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1 Introduction

In agriculture and allied subjects, the treatment applied to one experimental
plot may affect the response on neighbouring plots as well as the response on
the plot to which it is applied. In cereal crops or sunflowers, tall varieties may
shade the plot on their North side [13, 21]. In pesticide or fungicide experi-
ments, part of the treatment may spread to the plot immediately downwind;
so may spores from untreated plots [11]. These are both examples of one-

sided effects. In plants with an important root system, such as potatoes,
varieties which germinate earlier will establish their roots and take nutri-
ents from adjoining plots on both sides if the crop is grown in linear ridges
[22], or on all sides if the crop is grown in a two-dimensional area with no
gaps. Similar effects are reported on oil-seed rape [3], on field beans [14],
in anti-feedants [20], in forestry [16] and in horticulture [8]. These effects
are variously called neighbour effects or competition effects or interference

effects.
This paper is concerned only with the first type of effect, the one-sided

neighbour effect.
If the plots form a single long line, with plots numbered from 1 to n,

assume that the neighbour effect is from plot j to plot j +1. Denote by T (j)
the treatment on plot j. With a one-sided neighbour effect, the response on
plot j depends both on T (j) and on T (j − 1). Some suitable designs for this
situation have been given by Finney and Outhwaite [10], Dyke and Shelley
[9] and Lewis [17].

However, it is more common to arrange the plots in separated linear
blocks. Assume that there are b blocks of size k, and v treatments. Now
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denote by T (i, j) the treatment on plot j of block i, and by Yij the response
on that plot.

2 Models and effects

The simplest model for a one-sided neighbour effect is

E(Yij) = βi + τT (i,j) + αT (i,j−1) (1)

and
Cov(Y) = σ2I,

where β1, . . . , βb are (unknown) block effects, τ1, . . . , τv are (unknown) direct

effects of the treatments, α1, . . . , αv are (unknown) neighbour effects of the
treatments, and σ2 is the (unknown) variance per plot.

Some more complicated models for E(Yij) have been proposed. One is
that

E(Yij) =

{

βi + τT (i,j) + αT (i,j−1) if T (i, j) 6= T (i, j − 1)
βi + τT (i,j) if T (i, j) = T (i, j − 1).

(2)

This is tantamount to saying that each treatment has no neighbour effect on
itself. For example, it may be argued that tall sunflowers shade shorter vari-
eties but not other sunflowers of the same height. However, photosynthesis
occurs in all the leaves of a plant, so a plant growing next to another plant
of the same variety can clearly make less use of the sun than a plant with no
shading.

What the experimenter usually seeks to find is the overall effect of a
treatment when it is grown throughout a field [5, 12]. If treatment x is
applied to every plot in block i then, under model (1),

E(Yij) = βi + φx,

where φx = τx + αx. We call φx the total effect of treatment x. I think that
those who have proposed model (2) have confused τx with φx.

A further model [15, 21] which may confuse the direct and total effects
is:

E(Yij) =

{

βi + τT (i,j) + αT (i,j−1) if T (i, j) 6= T (i, j − 1)
βi + τT (i,j) + γT (i,j) if T (i, j) = T (i, j − 1).

(3)

In this case φx = τx + γx.
More complicated still is the model which allows for full interaction be-

tween a treatment and its neighbour [12, 22]:

E(Yij) = βi + τT (i,j) + αT (i,j−1) + δT (i,j),T (i,j−1). (4)
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In this case φx = τx + αx + δxx.
There is a large literature on designs for the estimation of direct effects τ .

For example, Philippeau, Azäıs and Monod [19] recommend that, if model (1)
is appropriate, then it is efficient to use a neighbour-balanced design (to be
defined in Section 3) and analyse for the simple model with no neighbour
effects. Kunert and Stufken [15] assume model (3) and recommend designs
in which the γ parameters are not estimable.

However, the aim of the experiment is surely to estimate the total ef-
fects φ. If model (2) or (3) or (4) holds, then the α parameters (and δ param-
eters, if any) are of no interest but the γ parameters (if any) are important.
In this situation the only sensible way to conduct the experiment is to apply
treatments to large areas such as whole fields, with guard areas in between.
This is likely to be much more expensive, have smaller true replication, and
have larger variability than an experiment in smaller plots.

