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1 Introduction

Let T be a set of v treatments. We consider resolvable incomplete-block
designs ∆ for T in r replicates of blocks of size k, where k divides v. Let
q = v/k.

The i-th replicate defines a partition Pi of T into q equivalence classes
of size k. Each class is the set of treatments allocated to one block in the
i-th replicate. Bailey (1999) showed that properties of the resolvable design
can be obtained from properties of the family of r partitions.

For 1 ≤ i, j ≤ r, define a matrix Xij whose rows are indexed by the
classes of Pi and whose columns are indexed by the classes of Pj . The entry
of Xij in the row labelled by class G of Pi and the column labelled by
class H of Pj is |G ∩H |. Thus, for i 6= j, Xij is the incidence matrix of a
square block design ∆ij with q blocks and treatments and block size k.

In the case that r = 2, Williams, Patterson and John (1976) showed
that ∆ is optimal among resolvable designs if and only if ∆12 is optimal.
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In particular, if ∆12 is a square balanced incomplete-block design (BIBD)
then ∆ is optimal among resolvable designs. Examples can be seen in each
pair of replicates in the designs in Tables 3–4.

When r = 2 and q = k+1, the design ∆ is optimal when the design ∆12

consists of all k-subsets of q. In this case ∆ is a simple rectangular lattice
design (Harshbarger, 1946). Rectangular lattice designs exist for some larger
values of r with q = k + 1 and r ≤ q: they all have the following two
properties.

Each ∆ij , for i 6= j, is a square BIBD. (1)

When i, j and l are all different, the partitions Pi, Pj and
Pl are mutually balanced.

(2)

The property of mutual balance was introduced by Preece (1966a, 1966b),
and further explained by Preece (1976) and Bailey (1999). In the presence
of condition (1), it means that, when i, j and l are all different,

XijXjlXli +XilXljXji = ψijlI + φijlJ (3)

for some integers ψijl and φijl, where I is the identity matrix and J is the
all-1 matrix.

The motivation for mutual balance comes from consideration of designs
for responses on T when Pi, Pj and Pk represent fixed effects. That is, if
element t of T is in class G of Pi, class H of Pj and class K of Pl, then the
expected value of the response Yt on t is given by

E(Yt) = λG + µH + νK . (4)

Preece (1966a, 1966b) showed that, if ∆ij ,∆il and∆jl are all square BIBDs,
then the information matrix for the λ-parameters in model (4) is completely
symmetric if and only if condition (3) is true.

It is not always true that an optimal resolvable design for r replicates
remains optimal when one or more replicates are removed. For example,
Table 1 shows two designs with r = 3, v = 6 and k = 2. Here A, D and
E denote the harmonic mean, geometric mean and minimum, respectively,
of the canonical efficiency factors. Design Γ is a rectangular lattice, and is
optimal, but cannot be extended to any of the optimal 4-replicate designs.
Design Ξ is slightly worse than Γ but can be extended to optimal 4- and
5-replicate designs. Nonetheless, Ξ is not much inferior to Γ , and all the
contractions Γij and Ξij of both designs are optimal square designs.

Theorem 2.2 of Cheng and Bailey (1991) shows that rectangular lattice
designs with r = q are optimal. It is not known whether rectangular lattice
designs are optimal for 2 < r < q. However, their efficiency factors are
known (Williams, 1977; Corsten, 1985; Bailey and Speed, 1986) and the
designs do appear to be very efficient. Moreover, Heiligers and Sinha (1995)
have shown that, when r = 3, q = 7 and k = 3, then one of the two sets of
partitions satisfying conditions (1) and (2) gives a design which is optimal
for model (4) among designs satisfying condition (1). It therefore seems
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Table 1 Designs with v = 6 and k = 2 (blocks are columns)

Design Γ Design Ξ

1 3 5 1 2 3 4 1 2
2 4 6 6 4 5 6 3 5

1 3 5 1 2 3 1 2 4
2 4 6 6 4 5 3 6 5

efficiency factors: 1

2
, 1

2
, 1

2
, 1

2
, 1 efficiency factors: 1

3
, 1

2
, 1

2
, 5

6
, 5

6

A = 0.5556, D = 0.5743, E = 0.5000 A = 0.5319, D = 0.5656, E = 0.3333

useful to construct other resolvable designs satisfying conditions (1) and (2)
for r = 3.

