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Abstract

It is shown that there is a functiong on the natural numbers such that
a partial Steiner triple systemU on u points can be embedded in a Steiner
triple systemV on v points, in such a way that all automorphisms ofU
can be extended toV, for every admissiblev satisfyingv> g(u). We find
exponential upper and lower bounds forg.

1 Introduction

A partial Steiner triple systemon a setU of u points is a collection of 3-subsets
(calledtriples) of U such that any 2-subset ofU is contained in at most one triple.
If we replace “at most” by “exactly” in this definition, we have aSteiner triple
system. The numberu is theorder of the system. As is well known, Kirkman
proved that a Steiner triple system of orderu exists if and only ifu is congruent
to 1 or 3 mod 6. (Such numbers are calledadmissible.)

We abbreviate “partial Steiner triple system” and “Steiner triple system” to
PSTS and STS respectively.

An automorphismof a PSTS on a setU is a permutation ofU which maps
triples to triples.

Suppose we are given PSTS on setsU andV. We say the first system isem-
beddedin the second ifU ⊆V and the triples of the first system are precisely the
triples of the second system which are contained inU . (Such an embedding is
sometimes called ‘faithful’, but I do not consider any other kind of embedding.)
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The embedding issmoothif every automorphism of the first system can be ex-
tended to the second.

Embeddability of partial STS in STS is a well-understood topic. Doyen and
Wilson [3] showed that a STS of orderu can be embedded in an STS of any
admissible order greater than 2u. Lindner [4] conjectured that, more generally,
a PSTS of orderu can be embedded in an STS of any admissible order greater
than 2u. The conjecture has recently been proved by Bryant [2], though this is not
yet published.

Automorphisms of Steiner triple systems have also received much attention.
For example, Mendelssohn [5] showed that every finite group is the automorphism
group of a finite Steiner triple system, and Babai [1] showed that almost all Steiner
triple systems have trivial automorphism group.

What about the analogue of Lindner’s conjecture for smooth embeddings? In
particular, we could ask whether the following is true:

(a) There is a functionf such that any PSTS of orderu can be smoothly embed-
ded in some STS of orderf (u).

(b) There is a functiong such that any PSTS of orderu can be smoothly embed-
ded in some STS of any admissible orderv> g(u).

Below, I prove these two statements. For the first, a best possible result is
obtained:

Theorem 1 For u≥ 4, a partial Steiner triple system of order u is smoothly em-
beddable in a Steiner triple system of order2u−1−1. There is a PSTS of order u
which is not smoothly embeddable in any smaller STS.

Given this result, to establish the second statement it suffices to show that there
is a functionh such that a STS of orderv can be smoothly embedded in an STS of
any admissible order at leasth(v). This is accomplished by the next result:

Theorem 2 Let V be a Steiner triple system of order v. Then for any admissible
w> 6v2, there is a Steiner triple system of order w in which V can be smoothly
embedded.

Thus the second statement above holds, withg(u) ≤ 6(2u−1−1)2. By Theo-
rem 1,g(u) ≥ 2u−1−3. Sog is bounded above and below by exponential func-
tions.

The proofs of the theorems actually give a stronger result than stated. Not
only do all automorphisms of the subsystem extend, but there is a group of auto-
morphisms of the whole system which faithfully induces the automorphism group
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of the subsystem. However, it is not the case that the automorphism groups of
the system and subsystem are equal in general. (In the construction used to prove
Theorem 1, if the subsystem contains no triples, its automorphism group is the
symmetric groupSu, while that of the embedding system is the general linear
group GL(u−1,2).)

The bound in Theorem 2 is not best possible. It shows, for example, that the
Fano plane (the unique STS of order 7) is smoothly embeddable in a STS of any
admissible order greater than 294; it is not difficult to reduce this to 194. I do not
know what the best possible value is.

2 Proof of Theorem 1

We begin by showing that the function 2u−1−1 cannot be improved. This relies
on two simple facts:

(a) the fixed points of an automorphism of a STS carry a STS;

(b) if a STS of orderv has a proper subsystem of orderw, thenv≥ 2w+1.

Now take the trivial PSTS onu points with no triples; its automorphism group
is the symmetric groupSu. Suppose that we have a smooth embedding in a STS
of orderv. For i = 1, . . . ,u−1, let Gi be the stabiliser of 1, . . . , i. Let vi be the
number of fixed points ofGi . Thenvi > vi−1, sovi ≥ 2vi−1 + 1. Sincev1 ≥ 1, a
simple induction givesvi ≥ 2i−1, so that

v≥ vu−1≥ 2u−1−1.