If model (1) holds then we can still conduct an experiment in small plots
in linear blocks. There is a difficulty about plot 1 of each block, because there
is apparently no neighbour effect to apply to it. However, we should really
include a parameter α0 for the effect of ‘no neighbour’. Rather than fit this
extra parameter, an alternative that is often recommended is to have a border

plot before plot 1 of each block i. A treatment T (i, 0) is applied to this plot
but its response is not measured. It is convenient if T (i, 0) = T (i, k), because
then each neighbour effect occurs the same number of times in block j as its
corresponding direct effect. A bordered block design with this property is
called circular.

There is now a design dilemma. To estimate τx + αx well, we need many
adjacent pairs of plots that both have treatment x. On the other hand, to
allow for block effects efficiently, we do not want any treatment to occur more
than once in any block, if k ≤ v. However, adjacent plots are always in the
same block if blocks are well separated.

Bailey and Druilhet [4] sought to resolve this dilemma by finding circular
block designs which are optimal for estimation of the total effects φ. They
showed that if no treatment is ever adjacent to itself then circular block
designs which are binary (no treatment occurs more than once in a block),
balanced (in the usual sense that every pair of distinct treatments is in the
same number of blocks) and neighbour-balanced, are optimal for the estima-
tion of total effects. Azäıs, Bailey and Monod [2] gave a table of such designs
for b = v, k = v − 1 and b = v − 1, k = v, with instructions for their use.

Bailey and Druilhet also showed that if b is large then designs with self-
neighbours are better than those without, if k ≥ 5. They describe a class of
optimal designs which can certainly be realised if b = v!, which is usually too
large for practical use. The remainder of this paper gives optimal designs for
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the smallest possible value of b, for given small values of k and v.

3 Properties of the designs

Each design is balanced in the sense that there is an integer µ such that
every pair of distinct treatments has concurrence µ. Here the concurrence

of treatments x and y means the number of pairs of plots in the same block
with one receiving treatment x and the other receiving treatment y. Each
design is also neighbour-balanced in the sense that there is an integer λ such
that every treatment is followed by each other treatment λ times.

Bailey and Druilhet [4] give the optimal number s of treatments to put in
each block, for each block size k with 3 ≤ k ≤ 16. Part of this information is
reproduced in Table 1. When k = 4 there are three values of s, all optimal.
Of the s treatments in any block, n1 occur m times and n2 occur m+1 times,
where m is the integer part of k/s, n2 = k− sm and n1 = s−n2. Each block
contributes θ/2 to the sum of the concurrences, where

θ = n1(n1 − 1)m2 + n2(n2 − 1)(m + 1)2 + 2n1n2m(m + 1)

= sm(m + 1) + k(k − 2m − 1).

Hence
bθ = v(v − 1)µ. (5)

Bailey and Druilhet [4] show that all occurrences of any one treatment
in any one block must be in a single sequence of adjacent plots (possibly
including both the last plot and the first plot), so each block contributes s
to the sum of neighbour adjacencies. Hence

bs = v(v − 1)λ. (6)

k 3 4 4 4 5 6 7 8 9
s 3 2 3 4 3 3 4 4 4
m 1 2 1 1 1 2 1 2 2
n1 3 2 2 4 1 3 1 4 3
n2 0 0 1 0 2 0 3 0 1
θ 6 8 10 12 16 24 36 48 60

Table 1: When the blocks have size k, then s treatments should appear in
each block, with n1 appearing m times and n2 appearing m + 1 times, so
each block contributes θ to the sum of the concurrences
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Note that if θ and s are coprime then b must be a multiple of v(v − 1).

4 The tables, and how to use them

Tables 3–6, supplemented by the text in Section 5, give the smallest designs
with the properties in Section 3, for the range 3 ≤ k ≤ 9 and s ≤ v ≤ 10.
Apart from the exceptions mentioned in Section 5, each given design has the
parameters which are the smallest solutions to Equations (5) and (6).

