quotient («?), ..., a(")) is obtained from (A),...,A¥)) by adding k
nodes in components i and i + 1, with no two nodes added in the same column of component i or in
the same row of component i + 1. If a satisfies this condition, define

fha)={c>1]| 2@\ A% contains a node in column ¢ but not in column ¢ + 1}

Then
[F(i, k)XA XY = 2f()x,zx)+%(k(p72)+h(/\(°))fh(oc<°))+a()x)fa(uc))(2k)!€7ik!2i+1‘

Proof. First we assume i > 0.
For j € I, we define a j-hook to be a set of nodes of the form

{r+4—j,c+j+1),r+l—j—1c+j+2),...,(r,c+0+1),(r,c+£+2),...,(r,c+j+p)}

forr > 1and ¢ > 0 with p | c¢. In other words, a j-hook is a set of p nodes with residues in the
configuration below.

AR VAS | R 1[0 0|1 [~ j—2]j-1

j+1

j

In [KL, Section 4.1a], Kleshchev and Livesey observe that if A € ﬁg’c with ¢ < d, then adding a node

to the jth component of the p-bar-quotient of A corresponds to adding a j-hook to A.

By Proposition 3.3, if A € ,@g’c and « € @g’c+k with & O A, then « can be obtained from A by

adding some p-bars. Thus a2 AU for all j € I. In particular, if x* occurs in F(i, k) X", then «
is obtained from A by adding j-hooks (for various values of j). But by the branching rule « is also
obtained from A by adding nodes one at a time, with a specific sequence of residues determined by
the definition of F(i, k). In particular, the last k nodes added must all have residue 7, so there must be
a strict partition g with A C B C a such that « \  comprises k nodes of residue i.

In any of the individual j-hooks comprising « \ A, the last node added must either be the leftmost
node of residue j, or the rightmost node of residue j — 1. So the last node added can have residue
ionly if j = i or i + 1. Moreover, the assumption that i > 0 means that the last two nodes added
in a given j-hook cannot both have residue i. So the only way the last k nodes added in reaching «
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from A can all have residue i is if all the added hooks are i-hooks or (i 4+ 1)-hooks, and each of these
hooks contains exactly one node of a \ B. In particular, the p-bar-quotient of « is obtained from the
p-bar-quotient of A by adding nodes in components i and i 4 1.

If two nodes are added to the same column of A7), the corresponding i-hooks are diagonally adja-
cent, as in the following diagram.

But now the i-hook on the right cannot contain a node of a \ B, because the i-node at the left of this
hook must be added before the (i — 1)-node at the right of the hook on the left. This is a contradic-
tion. Similarly, if two nodes are added to the same row of A*1), then the corresponding hooks are
horizontally adjacent, and we reach a contradiction in the same way.

------ oo [

i+1

This is enough to prove the ‘only if” part of the proposition. For the ‘if” part, suppose the p-bar-
quotient of « is obtained form the p-bar-quotient of A by adding nodes in different columns of A ()
and in different rows of A1) To show that Xx* occurs in F(i, k) )(A, we show that we can get from A
to & by adding nodes one at a time with the appropriate sequence of residues.

We begin by adding all the /-nodes in a \ A (in an arbitrary order), then all the (¢ — 1)-nodes, and
so on, down to the (i + 1)-nodes. Then we add an i-node in each hook, then an (i — 1)-node in each
hook, and so on, working along the arm of each hook, until we add a node of residue 1 to each
hook. Then we add all nodes of residue 0 in « \ A, and then all remaining nodes of residues 1,...,i
in turn. The assumptions on &« mean that we obtain a strict partition at each stage, so x* does occur
in F(i, k)x".

The construction in the preceding paragraph enables us to compute the coefficient of x* in F(i, k) x*.
To do this, we need to count possible orders in which the nodes of a \ A can be added to A with the
required sequence of residues, so that the partition obtained at each stage is strict. For each term F;‘k
appearing in F(i, k), we need to add ak nodes of residue j, and it clear that the choice made in the
previous paragraph is the only possibility: in order to be able to add the nodes of residue 0 in a given
hook when applying F2¥, we must already have added the nodes of residues i,i — 1,...,1 to the left
of the nodes of residue 0 in that hook. So our only choice is in which order to add the j-nodes for
each factor F]?k . In each case we have a free choice, except for the factor ng: here in each hook the
leftmost 0-node must be added before the rightmost one. So the number of choices of order is

