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Abstract

Let G be a permutation group acting on a finite ©etAn uncovering-by-basggr
UBB) for G is a setU of bases foiG such that any-subset ofQ is disjoint from

at least one base ifil, wherer = Ld—glj, for d the minimum degree oB. The
single-orbit conjecturasserts that for any finite permutation grdapthere exists

a UBB for G contained in a single orbit & on its irredundant bases. We prove
a case of this conjecture, for wh@&his k-transitive and has a base of size- 1.
Furthermore, in the more restricted case wiigs primitive and has a base of size
2, we show how to construct a UBB of minimum possible size.
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1 Introduction

Let G be a permutation group acting on a finite €etA basefor G is a sequence
of points(ay,...,am) chosen fromQ whose pointwise stabiliser is trivial. A base
is irredundantif, for eachi, the stabiliser of(a;,...,a_1) does not fixa,. An
uncovering-by-baseis a setU of bases folG in this action such that anysubset
of Q is disjoint from at least one base i, wherer is defined as follows. Suppose
G has minimum degreé (i.e. the least number of points moved by a non-identity
element isd), thenr = | 452 .

Uncoverings-by-bases were introduced by the first author [1, 2] as part of a
decoding algorithm for error-correcting codes based on permutation groups, where
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the codewords are permutations written in list form. The paramesecalled the
correction capabilityof G, as it is the number of errors that can be corrected by
G when viewed as a code in this way. A straightforward contradiction argument
shows that an uncovering-by-bases will always exist for any finite permutation
group.

Clearly, G acts on its bases, and we note that the image of an irredundant base
is also irredundant. Also in [1, 2], the following conjecture is made.

Conjecture. Let G be a finite permutation group. Then there exists an uncovering-
by-bases for G contained in a single orbit of G on its irredundant bases.

We say thatG has thesingle-orbit propertyif it satisfies the conjecture. This
property is not unmotivated; as well as being of theoretical interest, it has implica-
tions for the complexity of the decoding algorithm mentioned above (see [1, 2] for
details of this).

2 The main theorem

Our main theorem is as follows.

Theorem 1. Let G be a finite permutation group which is k-transitive and has anir-
redundant baséa;, ay, . ..,ax;1) of size k+- 1. Then G has an uncovering-by-bases
contained within a single orbit on its irredundant bases, nan@lyay, . . ., ax.1)C.

The main tool in our proof is the following result, due to Birch, Burns, Mac-
donald and Neumann in 1976 [3].

Theorem 2. Let G be a permutation group acting on a §&tLetA, " be subsets
of Q with |A| = m, || = n. If G has an orbit orQ of size strictly larger than mn,
then there exists g G such tha\9n Tl = &.

Note that ifG is transitive, then Theorem 2 implies that such an elergevitl
exist if |Q| > |A].|T|.

Proof of Theorem 1To show that an uncovering-by-bases exists inside the given
orbit, we show that for an arbitranssubset ofQ, there is an orbit representative
disjoint from it. Throughoutn denotes the degree Gf

We proceed by induction dn The casd&k = 1 corresponds to transitive groups
with an irredundant base of size 2. Since the stabiliser of a point is not trivial,
there exist elements with fixed points, and so the minimum degree of such a group
is at mostn— 1. (This bound is sharp, as it is achieved by Frobenius groups.)
Consequently, the correction capability is at mgt = L“;ZZJ.

We are given an irredundant ba&s,ay) for G. We observe thatay,a;) is
also an irredundant base (@sis not regular), so we can regard the base as a set,
{a1,a2}. We want our uncovering-by-bases to be contained in the orbit on this
base. LeRbe an arbitrarymax-subset of2. We want to find an elemegte G such
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thatRN {a1,a,}9 = @. Becaus® has size "52], {a1,a,} size 2, and 252 | < n,
sinceG is transitive we can appeal to Theorem 2 to show that a suitable element
g € Gexists.

Now, for the induction hypothesis we assukre 2 and that ¢k — 1)-transitive
group of degreenwith a base of siz& satisfies the conditions of the theorem.