Four families of designs are constructed in Section 2. In Section 3, their
efficiency factors are calculated. Two further families are presented in Sec-
tion 4. In Section 5, the designs are compared with each other and with other
designs from the literature: all the new designs are highly efficient, and three
of the families compare particularly well with other known designs.

2 Four families of designs

Agrawal (1966a, 1966b) and Preece (1966a, 1966b) gave several examples of
sets with three partitions satisfying conditions (1) and (2). Agrawal’s designs
were for rows, columns and treatments, while Preece’s were for blocks and
two non-interacting sets of treatments. Thus both authors fitted model (4).

When condition (1) is satisfied, then

XijXji = αI + βJ,

where α = k(q − k)/(q − 1) = k2(1 − ε), β = k(k − 1)/(q − 1) = k2ε/q
and ε = q(k − 1)/[(q − 1)k], which is the efficiency factor for ∆ij . Hence,
consideration of the relationship algebra (James, 1957) generated by the
three partitions on T shows that, whenever i, j and l are all different, the
values ψijl and φijl in Equation (3) are constants ψ and φ satisfying

ψ + qφ = 2k3 :

see Bailey (1999). In what follows we assume that ψ 6= 0.
The calculations in Preece (1966a) show that, when conditions (1) and (2)

hold, then all contrasts for each of the fixed effects in model (4) have effi-
ciency factor E , where

1 − E =
2(1 − ε) − ψ/k3

ε
. (5)

Bailey, Preece and Rowley (1995) showed that there are four infinite
families of sets of three partitions satisfying conditions (1) and (2) for values
of q which are congruent to 3 modulo 4 and which are prime powers. We
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Table 2 Parameters of four families of sets of three partitions, where q is a prime
power congruent to 3 modulo 4

Family k ψ E

I
q − 1

2

3q − 1

4

q − 3

q − 1

II
q − 1

2
−
q + 1

4

q2 − 6q + 1

(q − 1)(q − 3)

III
q + 1

2

1 − 3q

4

(q − 3)(q + 3)

(q + 1)2

IV
q + 1

2

q + 1

4

q − 1

q + 1

omit q = 3, which gives a rectangular lattice. The four families have the
parameters shown in Table 2.

Let F be the finite field of order q, and let S be the set of non-zero squares
in F , and N the set of non-squares in F . Then |S| = |N | = (q − 1)/2 and
F = S ∪ N ∪ {0}. Let L and M be the F × F matrices with L(f, g) = 1
if g − f ∈ S and M(f, g) = 1 if g − f ∈ N and other entries zero. Thus
L+M + I = J , because −1 is not a square in F .

For Families I and II, put T = S×F . For h in F , define the partition Qh

of T whose classes are the sets

{(s, f − hs) : s ∈ S}

indexed by f in F . Thus k = (q − 1)/2. Put P1 = Q0 and P2 = Q1. Then
X12 = L. Put P3 = Qh, where h is a fixed element of F different from 0
and 1. If h ∈ N and h − 1 ∈ S then X23 = X31 = L and the design
comes from Family I. For all other values of h, the matrices X12, X23 and
X31 consist of two Ls and one M or two Ms and one L, giving designs in
Family II. Examples of designs from the two families are shown in Tables 3
(for q = 7) and 4 (for q = 11). The good design identified by Heiligers and
Sinha (1995) belongs to Family I.

For Families III and IV, replace S by S ∪ {0}, so that k = (q + 1)/2,
and proceed as above. In Family III we have X12 = X23 = X31 = I + L
while in Family IV the three incidence matrices X12, X23 and X31 consist
of two copies of I +L and one of I +M or vice versa. Examples are shown
in Tables 3 and 4.