-1 i 2i+1 0—i
ktx T (k) xﬁk!z X (2]?! e (%k)! )
j=i+1 i=1 2 2

It remains to consider the coefficients a,, appearing in the branching rule. Because i > 0, the as-
sumptions on « give #(?) = A(9), which in turn implies that 1(A) = h(«); therefore, as we go from
A to a by adding nodes, the partitions obtained alternate between even and odd. So the number of
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times we pass from an odd partition to an even partition is J (kp +a(A) — a(a)). This yields
[F(i, k)X/\ L xY] = 2%(k(p—2)+a()\)—u(a))(Zk)!é—ik!Zi-&-l,

which agrees with the proposition because A(0) = (%),

Now we consider the case where i = 0. Now in order for for x* to appear in F(i, k)x", it must be
the case that « is obtained from A by adding j-hooks, and now there must exist a strict partition
with A C B C a such that « \ § comprises 2k nodes of residue 0. Arguing as in the previous case, this
implies that o) = \0) for j = 2, while a1 is obtained from A1) by adding nodes in distinct rows,
and 2% D A0, Now if two nodes are added in the same column of A(?), then the corresponding
0-hooks are vertically stacked, as in the following diagram.

...... To
] T

0|1

0

But now the upper 0-bar cannot contain any nodes of « \ B, giving a contradiction. So again we find
that the nodes added to A(?) to obtain #(°) must be added in distinct columns.

Now suppose « satisfies the conditions, and consider how we can obtain « from A by applying
F(0,k) := F2kFZ ... Fflef. For each of the residues j = ¢, —1,...,1, we can add the j-nodes of
a \ A. In each added 1-hook, the two 0-nodes must be added in order from left to right, but otherwise
there are no restrictions on the 1-hooks. The 0-nodes occurring in the added 0-hooks can be added in
any order, except that when two added 0-hooks correspond to nodes in consecutive columns of a(?),
then the rightmost 0-node of the left hook is adjacent to the leftmost 0-node of the right hook (as in
one of the following diagrams) so that these two nodes must be added in a specific order.

As a result, we obtain a coefficient k!(2k)!¢/2k—f(A%) But we also need to take into account the
coefficients coming from the branching rule: the partitions obtained as we add nodes alternate
between even and odd, except when we add a node in column 1. So we obtain a further factor

23 (kp+a(d)—a@)+h(1)~h(x)) ‘Pputting these coefficients together, we obtain
[F(0,k)x" : x*] = 2f M)+ 2(k(p=2)+h(A)~h(a)+a(d) ~a(@)) ()1 k1,
in agreement with the proposition. U]

6.3. Projective characters obtained by induction. Our aim is to explore the relationship between the
characters ¢/ and ¢*, which we do by considering a third set of projective characters.

Recall from Section 2.1 the set lelfd - gzg’d of the p’-partitions in ﬁg’d. By Lemma 3.1(ii), a
partition A € 207 is p' if and only if A) = @. Recall (6.2). Given A € ﬂg;d, we will define a
projective character ¢ by inducing the projective character x*:

Ay y
F(i—1,A%)) x € PCh*4, (6.3)
1

/
¢ =11

i=lr=
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where the factors F(i — 1, AU i)! .) can be taken in any order. (It is not obvious at this stage that ¢" is
independent of the order of the factors, but we will see in Corollary 6.9(ii) that this is the case. For
now, we define ¢* by fixing an arbitrary order for each A.)

For any strict partition 7 and any composition -y let ¢(7t;y) be the number of ways 7 can be
obtained from & by adding at each step <; nodes all in different columns such that each step a strict

partition is obtained. Now given a € &) “and A € 2° ,’d, define

5)\ :2%( (p—2)+a(r HH 2)\ |l l-‘rlA() |21 1’
i=1r>1
~ ~ 4 1) (i)
D). = D, Z E(rx H[ ./\/lﬁ ®sgn)o,/\/l71+ S,
,5;(1)/_“,,3(06% i=1
AU Oy
Bl (1) 7 ()

where we read 7(‘*1) as @. Then we can deduce the following result from Proposition 6.6.

Proposition 6.7. Suppose « € ﬂg’d and A € g@z/’d. Then x* occurs in ¢* if and only if Dy, # 0.
Furthermore, if « is a p'-partition, then [¢" : x*] = Dj,.

Proof We construct ¢* by starting from xf and applying each of the operators F(i — 1,A(i);), for
<land1<r < )\( Y We start from the p-bar-quotient of p, i.e. (&, ..., ), and when we apply

(z —1,A0 ),), we add /\( )r nodes in components i — 1 and i in accordance with Proposition 6.6, and
we consider the possible choices of how to add these nodes. Let /3&” be the number of nodes we add
in component i, and 'yﬁi) the number of nodes we add in component i — 1. This defines partitions
BO, D) for 1 < i < £ with ) + () = A’ and we need to consider all possible such choices of
ﬁ(i), 'y(i). Take a particular choice of ,B(i), 'y(i), and consider the coefficient of x* obtained. Recall from

Proposition 6.6 that when we apply F(i — 1, A(i):), the nodes added in component i — 1 must be in
distinct columns, and the nodes added in component i must be in distinct rows. So (by the Pieri rule)
the number of ways of obtaining the p-bar-quotient («(¥),a),...,a(0))is

; i i (i) (i)
c-<a<°>;v<”>1‘[c<a<l>;<v§ ), (L, P, (1), )

by Lemma 2.1; here we read 7(‘*1) = @.