Now we turn to the construction. By inspection, both PSTS of order 4 are
smoothly embeddable in the Fano plane, so we may assume thatu≥ 5. LetU be
the point set of the PSTS.

We give first an embedding in a system of order 2u−1. Start with the projec-
tive geometry, whose points are all the non-empty subsets ofU , the triples being
all {A,B,C} whose symmetric difference is empty. Any permutation ofU extends
uniquely to an automorphism of this system.

For each triple{a,b,c} of the PSTS onU , we replace the triples{a,b,ab},
{b,c,bc}, {a,c,ac} and{ab,ac,bc} by{a,b,c}, {a,ab,ac}, {b,ab,bc} and{c,ac,bc}.
(By abuse of notation we writea andab for {a} and{a,b} respectively.) The new
triples cover the same pairs as the old ones, so we again have a STS. Clearly the
given PSTS is embedded in it. Moreover, given an automorphism of the PSTS,
its unique extension to an automorphism of the projective geometry is also an au-
tomorphism of the new system. (We only have to check the altered triples. For
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example, if{a,ab,ac} is a new triple andg an automorphism mappinga to a1, b to
b1, andc to c1, then{a,b,c} belongs to the PSTS, and hence so does{a1,b1,c1};
thus{a1,a1b1,a1c1} is also a new triple.)

We can modify this construction to reduce the dimension of the projective ge-
ometry by 1: take the points to be partitions{A,A′} of U into two non-empty
parts, where three such partitions{A,A′}, {B,B′} and{C,C′} form a triple when-
ever the symmetric difference ofA,B,C is /0 orU . )This STS has order 2u−1−1.)
Sinceu≥ 5, such a partition has at most one part of size 1 or 2, so the switches
we make don’t interfere with one another.

3 Proof of Theorem 2

There are many standard constructions of STS from smaller ones. We must use
only constructions which provide smooth embeddings. We show the following.

Lemma 3 Let V be a STS of order v, and let x and y be admissible positive in-
tegers with y≥ 2x+ 1. Then there is a STS of order x+ v(y− x) in which V is
smoothly embedded.

Proof By the theorem of Doyen and Wilson [3], there is a STS on a setY of
ordery containing a subsystem on a subsetX of orderx.

Take S= X ∪ (V × (Y \X)). Let L be a totally symmetric Latin square of
ordery−x satisfying the condition that the entry in the first row and first column
is 1. (A Latin square is totally symmetric if, whenever the(i, j) entry isk, the
same is true after any permutation of{i, j,k}. For example, letA = {a1, . . . ,ay−x}
be an abelian group of ordery− x, with identity a1; let L have(i, j) entry k if
aia jak = a1.) Number the elements ofY\X asq1, . . . ,qy−x. Now take triples onS
of the following two types:

(a) the images of the triples ofY under the bijection toX∪ ({p}× (Y\X)) given
by r 7→ r for r ∈ X, q 7→ (p,q) for q∈Y \X, for eachp∈V;

(b) those of the form{(p1,qi1
),(p2,qi2

),(p3,qi3
)} whenever{p1, p2, p3} is a

triple of V and the(i1, i2) entry ofL is i3.

This is easily seen to be an STS, and the set{(p,q1) : p∈V} carries a subsystem
isomorphic to the given subsystem onV. Furthermore, ifg is an automorphism of
V, then we extend it toSby defining

rg = r for r ∈ X,

(p,q)g = (pg,q) for p∈V,q∈Y \X.
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It is readily checked that this is an automorphism ofS, acting on the subsystem
{(p,q1) : p∈V} in the same way as it acts onV.

Now we apply this construction to realise any admissible order greater than
6v2. First, consider orders congruent to 1 mod 6. Takex andy both congruent
to 1 mod 6. Consider a fixed value ofy− x, sayy− x = 6a. By choosingx =
1, . . . ,6a−5, we realise the orders

1+6av,7+6av, . . . ,6a−5+6av.

For y−x = 6(a+1), we realise

1+6(a+1)v,7+6(a+1)v, . . . ,6a+1+6(a+1)v.

In order not to leave any gaps, we require that these intervals abut or overlap. This
occurs as long as

6a+1+6av≥ 1+6(a+1)v,

that is,a≥ v. So we can achieve all orders congruent to 1 mod 6 from 6v2 + 1
onwards.

Exactly the same argument deals with orders congruent to 3 mod 6: we obtain
all such orders from 6v2 +3 onwards.

So the theorem is proved.
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