Let G (of degreen) bek-transitive and have an irredundant base of gkze1).

Let (ay,...,a+1) be such a base, and choose an arbitresybsetSC Q, wherer
is the correction capability db. If our chosen base is already disjoint fr&rthen
we are done. So suppose not. Without loss of generality, we may asguineS.
SinceG is transitive, there exists an elemdmnte G such thaaﬂil =b1€Q\S
We obtain a new basgy, ..., b 1) = (ay,... ,ak+1)h1. Now consideH = Gy, ,,
acting onQ\ {by,1}. Clearly,H is (k— 1)-transitive, has degree— 1 and an
irredundant base of size namely(by, ..., by).

As the degree and maximum number of fixed pointdHoére both one less
than those ofG, their minimum degrees (and hence their correction capabilities)
are equal. So, by the induction hypothesis, there exXists H such thatSnN
{by,....b}" = @. ThusSn (ay,...,ax1)™"” = @, and so by takingy = h;h,
we have the elememgte G we require.

Hence, by induction, the result holds for k&l O

3 Constructing optimal uncoverings-by-bases

In the case wher6 is primitive and has an irredundant base of size 2, then we can
prove a stronger result, in that not only can we show that such an uncovering-by-
bases exists but that we can construct one of optimal size.

Clearly, the smallest possible size of an uncovering-by-bases ier + 1, as
otherwise we could have anrset which meets every base. This can be achieved if
there are + 1 disjoint bases foB. If G has degrea, then since +1< ["52| +1=
LgJ, this is feasible. In Theorem 4, we give a construction to show thatig
primitive then this is possible.

Our construction uses graph-theoretic techniques. Recall tmatehingin a
graphr is a set of disjoint edges éf, and that gerfect matchindor 1-factor) is
a matching that covers every vertexiaf Clearly, a perfect matching requires the
number of vertices to be even; if the number of vertices is odd, we defiearl
perfect matchingo be a matching which covers all but one vertex. Recall also that
I" is vertex-transitivdf its automorphism group acts transitively on its vertices.

The following result can be found in Godsil and Royle [8], Section 3.5.

Lemma 3. LetI" = (V,E) be a connected, vertex-transitive graph. ThHehas
either a perfect matching or a near-perfect matching, depending on the parity of
VI.

We now have the tools necessary to prove the following:



Theorem 4. Let G be a finite, primitive permutation group acting on aQatf size

n, with an irredundant base of size 2 and correction capability r. Then G has an
uncovering-by-bases of size-rl contained within a single orbit on its irredundant
bases.

Proof. We want to show that there exist+ 1 disjoint bases fo6, contained in a
single orbit. Choose a baga,a,) for G, and letA = {(af,a)) : g € G} be the
orbit containing(a;,a2). Now, form a graph™ whose vertex set iQ and{u,v} is
an edge if and only ifu,v) € A. (Note that(u,v) € Aif and only if (v,u) € Asince
G is not regular, so this defines an undirected graph.) CléaryAut(I"), and by
constructiorG acts vertex-transitively oh. Sincel is an special case of an orbital
graph forG, we calll" abase-orbital grapHor G.

It is straightforward to show that the connected componeniisofm a system
of imprimitivity for G. However, sinces is primitive and by construction has
non-empty edge seff, must have only one connected component.

Now, if nis even we have + 1 < g while if nis odd, we have + 1 < ”;21
So the existence of+ 1 disjoint bases i\ is implied by the existence of a (near-)
perfect matching if’. By Lemma 3, sincd is connected and vertex-transitive,
one exists, and so we are done. O

If we were to change the hypothesis so as to consider imprimitive groups (with
an irredundant base of size 2), the situation is less clear. However, all we need
to replicate the proof of Theorem 4 above is for there to be a base-orbital graph
which has a (near-) perfect matching. One way that this can be achieved is if each
connected component has an even number of vertices, as each component will have
a perfect matching and so the whole graph does. If the degi@ésod power of 2,
then this is guaranteed.