We sum over all possible choices of ,B ), 4 to get Dj./Dj; so the coefficient of x* is non-zero if
and only if D, # 0. In the case where a is a p -part1t10n the product of the coefficients arising from
Proposition 6.6 is D,, so the coefficient of x* in (p is Dy, O

Our next task is to show that the characters ¢* are linearly independent. First we use Proposi-
tion 6.7 to give more information about the structure of the characters ¢*. Recall the partial order 3=
on multipartitions from Section 3.

Proposition 6.8. Suppose A & 3”5/"1. Then the character x* occurs in ¢*, while any character x*

occurring in ¢* satisfies
AO, A0y < @O, a®) g (A A0 gy,

Proof. Certainly x” occurs in ¢*: in the sum in Proposition 6.7 we can take () = A" and ) =
for all i; the corresponding summand is then

{— {—
[MA ® sgn : sM }: [M/\ ® sgn : s ®sgn}

i

,_x
>_n

I\
_
I
—_

i
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[M/\(i)’ : S/\(i)’}

which is well known to be non—zero (indeed, S s defined to be a submodule of MAW).

Now suppose x* occurs in @, and choose BV, ..., B, 4, .., 40 such that the corresponding
summand in D,, is non-zero. Then in particular |1Jc 1)| |ﬁ | + | (+1)] for 0 < i < ¢ (where we read
B0 = 4 (+1) = &) To show that («@),...,a0)) = (A0, . A1), take 0 < k < £and ¢ > 1. Then

k-1 c k=1 c
<Z | + Za(k);> _ <Z IAD] + Z,\(Hi)
i=0 i=1 i=0 i=1

(-1

i=1

>0,
as required.
To show that (¢(9), ..., a0)) < (/\(1)/, . .,A(Z)/,g), take 0 <k < /Zandc > 1. Then

i=1 i=1
¢ ! !
> B0+ Yo (B Ly, = Y (B 4,
i=1 i=1
> i((lg(k+l))/ Ly D)), i,y(kJrl):
i=1 i=1
=0,
as required. OJ

As a consequence, we can show that the characters ¢" span the space of virtual projective charac-
ters, and derive some information about the form of the indecomposable projective characters.

Corollary 6.9.
(i) Theset {§" | A € ;@p } is a basis for the space of virtual projective characters in B°.

(ii) For each A € ;@p/ , the character ¢* is independent of the order of the factors F(i — 1, Al i)’ .-

(iii) There is a bijection A — A, from @S/ to# @g such that x* occurs in ¢, and any character

X" occurring in ¢’** satisfies a < A.

Proof.
(i) Since L@S;d] = |,%@g’d| by (3.1), it suffices to show that the @ are linearly independent.
But this follows from Proposition 6.8 which shows that the matrix giving the multiplicities
[@ : x*] fora, A € 9”5,"1 is triangular with non-zero diagonal.
(ii) Let @ be defined using a particular choice of order of the factors F(i — 1, (A(i):)), and let

@"" be defined in the same way but using a different order. By Proposition 6.7, * — ¢"" is a
linear combination of the characters x* with a not being p’. By (i) we can write ¢3* — ¢ as a

linear combination of the characters gb‘: with ¢ € L@Z;d. If this linear combination is non-zero,
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then take ¢ maximal in the dominance order such that @ appears with non-zero coefficient.
Then by Proposition 6.8 the character x° occurs in 3* — @'", a contradiction.

(iii) Since qu is a character (not just a virtual character), it can be written as a linear combination,
with non-negative coefficients, of the indecomposable projective characters. Since x” occurs
in ¢*, it must occur in some indecomposable constituent ¢ of @*. Then if x* occurs in ¢’
it must occur in @*, giving & < A.

This defines a map @S,’d — %@ﬁ’d, A — Ao with the required properties. This map is
obviously injective, and hence bijective since L@Sfd] = |.9?<@§’d| by (3.1). O
6.4. The bijection A — A,. In Corollary 6.9(iii), we have defined the bijection
PV RPY, A A

such that x* occurs in ¢*¢, and any character x* occurring in ¢’ satisfies « < A. The goal of this
subsection is to prove Proposition 6.12 which describes the bijection explicitly. To prove this proposi-
tion, we consider weights of modules, as outlined in Section 5.2. We fix a weight i of D(p). Recalling

(6.1), for any A € @S;d and j € J, define the word g/* to be the concatenation
gt = g g AT g A

Now define g* to be the concatenation
gt=ig gl L g™
Lemma 6.10. Let i € ﬂg’d. Then g* is a weight of S(u) if and only if x* occurs in ¢".