To use these, first choose one of the designs for the appropriate values of
v and k. If k = 4 there may be a choice of design. In the tables, the blocks
are shown as columns, to save space. Randomly allocate the columns of the
chosen design to the actual blocks. In each block independently, randomly
choose a number l between 1 and k inclusive, and move the treatment on
plot i to plot i + l modulo k. Finally, in each block, put the treatment on
plot k onto the border plot before plot 1.

For example, if v = k = 5 then start with the design in Table 5(a), which
has 20 blocks. Randomization can produce the layout in Table 2, where the
blocks are shown as rows, with the border plot at the left-hand end.

5 1 1 2 2 5

2 2 4 4 5 2

3 1 2 2 3 3

5 5 1 3 3 5

2 3 3 4 4 2

1 1 2 4 4 1

4 4 5 5 3 4

3 1 1 5 3 3

5 4 4 3 3 5

1 4 4 2 2 1

5 5 4 4 1 5

5 5 3 3 2 5

1 5 5 2 1 1

3 1 1 4 4 3

5 2 2 3 5 5

4 2 2 5 5 4

1 1 4 5 5 1

3 4 1 1 3 3

2 2 1 1 3 2

3 3 2 2 4 3

Table 2: One layout obtained by randomizing the design in Table 5(a)
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5 Tables of designs

5.1 Block size three

When k = 3 then s = 3 and the designs are just Mendelsohn triple systems

[18]. As Colburn and Rosa [7] show, there is a design corresponding to the
smallest integer solutions of Equations (5) and (6) except when v = 6. These
are given in Table 3. The second smallest solution for v = 6 corresponds to
the design in Table 3(d).

1 1
2 3
3 2

3 4 1 2
1 2 3 4
2 1 4 3

1 3 1 4 1 5 1 4 1 5 1 5 2 4 2 5 2 5 3 5
2 2 2 2 2 2 3 3 3 3 4 4 3 3 3 3 4 4 4 4
3 1 4 1 5 1 4 1 5 1 5 1 4 2 5 2 5 2 5 3

(a) v = 3, b = 2, (b) v = 4, b = 4, (c) v = 5, b = 20,
µ = 2, λ = 1 µ = 2, λ = 1 µ = 6, λ = 3

1 2 3 4 5 1 2 3 4 5 6 6 6 6 6 5 1 2 3 4
2 3 4 5 1 3 4 5 1 2 2 3 4 5 1 3 4 5 1 2
6 6 6 6 6 5 1 2 3 4 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 6 7 4 5 6 7 1 2 3
2 3 4 5 6 7 1 2 3 4 5 6 7 1
4 5 6 7 1 2 3 1 2 3 4 5 6 7

(d) v = 6, b = 20, µ = 4, λ = 2 (e) v = 7, b = 14, µ = 2, λ = 1

1 2 3 4 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
4 5 6 7 1 2 3 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6
2 3 4 5 6 7 1 1 2 3 4 5 6 7 2 3 4 5 6 7 1 4 5 6 7 1 2 3

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
3 4 5 6 7 1 2 2 3 4 5 6 7 1 6 7 1 2 3 4 5 5 6 7 1 2 3 4
5 6 7 1 2 3 4 3 4 5 6 7 1 2 2 3 4 5 6 7 1 2 3 4 5 6 7 1

(f) v = 8, b = 56, µ = 6, λ = 3

1 3 4 6 7 9 1 7 2 8 3 9 1 9 2 7 3 8 1 8 2 9 3 7
2 2 5 5 8 8 4 4 5 5 6 6 5 5 6 6 4 4 6 6 4 4 5 5
3 1 6 4 9 7 7 1 8 2 9 3 9 1 7 2 8 3 8 1 9 2 7 3

(g) v = 9, b = 24, µ = 2, λ = 1

1 4 7 0 0 0 0 0 0 0 0 0 1 7 2 8 3 9 1 9 2 7 3 8 1 8 2 9 3 7
2 5 8 5 6 4 2 3 1 8 9 7 4 4 5 5 6 6 5 5 6 6 4 4 6 6 4 4 5 5
3 6 9 4 5 6 1 2 3 7 8 9 7 1 8 2 9 3 9 1 7 2 8 3 8 1 9 2 7 3

(h) v = 10, b = 30, µ = 2, λ = 1

Table 3: Designs for blocks of size 3 (k = 3, s = 3, θ = 6)
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5.2 Block size four

When k = 4 then s may be 2 or 3 or 4. If s = 2 then each block has the cyclic
pattern (x, x, y, y). Using one such block for each unordered pair {x, y} of
treatments gives a design with b = v(v − 1)/2. The designs in parts (a), (c),
(f), (h), (j) and (l) of Table 4 have this form. If s = 3 then Equations (5)
and (6) give 10b = v(v − 1)µ and 3b = v(v − 1)λ, whose smallest integer
solution has b = v(v−1), so these designs are no improvement on those with
s = 2 and therefore none are shown in Table 4.