For other degrees, the situation is more complicated. First, depending on the
choice of base, the graph may or may not be connected. For instance, consider
the dihedral group of order 12, acting on the vertices of a hexagon: any two non-
antipodal vertices form a base, but the only base-orbital graph which is connected
is that formed from the orbit on adjacent vertices.

However, we only neednebase-orbital graph to be connected in order to find
a (near-) perfect matching. An infinite family of imprimitive groups for which such
a graph exists is given by the following result.

Proposition 5. For the groupSL(2,q) acting on the non-zero vectors Eﬁ, the
base-orbital graph containing the standard ba$i4,0), (0,1) } is connected.

Proof. We show that an arbitrary non-zero vectorj) € IF% is connected by a path
to the vector(1,1). Starting from(i, j), we construct a path, where each edge
{u,v} is the image of (1,0), (0,1)} under the unimodular transformation given by
the matrixM.



Fori # 0, we have the following matrices:
iy = (] %)
(0,i ), (ii+1)}: M= < | i1>
{(i,i+1),(1,1)} : M:(l i+'1>,

while fori = 0, we have:
i—1
N | M= ) 0

-1
ritenam: m=(3 b ).

O

In some other cases, we are not so lucky: there are also instances of groups for
which none of the base-orbital graphs are connected.

Proposition 6. For the Frobenius group G= g2 : q— 1 acting on @ points, no
base-orbital graph is connected.

Proof. Although the base-2 action of this group arises from the fact that it is a
subgroup of the sharply 2-transitive group A@LG?), it is easier to understand
this action by viewing it as a subgroup of AGLq), acting on the vector space

IFé Now, as G is a Frobenius group, any two points form a base, and so any orbital
graph is a base-orbital graph. Also, the structur&ad as follows:

G={x—ax+b:acF;becF;}.
Thus the orbit ofG on a bas€x,y} is the set
{{ax+b,ay+b} :acF;beF3},

i.e. the linel spanned by andy together with all its cosets. Thus, in the corre-
sponding orbital graph, a vertex (i.e. vecteliy adjacent to thg — 1 other vectors
on the line througlv parallel tol, and no others. Consequently, the orbital graph
consists ofj disjoint copies of a complete grajply, and is not connected. [

4 Discussion

We conclude by discussing which families of groups our theorems can be applied
to.

The class of groups where we can apply Theorem 1 includes the following.
An IBIS groupis a group where all of the irredundant bases have the same size
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(see Cameron and Fon-Der-Flaass [6]); thek of an IBIS group is the size of

an irredundant base. (The acronym is shortlfoedundant Bases of Invariant

Size) The IBIS groups of rank > 1 for whichany ktuple forms an irredundant

base were determined in [6]: these are the Frobenius groups (rank 2), Zassenhaus
groups (rank 3), a family of rank 4 groups determined by Gorenstein and Hughes
[9], and then only the sharpli-transitive groups for higher ranks. All of these
groups arék — 1)-transitive and have an irredundant base of kjz® are covered

by our result.

In addition to these IBIS groups, for base sizes larger than 2 there are very few
other examples. We can appeal to the classification of 2-transitive groups (which
follows from the classification of finite simple groups) which is quite restrictive.
However, this class of groups does contain some interesting examples, such as the
action of the Mathieu group M on 12 points (which is 3-transitive and has a base
of size 4), and its point stabiliser,[11) acting on 11 points (2-transitive with a
base of size 3).

Theorem 4 is obviously much more specific, referring to groups which are
primitive and have a base of size 2. However, recent work of Burness, Guralnick
and Saxl [4], Burness, O’Brien and Wilson [5], and James [10, 11], suggests that,
in a meaningful sense, “most” almost simple primitive permutation groups admit
a base of size two. This study was initiated by Kantor and the second author [7],
who considered actions of symmetric and alternating groups. They showed that
if G is such a group with soclg, for somem, and if the point-stabiliseGy acts
primitively on {1,...,m}, then G has a base of size two if m is sufficiently large.
This is extended in [4], where it is shown thrat> 12 suffices. Consequently, our
construction can be applied to a fairly wide range of groups.
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