{—1,A

Proof. Forawordi =ij...i, € I", wedenote E; := E;, ... E; and F; := F; ... F;,. Then by definition,
g’ is a weight of S(u) if and only if EgS(n) # 0ifand only if Egix" # 0. But Egn = EpEgr1a ... Egon,
so Eax" # 0if and only if Egran ... Egoax* = cx for some non-zero scalar ¢. By Frobenius reci-
procity, this is equivalent to the fact that x* occurs in Fgoa ... For1a X Recalling the definition (6.3)
of " and taking into account Corollary 6.9(ii), we deduce that Foor ... Fgrap X = @, completing the
proof of the lemma. O

Givenu € # 3”‘(;,"1, define fi € # L@f,’df‘” I to be the partition with p-bar-core p and p-bar-quotient
(@,uM), ..., uV, ), in other words, ji is defined by deleting from u all the parts divisible by p
from y, cf. Lemma 3.1(iii).

Given A € ﬁg;d, define A € L@g,’d_v\(l)‘ to be the partition with p-bar-core p and p-bar-quotient
(@,2,A3),. . A0,

Lemma 6.11. Suppose u € %ﬁg’d and A € @g;d. Ifu0 = A" and gﬁ is a weight of D(ji), then g is
a weight of D(p).

Proof. By Proposition 5.2 it suffices to show that we can get from p to fi by successively removing

. . - (0) (0) . .
normal nodes, with the residues of these nodes giving the word g¥#1 g0~ . ... We use induction on

|10)|, with the case u(?) = @ being vacuous. For the inductive step, suppose (%) # @. Let 1~ be the
(0)

N RELIE)
Similarly, define A~ by deleting the last non-zero column from A(}). Then /i = y~ and A = A~, so by

partition obtained from y by deleting the last positive part divisible by p; call this last partk = u

induction if g* is a weight of D(ji) then g*  is a weight of D(~). So we just need to show that we
can get from y to u~ by removing 2k normal 0-nodes, then 2k normal 1-nodes, ..., 2k normal (¢ — 1)-
nodes, and finally k normal /-nodes. In fact, to do this it suffices to look at the first kp columns of u. By
assumption y has at least one part equal to kp, so let ¥ be maximal such that i, = kp, and leth = h(u).
Then (because p is d-Rouquier) the integers 11, ..., u; are simply the integers a < kp which are
congruent to 1,...,¢ modulo p. So u has removable 0-nodes in columns 1, p, p + 1,2p, ..., kp. These
are normal, and we define a smaller partition by removing them; specifically, if we remove them in
order from right to left, then each node remains normal until it is removed. Now rows r,..., h —1
of the resulting partition are the integers a < kp which are congruent to 2,...,¢ or —1 modulo p.
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This means there are removable 1-nodes in columns 2,p —1,p +2,2p —1,...,kp — 1. These nodes
are normal, and we remove them (again, in order from right to left). Now rows r,...,h —1 of the
resulting partition are the integers a < kp which are congruent to 1,3,...,¢ or —2 modulo p. We
continue in this way, removing at the final step normal /-nodes in columns / +1,2[ +1,...,kp — [.
In the partition resulting after this final step, rows r,...,h — 1 are the integers a < kp which are
congruent to 1,...,¢ modulo p, in other words, the integers 11, ..., 4y So the overall effect is just
to have deleted the part kp, and we have the partition . ~, as required. O
Proposition 6.12. Suppose A € @S;d. Then A, is the partition with p-bar-quotient ()\(1)/, LA g ).
Proof. The defining properties of the bijection A — A, together with Brauer reciprocity (5.2), show
that the composition factors of S(A) lie among the irreducible supermodules D(x, ) for which x = A,
and include D(A,) at least once.

Now consider weights. By Lemma 6.10, g is a weight of S(x) if and only if x* occurs in @', which,
by Proposition 6.8 and Lemma 3.2, happens only if x < A. So if x > A then g* is not a weight of S(x),
and in particular is not a weight of D(x,). So g* is not a weight of any composition factor of S(1)
except possibly D(A,); but g is a weight of S(A), so it must be a weight of D(A,).

So we can characterize the bijection y +— A, recursively by the conditions

Ao {xo| k<tA},  g"isaweight of D(A,). (6.4)

Now to prove the proposition we use induction on d. For given d, we consider first the partitions
A for which A() # . For these partitions we use induction on the dominance order; so we assume
that the proposition is true if A is replaced with any partition x << A (observe by Lemma 3.2 that if A
and « are p/-partitions with A(1) # @ and x <1 A, then k(1) # & as well).