When s = 4 the designs are known as oriented balanced incomplete-block
designs or perfect Mendelsohn designs [18], and are related to directed Whist

tournaments [1]. Now Equations (5) and (6) give µ = 3λ and 4b = v(v−1)λ.
Table 4 includes designs for the smallest integer solutions to these equations
except for v = 4 (when trial and error quickly shows that there is no solution
with b = 3), and v = 8 (where [6] shows that there is no solution with b = 14).

1 1 2
1 1 2
2 3 3
2 3 3

1 1 1 2 2 2
2 3 4 1 4 4
3 4 2 4 3 1
4 2 3 3 1 3

1 1 1 2 2 3
1 1 1 2 2 3
2 3 4 3 4 4
2 3 4 3 4 4

1 2 3 4 5
2 3 4 5 1
4 5 1 2 3
3 4 5 1 2

(a) v = 3, s = 2,
b = 3, θ = 8,
µ = 4, λ = 1

(b) v = 4, s = 4,
b = 6, θ = 12,
µ = 6, λ = 2

(c) v = 4, s = 2,
b = 6, θ = 8,
µ = 4, λ = 1

(d) v = 5, s = 4,
b = 5, θ = 12,
µ = 3, λ = 1

6 6 6 6 6 6 6 6 6 6 2 2 2 2 3
1 1 2 3 5 2 3 4 4 5 4 4 5 1 5
2 3 1 1 4 5 4 3 5 2 5 3 1 5 4
3 4 4 5 1 1 2 5 2 3 3 1 4 3 1

1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
2 3 4 5 6 3 4 5 6 4 5 6 5 6 6
2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

(e) v = 6, s = 4, b = 15,
θ = 12, µ = 6, λ = 2

(f) v = 6, s = 2, b = 15,
θ = 8, µ = 4, λ = 1

7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6
1 2 3 4 5 6 7 1 2 3 4 5 6 7 2 3 4 5 6 7 1
3 4 5 6 7 1 2 4 5 6 7 1 2 3 6 7 1 2 3 4 5
2 3 4 5 6 7 1 3 4 5 6 7 1 2 4 5 6 7 1 2 3

1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6
1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6
2 3 4 5 6 7 3 4 5 6 7 4 5 6 7 5 6 7 6 7 7
2 3 4 5 6 7 3 4 5 6 7 4 5 6 7 5 6 7 6 7 7

(g) v = 7, s = 4, b = 21,
θ = 12, µ = 6, λ = 2

(h) v = 7, s = 2, b = 21,
θ = 8, µ = 4, λ = 1

Table 4: Designs for blocks of size four (k = 4)
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7 1 2 3 4 5 6 8 8 8 8 8 8 8 4 5 6 7 1 2 3 2 3 4 5 6 7 1
1 2 3 4 5 6 7 1 2 3 4 5 6 7 2 3 4 5 6 7 1 6 7 1 2 3 4 5
2 3 4 5 6 7 1 6 7 1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5 6 7
4 5 6 7 1 2 3 2 3 4 5 6 7 1 7 1 2 3 4 5 6 8 8 8 8 8 8 8

(i) v = 8, s = 4, b = 28, θ = 12, µ = 6, λ = 2

1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 6 6 7
1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 6 6 7
2 3 4 5 6 7 8 3 4 5 6 7 8 4 5 6 7 8 5 6 7 8 6 7 8 7 8 8
2 3 4 5 6 7 8 3 4 5 6 7 8 4 5 6 7 8 5 6 7 8 6 7 8 7 8 8