For a design ∆ in any of the four families, the permutation πg of T is
an automorphism of the design, where g is a fixed element of F and

πg : (s, f) 7→ (s, f + g) for s in S and f in F .
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Table 3 Designs for q = 7 and k = 3 or k = 4

Treatment array
columns are classes of Q0

0 1 2 3 4 5 6

1 a b c d e f g

2 h i j k l m n

4 o p q r s t u

0 v w x y z A Z

Q1 (classes are columns)
g a b c d e f

m n h i j k l

r s t u o p q

v w x y z A Z

Q2 (classes are columns)
f g a b c d e

k l m n h i j

u o p q r s t

v w x y z A Z

Q3 (classes are columns)
e f g a b c d

i j k l m n h

q r s t u o p

v w x y z A Z

Family I II III IV

Treatments First three rows of
treatment array

All four rows of
treatment array

k 3 3 4 4

P1 Q0 Q0 Q0 Q0

P2 Q1 Q1 Q1 Q1

P3 Q3 Q2 Q3 Q2

multiplicity of
efficiency factor 1

2 2 9 9

other efficiency
factors with
multiplicity 6

0.7778

0.8657

0.3565

0.4154

0.6289

0.9557

0.5833

0.8993

0.5174

0.8552

0.6950

0.4499

Thus {πg : g ∈ F} is a semi-regular group of automorphisms of∆, abstractly
isomorphic to the additive group of F . If q is prime then this group is cyclic
and so ∆ belongs to the class of α-designs introduced by Patterson and
Williams (1976b).

3 Efficiency factors

The design ∆ has 3q blocks. Since 3q ≤ kq = v, there are at least q(k − 3)
efficiency factors equal to 1, and the remaining efficiency factors are those
of the dual design ∆′ for 3q treatments in v blocks of size 3.

Order the 3q blocks by replicate and, within replicate, by the same
ordering on the index set F . Then the concurrence matrix C for ∆′ is equal
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Table 4 Designs for q = 11 and k = 5 or k = 6

Treatment array
columns are classes of Q0

0 1 2 3 4 5 6 7 8 9 10

1 a b c d e f g h i j k

3 l m n o p q r s t u v

4 A B C D E F G H I J K

5 L M N O P Q R S T U V

9 α β γ δ ε ζ η θ ι κ λ

0 µ ν ξ π ρ σ τ υ φ χ ψ

Q1 (classes are columns)
k a b c d e f g h i j

t u v l m n o p q r s

H I J K A B C D E F G

R S T U V L M N O P Q

γ δ ε ζ η θ ι κ λ α β

µ ν ξ π ρ σ τ υ φ χ ψ

Q2 (classes are columns)
j k a b c d e f g h i

q r s t u v l m n o p

D E F G H I J K A B C

M N O P Q R S T U V L

ε ζ η θ ι κ λ α β γ δ

µ ν ξ π ρ σ τ υ φ χ ψ

Q3 (classes are columns)
i j k a b c d e f g h

n o p q r s t u v l m

K A B C D E F G H I J

S T U V L M N O P Q R

η θ ι κ λ α β γ δ ε ζ

µ ν ξ π ρ σ τ υ φ χ ψ

Family I II III IV

Treatments First three rows of
treatment array

All four rows of
treatment array

k 5 5 6 6

P1 Q0 Q0 Q0 Q0

P2 Q1 Q1 Q1 Q1

P3 Q2 Q3 Q2 Q3

multiplicity of
efficiency factor 1

24 24 35 35

other efficiency
factors with
multiplicity 10

0.7333

0.8248

0.4418

0.4789

0.6642

0.8770

0.6111

0.8540

0.5349

0.8232

0.6854

0.4914

to





kI X12 X13

X21 kI X23

X31 X32 kI



 .

It is clear that the efficiency factors for the two degrees of freedom between
replicates are both 1, so we need to find the eigenvalues of C on the space W
consisting of vectors of the form [x> | y> | z>]> where x, y and z are
contrast vectors in R

F ; here x> denotes the transpose of x. For calculating
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on W , we may treat J as zero in any of the nine q × q submatrices, so

(C − kI)2 =





2αI + 2βJ X13X32 X12X23

X23X31 2αI + 2βJ X21X13

X32X21 X31X12 2αI + 2βJ





=





2αI X13X32 X12X23

X23X31 2αI X21X13

X32X21 X31X12 2αI





and, therefore,

(C − kI)3 =





ψI + φJ 3αX12 + βkJ 3αX13 + βkJ
3αX21 + βkJ ψI + φJ 3αX23 + βkJ
3αX31 + βkJ 3αX32 + βkJ ψI + φJ





= 3α(C − kI) + ψI.