Given A with A1) # o, let A be the partition with p-bar-quotient (&, o, A2 ,/\(é)) as above.
By induction on d we know that A° is the partition with p-bar-quotient (@,A(Z),, LA g ). In
particular, D(2, A(Z)/, e, A0 /, &) has g}‘ as a weight. Now Lemma 6.11 shows that g/\ is a weight of
D(A(l)/,. A0 g ). By induction we know the partitions «, for x < A, in particular we know that
none of them has p-bar-quotient ()\(1)’, ees, )\(f)/, ). So from the characterization (6.4), A, must be
the partition with p-bar-quotient (A(l)/, LA g )

So (for our fixed d) we can assume the proposition is true whenever A(1) # @. In particular, this
means that

(x| ke 20, kO £ o) = {u| pe 2y, i £ o3,
and therefore
(k| ke P, &V =g} = {p| perry, u¥ =a}. (6.5)

Now we deal with partitions A for which AL = &. For these partitions, we use induction with a
different order: we write k € A if (&, &, K(Z)/, e, K(@/) = (9,9, A(z),,. .., A(g),), and we assume that
the proposition is true if A is replaced by any x for which x <« A.

Now (6.5) shows that there is x with (1) = @ such that «, is the partition with p-bar-quotient

(o, }\(2)/, . ,/\(4)/, @). By Theorem 5.5 and Brauer reciprocity (5.2) we know that x¥ occurs in ¢*,
and therefore occurs in ¢*. Then Proposition 6.8 gives

(2,0 A0 z) < (2, k0 @),
which is the same as saying ¥ € A. But if x € A then we know by induction that «, is the partition

with p-bar-quotient (&, K(Z)/, een, K(g)/, @), a contradiction. So x = A, and we are done. ]

6.5. Adjustment matrix. Now we can return to the virtual projective characters ¢*. First we express
the characters ¢" in terms of the characters ¢*.
Proposition 6.13. Suppose A € @g;d. Then

4 Y .
~ ~ (@) (-1 A
¢ =D, ) ||[M)‘l L
A =1
ye%,@f, !
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Proof. Proposition 6.8 shows that ¢* is determined among all virtual projective characters in B4
by the coefficients [¢" : x*] for a € ﬁgfd. So we fix & € ﬂg/’d, and we just need to show that the
coefficient of x* on each side of the equation is the same.

Using Corollary 6.2 together with the assumption that «(?) = &, we find that the coefficient of x*
on the right-hand side of the equation can be written as D X4, where

Xw= Y ﬁ[MW';gﬂ“”} Y ﬁc(“<i);g<z‘>,7(i))c(y(i1>;U<i1>,7<i)’)_

7P i=1 (o) ,7(%) i=1
pez i o) rle) i

Here and throughout this proof, }_ ) ., means that we sum over all o), .o ) 70 ¢
2, and we read ¢(©) and o) as @.
Summing over y € %ng’d is equivalent to summing over (%, ..., u(*~1) € P (because if |u(¥| +
-+ |[u"V]| # d then the summand is zero anyway). So we can write

4 i ; Y .
X)ux = Z HC(Dc(i);O'(i),T(i)) Z [M/\ Sy(zfl)} [80(1—1) OST(I) :Sy(,,l)}

o(®) 1) i=1 Ve

— Z ﬁC((x(i);a(i),r(i)) Z [Mﬁu) :STW] [/\/ﬂ(” :S‘T(H)]

ol®) 7(e) i=1 i yDew
B o=@
4
(@) (@) (@) (i-1) (@) (@) (@)
- I1 (M @ sgn: 57| M”57 ] [s7 087 51
o010 i=1 i) (e
B ()7

where for the second equality we use Lemma 2 2 Since we interpret ¢(%) as &, the term [M " s ‘7(0)]
equals 1if y) = &, and 0 otherwise. But if 7(!) # @, then (comparing the sizes of all the partitions
involved) the product of the remaining terms in the summand is zero anyway. So we can simply omit
the term [M“Y(l) : S ‘7<0>]. Since we read o¥) as @, we can also add a harmless factor [MWH) : S‘T(z)] in
which we interpret ')/(”1) as J. Now (with a shift of variable) X,, becomes

Z Z H [Mﬁ“) X sgn: ST ] [Mvzﬂ .Sg'(i)] {STU) N :8”‘(i)] ’

Oy
B 4y (=A@
d (i+1) () () 0 (i) ()
- ¥ [T[MF @sgnymmr™ s ms™] [s77 057 5]
5(1),“.&([)6(5 o(®) (e) i=1
fy(l)/,fy(mecpf
B 4y (=A@

where in the final equality we use transitivity of induction and the fact that for any ¢, s the irreducible
C(6&; x &;)-modules are precisely the modules ST X SY for T € Z(t) and 0 € Z(s).