(j) v = 8, s = 2, b = 28, θ = 8, µ = 4, λ = 1

5 6 4 2 3 1 8 9 7 2 3 1 8 9 7 5 6 4
6 4 5 3 1 2 9 7 8 4 5 6 1 2 3 7 8 9
9 7 8 6 4 5 3 1 2 3 1 2 9 7 8 6 4 5
8 9 7 5 6 4 2 3 1 7 8 9 4 5 6 1 2 3

(k) v = 9, s = 4, b = 18, θ = 12, µ = 3, λ = 1

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4
1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 4 4 4 4 4
2 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 4 5 6 7 8 9 0 5 6 7 8 9 0
2 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 4 5 6 7 8 9 0 5 6 7 8 9 0

5 5 5 5 5 6 6 6 6 7 7 7 8 8 9
5 5 5 5 5 6 6 6 6 7 7 7 8 8 9
6 7 8 9 0 7 8 9 0 8 9 0 9 0 0
6 7 8 9 0 7 8 9 0 8 9 0 9 0 0

(l) v = 10, s = 2, b = 45, θ = 8, µ = 4, λ = 1

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 2 4 5 6 7 8 9 1 2 3
6 7 8 9 1 2 3 4 5 2 3 4 5 6 7 8 9 1 9 1 2 3 4 5 6 7 8
4 5 6 7 8 9 1 2 3 7 8 9 1 2 3 4 5 6 6 7 8 9 1 2 3 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1 9 1 2 3 4 5 6 7 8
4 5 6 7 8 9 1 2 3 7 8 9 1 2 3 4 5 6

(m) v = 10, s = 4, b = 45, θ = 12, µ = 6, λ = 2

Table 4: (continued) Designs for blocks of size four (k = 4)
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5.3 Block size five

When k = 5 then s = 3, so Equations (5) and (6) give 16b = v(v − 1)µ and
3b = v(v − 1)λ, so b must be a multiple of v(v − 1). If v = 3, 4, 7, 9 or 10
then Table 3 gives a design with s = k = 3 and b = v(v − 1)/3. Replace
each block of the form (x, y, z) by the three blocks (x, y, y, z, z), (x, x, y, z, z)
and (x, x, y, y, z). Designs for v = 5, 6 and 8 with b = v(v − 1) are given in
Table 5.

1 2 3 4 5 2 3 4 5 1 3 4 5 1 2 4 5 1 2 3
2 3 4 5 1 4 5 1 2 3 1 2 3 4 5 3 4 5 1 2
2 3 4 5 1 4 5 1 2 3 1 2 3 4 5 3 4 5 1 2
3 4 5 1 2 1 2 3 4 5 4 5 1 2 3 2 3 4 5 1
3 4 5 1 2 1 2 3 4 5 4 5 1 2 3 2 3 4 5 1

(a) v = 5, b = 20, µ = 16, λ = 3

6 6 6 6 6 1 2 3 4 5 2 3 4 5 1 5 1 2 3 4 4 5 1 2 3 4 5 1 2 3
2 3 4 5 1 3 4 5 1 2 5 1 2 3 4 6 6 6 6 6 3 4 5 1 2 5 1 2 3 4
2 3 4 5 1 3 4 5 1 2 5 1 2 3 4 6 6 6 6 6 3 4 5 1 2 5 1 2 3 4
1 2 3 4 5 4 5 1 2 3 6 6 6 6 6 2 3 4 5 1 5 1 2 3 4 3 4 5 1 2
1 2 3 4 5 4 5 1 2 3 6 6 6 6 6 2 3 4 5 1 5 1 2 3 4 3 4 5 1 2

(b) v = 6, b = 30, µ = 16, λ = 3

2 3 4 5 6 7 1 1 2 3 4 5 6 7 8 8 8 8 8 8 8 7 1 2 3 4 5 6
1 2 3 4 5 6 7 8 8 8 8 8 8 8 7 1 2 3 4 5 6 4 5 6 7 1 2 3
1 2 3 4 5 6 7 8 8 8 8 8 8 8 7 1 2 3 4 5 6 4 5 6 7 1 2 3
4 5 6 7 1 2 3 7 1 2 3 4 5 6 2 3 4 5 6 7 1 8 8 8 8 8 8 8
4 5 6 7 1 2 3 7 1 2 3 4 5 6 2 3 4 5 6 7 1 8 8 8 8 8 8 8