So D) X, coincides with the coefficient D, from Proposition 6.7 (bearing in mind that a0 = g),
and the proof is complete. O

We are now ready to prove the main result of this section. First we need some more notation.
Recall from above the bijection

P RPN Ao
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where A, is the partition with p-bar-quotient (A(l)l, e, A(g)l, @). We write u — u° for the inverse
bijection.
Given A € 335"1, we define g(A) to be the composition (|A(?)],...,[A)]) € €(d). Given a compo-
sition m = (my,...,my_1,0) of d, we define m® to be the composition (0,my, ..., m;_1).
Now say that a virtual character ¢ is m-bounded if:
o every x* occurring in ¢ satisfies m > g(a) = m°,

o there is at least one x* occurring in ¢ with g( and

a)=m,
o there is at least one x* occurring in ¢ with g(a) = m°

Say that a virtual character  is m-semi-bounded if:
o every x" occurring in ¢ satisfies ¢(a) > m°, and
o there is at least one x* occurring in ¢ with g(a) = m°.
We make the following observations about the virtual characters we have defined. We begin with
the virtual characters ¢*.

Lemma 6.14. Suppose u € Z# 7", “ and let m = g(u). Then ¢ is m-bounded.

Proof. Suppose x* occurs in ¢¥. Then by Corollary 6.2, there are partitions c© ..ot 1) 0
such that ,
o . . . - . N
Koo () T ela;0, 70) ;0470 29) 20
i=
(where as usual we read ¢(¥) = @). Using the fact that K;1(—1) is non-zero only if |7| = ||, while

c(B; v, 90) is non-zero only if |B| = || + |d], this gives
O+ D+ 10 = 12O 4+ ]2 = O+ O = 0 (6.6)
foreachr =0,1,..., ¢ (interpreting ’T(€+1)| as 0), so that
(1O D0y = (& [wl]) = (0, [ (1))

as required.
Now use Lemma 2.4 to choose a strict partition 1) for which K;g)y(o) (—1) # 0, and let v be the

partition in ﬂg’d with p-bar-quotient (v, u(, ..., 41, ). Then g(v) = mand x" occurs in ¢¥
(the only non-zero summand is for ) = @ and ¢} = ¥ for every i).
Finally, let A = y°. Then g(A) = m and x* occurs in ¢" (the only non-zero summand is for

) = ‘u(ifl)/ and o) = & for every i). 0]
Next we look at the characters q?)A.

Lemma 6.15. Suppose A € ﬂgd and letm = (]AM)|,...,|A],0). Then ¢ is m-bounded.

Proof. The fact that m > g(a) > m° whenever x* occurs in @" is just a cruder version of the sec-
ond statement in Proposi;ion 6.8. Furthermore, the first statement in Proposition 6.8 says that x*
occurs in @, and by definition g(A) = m°. Finally, let ¢ be the partition in %) ? with p-bar-quotient
(JAV],A@", . A0’ &), Then the coefficient D,¢ from Proposition 6.7 is non-zero: to see this,

observe that the summand in which () = @ and 7() = A0 for each i equals ¢((|A(M) |),)\(1),) =1
Hence x¢ occurs in ¢*, and satisfies g(g) =m. U

Finally we look at the indecomposable projective characters ¢*.
Lemma 6.16. Suppose i € Z# ", “ and let m = g(u). Then ¢! is m-semi-bounded.
Proof. Let A = p°. Then g(A) = m®, and Corollary 6.9(iii) says that ¢ is m-semi-bounded. [l

We now have a lot of information about our three families of virtual characters. Take a composition
m = (my,...,my_1,0) of d, and let

#Pw={ner?" | gu) =m}.
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Now define
Py={¢" | peXPu},
Pu={§"| Ao € 22u},
Pu={¢"| p e 22u}.

Each of these sets is a linearly independent set of virtual characters, of size |#Z%,|. The virtual
characters in P,, and P,, are m-bounded, while the virtual characters in P,, are m-semi-bounded.
Now we can finally make the connection between the characters ¢* and the virtual characters ¢*.

Theorem 6.17. Take a composition m = (my,...,my_1,0) of d. Then for each y, Ao € #Z,, we can
write
Pl = Z A’ and q”)/\ = Z Byrg¥
VE%:@@ VE%(@m
where:

o Ay, Byy € Ny for eachv;
o Ayy > 0and By, > 0;
o ifAW > 0 resp. B,y > 0, thenv &> y resp. v & Ao.

Moreover, each character ¢* € P,, is m-bounded.

Proof. We use induction on m in decreasing dominance order. So assume the theorem is true when-
ever m is replaced by a composition n > m.

Since Ao € # Py, the character ¢* is m-bounded by Lemma 6.15. Because @ is a projective char-
acter (not just a virtual projective character), it is a linear combination, with non-negative coefficients,
of the characters ¢" for v € %9‘;"1. We claim that only the characters ¢" for v € #%,, can occur,
that is that 3" = Y, By1¢" for some non-negative integer coefficients B,,. By Lemma 6.16 any
other character q)l/’ that occurs is n-semi-bounded for some n # m: if n £ m, then there is a character
X" occurring in ¢¥ for which g(a) = n° ¥ m°, so ¢¥ cannot be a constituent of ¢"* because ¢" is
m-bounded. On the other hand, if n > m, then by induction ¢¥ is n-bounded, so includes a character
X® with g() = n > m, so again the fact that ¢" is m-bounded means that ¢¥ does not appear in @".
This proves our claim.

By the previous paragraph, the span of B, equals the span of P,,. On the other hand, Proposi-
tion 6.13 shows that the span of P,, equals the span of P,,. So the span of P,, equals the span of P,,. In
particular each character ¥ € P, is a linear combination of the virtual characters in P, that is there
are coefficients A, such that

Pt = Z Avu "
VERXD m
foreach y € Z2,,.

But now observe from Corollary 6.2 that each character ¢ € P,, includes exactly one character x*
with ¢(a) = m®, namely the partition & = v°, and that [¢¥ : x*'] = 1. To see this note that by (6.6) we

need to take c() = @ and then () = 1=’ in order to have a non-zero summand in the formula for
[¢" : x""].

So for each y, v, the coefficient A, is simply the coefficient [¢* : x*"]. These coefficients are cer-
tainly non-negative integers because ¢/ is a character, and Corollary 6.9(iii) shows that if A,, # 0
then v° < u°. Since g(y) = g(v), this condition is the same as saying v > u. This triangularity
property also gives A;y # 0 for each p, because the characters ¢* are linearly independent.

Furthermore, by Proposition 6.13,

~ Myl
Y AwBp =Dy [M™": 8
YEXD i=0
It then follows by []J,, Theorem 4.13] that v > A, whenever B,y > 0, and then also that B, , > 0 since
by the previous paragraph A, y > 0 only if ¢ < Ao.
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The final statement of the theorem now follows for m: each ¢" € pﬂ is m-bounded, and is a non-
negative linear combination of irreducible characters, which means that any non-zero non-negative
linear combination of the ¢ will also be m-bounded; so in particular ¢ is m-bounded. O

We extend the definition of the integers A, to all y,v € #Z Qg'd by setting A,;, = 0 when g(u) #
g(v). Then the matrix A with entries A, is a non-singular square matrix with non-negative Tnteger
entries, which is triangular with respect to the dominance order. We call A the adjustment matrix for
BrA. Theorem 6.17 shows that the (super)decomposition matrix for Bf? can be obtained from the
matrix determined by the characters ¢* by post-multiplying by A. Our aim in the remainder of the
paper is to show that A is the identity matrix when d < p (and B is RoCK).

7. Cartan matrices and proof of the main theorem

7.1. The super-Cartan matrix and the adjustment matrix. In this subsection and the next we con-
sider the entries of the super-Cartan matrix of B
Recall from (5.4) and Corollary 6.2 that we have integers

{
Dy, = 2L OO+, Y el ) TTe(A; 00, 70) (uli-D; 1), £0))
o

o0, oct-Degp i=1

for A € 7%  and UER @g’d, such that ¢* = Y, Dy, x" for each . We also have from Section 6.5 an
adjustment matrix A such that ¢ =), A,,¢" for each . Hence

[(Py :X/\] = Z AvyD/\v

o opPi
VER DY

for every A € 2 4 Ue %,@‘;’d. So by Brauer reciprocity (5.2), if we define

¢
* L(h(A®)4q - iy, () (i i i i
DM:ng(h(AOH (A)] Y KA(}])U(O)(_DHC(A();g()lr())c(y( D, =1 70

o0, ol-Degp i=1
M, ez

forall A, u, then
[S(A): D)= Y, AwDj,. (7.1)

vez 7!

Now consider the super-Cartan matrix entries
Cop = [P(v) : D(p)]

for u,v e # ng’d, where P(v) denotes the projective cover of D(v). From above, we can write

CVV = Z [(PV : XAHSO‘) :D(.u)] = Z AéyDigAnvD)m-
re" ret!

0,d
C,MERDP v

7.2. Entries in the unadjusted Cartan matrix. Our objective in this subsection is to compute the
‘unadjusted super-Cartan matrix” entries

Cuv :=Y_Dj,Day
A

for y,v € %9’;’51. In Section 7.3, we will then use Corollary 4.11 and Theorem 5.4 to see that these
‘unadjusted super-Cartan matrix” entries coincide with the actual super-Cartan matrix entries, which
will imply our main result.

Proposition 7.1. Suppose ji,v € # L@Z’d. Then

o (-1 . . . . / . . . . , / ,
C;w = H C(i/l(l), q)(l),X(l), l/)(l+1) , a](l)) C(V(l), (P(l)’ ll](l)lx(l+l) ’w(l))’
i=0
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summing over all partitions ¢, (), x(), () for 0 < i < £ — 1 such that () = 1,[1(0)/, and reading
() = () =
XV =9 =9

Proof. From the definition of the integers D,, and Dy} , we obtain

Au’
re bt

( ) o - . . . - . .
= Z <2h(/\0 )KA(%)U(O)(_l)K/\(é)g-(O) (_1) HC()\(I)}U(Z),T(Z)) C(.”(Z 1)}‘7(1 1)17(1) )
i=1
/

where the sum is over A € @g’d, o) ) e Pfor0<i<l—1and ), 70) € P for1 <i < ¥, and
we read o) = g(0) = . Summing over A € @g’d is equivalent to summing over A0 A ( ) e p
with A0 strict and [A(Q)] 4---- + |A()] = d. But in fact the summand is zero when [A(0)| 4 ... +
IA0)] £ d, so we can safely replace the variable A € @g’d with variables A(®) € % and A() € & for
1<i<l.