3 4 5 6 7 1 2 2 3 4 5 6 7 1 6 7 1 2 3 4 5 5 6 7 1 2 3 4
5 6 7 1 2 3 4 3 4 5 6 7 1 2 2 3 4 5 6 7 1 2 3 4 5 6 7 1
5 6 7 1 2 3 4 3 4 5 6 7 1 2 2 3 4 5 6 7 1 2 3 4 5 6 7 1
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

(c) v = 8, b = 56, µ = 16, λ = 3

Table 5: Designs for blocks of size five (k = 4, s = 3, θ = 16): see text for
other numbers of treatments
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5.4 Block size six

When k = 6 then s = 3 and every block has the form (x, x, y, y, z, z). Use the
design from Table 3 for the appropriate value of v, and double the occurrences
of each entry. For example, if v = 7 then the first block is (1, 1, 2, 2, 4, 4). Note
that, after randomization, there are six possibilities for this block, including

2 4 4 1 1 2 2 and 4 4 1 1 2 2 4 .

5.5 Block size seven

When k = 7 then s = 4, so Equations (5) and (6) give µ = 9λ and 4b =
v(v − 1)λ. Also, every within-block contribution to concurrence is either 4
or 2, so µ is even and hence λ is even. Each block has a single unrepeated
treatment, so, to maintain symmetry, b must be a multiple of v. Table 6
shows the smallest design for v = 4, 6, 7, 8 and 9.

When v = 5, use the design in Table 4 with s = 4 and replace each block of
the form (w, x, y, z) by the four blocks (w, x, x, y, y, z, z), (w, w, x, y, y, z, z),
(w, w, x, x, y, z, z) and (w, w, x, x, y, y, z).

When v = 10 the smallest solution to the equations has b = 90. A design
with 90 blocks of 7 plots each is probably too large for practical purposes, so
no design is tabulated.

5.6 Block size eight

When k = 8 then s = 4 and every block has the form (w, w, x, x, y, y, z, z).
Use the design from Table 4 for the appropriate value of v with s = 4, and
double the occurrence of each entry.

5.7 Block size nine

When k = 9 then s = 4 and again we find that 4b = v(v− 1)λ, λ is even and
v divides b. Use the designs for k = 7 and replace each block of the form
(w, x, x, y, y, z, z) by the block (w, w, w, x, x, y, y, z, z).
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1 2 3 4 2 3 3 1 1 2 4 4
2 1 4 3 3 1 2 3 4 4 1 2
2 1 4 3 3 1 2 3 4 4 1 2
3 4 1 2 1 2 4 4 2 3 3 1
3 4 1 2 1 2 4 4 2 3 3 1
4 3 2 1 4 4 1 2 3 1 2 3
4 3 2 1 4 4 1 2 3 1 2 3

(a) v = 4, b = 12, µ = 36, λ = 4

6 4 4 5 2 3 6 3 2 5 5 6 1 5 3 4 1 3 1 6 1 2 2 4 2 6 3 5 1 4
4 3 5 2 3 6 3 4 4 3 4 5 5 6 4 6 3 5 6 2 4 1 5 2 3 1 2 3 2 3
4 3 5 2 3 6 3 4 4 3 4 5 5 6 4 6 3 5 6 2 4 1 5 2 3 1 2 3 2 3
3 5 2 6 6 5 4 2 5 2 1 4 6 3 6 1 5 4 2 5 6 4 1 5 6 2 1 2 4 1
3 5 2 6 6 5 4 2 5 2 1 4 6 3 6 1 5 4 2 5 6 4 1 5 6 2 1 2 4 1
5 6 6 4 5 2 2 6 3 4 6 1 3 1 1 3 4 1 5 1 2 6 4 1 1 3 5 1 3 2
5 6 6 4 5 2 2 6 3 4 6 1 3 1 1 3 4 1 5 1 2 6 4 1 1 3 5 1 3 2