We apply Lemma 2.3 to eliminate the variables A1), ..., A(). We obtain

> ©) pr— - i), (i) (i iy, (i) o (i—
G = 1 (2K o (CDK o (D [T (0390, x0) (29, 0071

Z . . . .
><Hc(y(’_l);a(l_l),r(l)/)c(v(l D, gl —1),»3(1)')),

where we have eliminated the variables A() from the summation, and introduced new variables
D, D, x0 ¢ P for1 < i < £and w for 0 < i < £ — 1. Now we use standard relations for
Littlewood—Richardson coefficients to get

Cow = Yy (zh( )K 1 o= 1)](;(%)(_7(0)(_1) (1 @; 0@, p° O (10, 5O K1) (07

Here we have eliminated the variables O'(Z) o) for 1 <ig<f{—1and T( 1,20 for 1 < i < £. We have
also elided the terms c(c(¥); (9, x(D) (& (E @, ). This is harmless because we 1nterpret o) =
o) = @, but it means that we now ehmmate o, x(0), (0 as variables, reading p\©) = x(©) = @ in
the formula above.

Now we apply Lemma 2.5 to eliminate the terms K;(%)U(o) (—1)K;(%)[,7(0) (—1). We get

where we have eliminated the variable A(?) and introduced two new variables ¢(*), (©) ¢ 2. Now
we eliminate (T(O), 70 and obtain

o / / /
C‘HI/ = Z (C(V(O); q)(o), II)(O) , 1/)(1) /w(o) ) C(V(O),' q)(o), IP(O)/X(l)

//w(o)/)

Replacing w'?) with w’ for each i gives the required result. ]
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7.3. Proof of the main theorem. Let d < p and p be a d-Rouquier p-bar-core. Take A € ﬂg’d and
u e %ﬁﬁ’d. Our main theorem asserts that the decomposition number [S(A) : D(u)] equals the
integer D}, defined in Section 7.1. We have seen in (7.1) that [S(A) : D(u)] = ¥, AvuDj,, so our task

is to show that the adjustment matrix A is the identity matrix.
Recall from Section 7.1 that for genuine super-Cartan matrix entries we have

va = 2 A@yéénAm/r
gnen s’

and the unadjusted super-Cartan matrix entries Cogn are given by Proposition 7.1. The matrix A is
triangular with non-negative integer entries, which implies that C,;, > (ofw for all u, v, with equality
for all u, v if and only if A is the identity matrix. More simply, A is the identity matrix if and only if
Ey,v CVIJ = Zy,v CVV»'

Assume first that 3% is of type M. Then simple modules are the same as simple supermodules,
and indecomposable projective modules are the same as indecomposable projective supermodules,
so the entries of the usual Cartan matrix are given by C,,.

Assume next that B°4 is of type Q. Then when we look at modules rather than supermodules, each
@" splits as a sum " @ @~ and each simple module D(y) splits as a direct sum D(y, +) & D(p, —).
If we restrict to the double cover 2, of the alternating group, then ¢** and ¢*~ both restrict to the
same indecomposable projective character ¢*, and the simple modules D(y, +) and D(y, —) both
restrict to the same simple module E(y,0). So Resy ¢ = 29" and Resg D(p) = E(,0)%?, and it

follows that the entries of the usual Cartan matrix of the block Bg’d of 9, are given by Cy,.
Now consider the wreath product algebra W, from Section 4. By Theorem 5.4, this algebra is

Morita equivalent to B4 if B4 is of type M or to Bg’d if B4 is of type Q. In either case the Cartan
matrix of W, and the matrix (C, ;) are the same up to row and column permutations; that is, there is

a bijection 6 : %Wz’d — PJ(d) such that Cy, = [P(6(v)) : L(6(p))] for all p,v. Summing over y, v,
we obtain
Y. Cu= L [PA):L(m).

y,ve%’ﬂ‘;’d AueP)(d)
But a comparison of Proposition 7.1 and Corollary 4.11 shows that if we define a bijection

LR — PA), p— (AL, A

; uli=1  jeven
)\ - (.71)/ .
u\ i odd

then (fw = [P(«(v)),L(«(p))] for all 4, v. Summing, we obtain
Y Cu= L POM:iLml= L Cu

pveR I’ Aue ) (d) wed A

where

and the result follows.
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