(b) v = 6, b = 30, µ = 36, λ = 4

7 1 2 3 4 5 6 1 2 3 4 5 6 7 7 1 2 3 4 5 6
1 2 3 4 5 6 7 4 5 6 7 1 2 3 2 3 4 5 6 7 1
1 2 3 4 5 6 7 4 5 6 7 1 2 3 2 3 4 5 6 7 1
3 4 5 6 7 1 2 3 4 5 6 7 1 2 6 7 1 2 3 4 5
3 4 5 6 7 1 2 3 4 5 6 7 1 2 6 7 1 2 3 4 5
2 3 4 5 6 7 1 7 1 2 3 4 5 6 4 5 6 7 1 2 3
2 3 4 5 6 7 1 7 1 2 3 4 5 6 4 5 6 7 1 2 3

(c) v = 7, b = 21, µ = 18, λ = 2

Table 6: Designs for blocks of size seven (k = 7, s = 4, θ = 36): see text for
other numbers of treatments
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7 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 1 4 5 6 7 1 2 3
1 2 3 4 5 6 7 2 3 4 5 6 7 1 1 2 3 4 5 6 7 2 3 4 5 6 7 1
1 2 3 4 5 6 7 2 3 4 5 6 7 1 1 2 3 4 5 6 7 2 3 4 5 6 7 1
2 3 4 5 6 7 1 4 5 6 7 1 2 3 7 1 2 3 4 5 6 1 2 3 4 5 6 7
2 3 4 5 6 7 1 4 5 6 7 1 2 3 7 1 2 3 4 5 6 1 2 3 4 5 6 7
4 5 6 7 1 2 3 7 1 2 3 4 5 6 4 5 6 7 1 2 3 7 1 2 3 4 5 6
4 5 6 7 1 2 3 7 1 2 3 4 5 6 4 5 6 7 1 2 3 7 1 2 3 4 5 6

8 8 8 8 8 8 8 1 2 3 4 5 6 7 6 7 1 2 3 4 5 2 3 4 5 6 7 1
1 2 3 4 5 6 7 6 7 1 2 3 4 5 1 2 3 4 5 6 7 6 7 1 2 3 4 5
1 2 3 4 5 6 7 6 7 1 2 3 4 5 1 2 3 4 5 6 7 6 7 1 2 3 4 5
6 7 1 2 3 4 5 2 3 4 5 6 7 1 8 8 8 8 8 8 8 1 2 3 4 5 6 7
6 7 1 2 3 4 5 2 3 4 5 6 7 1 8 8 8 8 8 8 8 1 2 3 4 5 6 7
2 3 4 5 6 7 1 8 8 8 8 8 8 8 2 3 4 5 6 7 1 8 8 8 8 8 8 8
2 3 4 5 6 7 1 8 8 8 8 8 8 8 2 3 4 5 6 7 1 8 8 8 8 8 8 8

(d) v = 8, b = 56, µ = 36, λ = 4

1 2 3 7 8 9 4 5 6 4 5 6 1 2 3 7 8 9 1 2 3 7 8 9 4 5 6 6 4 5 3 1 2 9 7 8
2 3 1 8 9 7 5 6 4 1 2 3 7 8 9 4 5 6 6 4 5 3 1 2 9 7 8 2 3 1 8 9 7 5 6 4
2 3 1 8 9 7 5 6 4 1 2 3 7 8 9 4 5 6 6 4 5 3 1 2 9 7 8 2 3 1 8 9 7 5 6 4
5 6 4 2 3 1 8 9 7 2 3 1 8 9 7 5 6 4 2 3 1 8 9 7 5 6 4 9 7 8 6 4 5 3 1 2
5 6 4 2 3 1 8 9 7 2 3 1 8 9 7 5 6 4 2 3 1 8 9 7 5 6 4 9 7 8 6 4 5 3 1 2
4 5 6 1 2 3 7 8 9 5 6 4 2 3 1 8 9 7 9 7 8 6 4 5 3 1 2 1 2 3 7 8 9 4 5 6
4 5 6 1 2 3 7 8 9 5 6 4 2 3 1 8 9 7 9 7 8 6 4 5 3 1 2 1 2 3 7 8 9 4 5 6

(e) v = 9, b = 36, µ = 18, λ = 2

Table 6: (continued) Designs for blocks of size seven (k = 7, s = 4, θ = 36):
see text for other numbers of treatments
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