Hence the eigenvalues of C − kI on W are the zeros x1, x2, x3 of the
polynomial

x3 − 3αx− ψ. (6)

Thus x1 + x2 + x3 = 0.
The eigenvalues of C are 3k, 0 (with multiplicity 2) and xi + k with

multiplicity ni say, where n1 + n2 + n3 = 3(q − 1). Now 3qk = traceC =
3k+n1x1+n2x2+n3x3+3(q−1)k, so n1x1+n2x2+n3x3 = 0. If n1 = n2 then
(n1 −n3)x3 = 0; since x3 cannot be zero if ψ 6= 0, we have n1 = n2 = n3. If
n1, n2 and n3 are all different then all the zeros of the polynomial (6) must
be integers; as this does not happen for any of the designs discussed in this
paper, we can now assume that n1 = n2 = n3 = q − 1.

Each eigenvalue x + k of C, other than 3k, gives a canonical efficiency
factor 1−(x+k)/(3k) = z/(3k) of ∆′. Hence the canonical efficiency factors
of ∆ are 1, with multiplicity q(k − 3) + 2, and z1/(3k), z2/(3k), z3/(3k),
where the zi are the zeros of

z3 − 6kz2 + 3(4k2 − α)z + (ψ + 6αk − 8k3) : (7)

these last three each have multiplicity q − 1.
Now, z1z2z3 = 8k3 − 6αk − ψ, so the following relation holds for the

geometric mean D of the canonical efficiency factors:

Dqk−1 =
(z1z2z3

27k3

)q−1

=

(

8k3 − 6αk − ψ

27k3

)q−1

. (8)

Similarly, the following relation holds for the harmonic mean A of the canon-
ical efficiency factors:

(qk − 1)A−1 = q(k − 3) + 2 + 3k(q − 1)

(

1

z1
+

1

z2
+

1

z3

)

= q(k − 3) + 2 +
9k(q − 1)(4k2 − α)

8k3 − 6αk − ψ
. (9)
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In Family I, polynomial (6) becomes

x3 − 3(q + 1)

4
x− 3q − 1

4
= (x+ 1)

(

x2 − x− (3q − 1)

4

)

,

whose zeros are −1 and (1±√
3q)/2. Hence the canonical efficiency factors

are

2q

3(q − 1)
and

2q − 3 ±√
3q

3(q − 1)
,

each with multiplicity q − 1, and 1, with multiplicity q(q − 7)/2 + 2.

In Family II, polynomial (6) becomes

x3 − 3(q + 1)

4
x+

q + 1

4
.

Put y = x/
√
q + 1. If x is a zero of the polynomial then

4y3 − 3y = − 1√
q + 1

and so y = cos θ where cos 3θ = −1/
√
q + 1. Hence the canonical efficiency

factors are

2(q − 1) − 2
√
q + 1 cos θ

3(q − 1)
,

where cos 3θ = −1/
√
q + 1, each with multiplicity q − 1, and 1, with multi-

plicity q(q − 7)/2 + 2.

In Family III and Family IV, each matrix Xij is obtained by subtracting
the corresponding matrix for Family I or II, respectively, from J . Therefore,
the values x in polynomial (6) are the negatives of those for Families I
and II. Therefore, the canonical efficiency factors for Family III are

2q

3(q + 1)
and

2q + 3 ±√
3q

3(q + 1)
,

each with multiplicity q−1, and 1, with multiplicity q(q−5)/2+2. Similarly,
those for Family IV are

2(q + 1) + 2
√
q + 1 cos θ

3(q + 1)
,

where cos 3θ = −1/
√
q + 1, each with multiplicity q − 1, and 1, with multi-

plicity q(q − 5)/2 + 2.
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4 Two further families of designs

Cameron (1972) and Cameron and Seidel (1973) studied systems of linked
square designs for q treatments in blocks of size k. Although these systems
are not all realisable as partitions of a set of size qk, their incidence matrices
satisfy condition (1) and the following strong form of condition (3):

XijXjl = γXil + δJ. (10)

Bailey (1999) showed that γk + δq = k2, γ2 = α and δ = k(k − γ)/q.
Condition (10) implies that

XijXjlXli = γXilXli + δJXli = γ(αI + βJ) + δkJ,

so ψ = 2αγ and φ = 2γβ + 2δk.
Rectangular lattice designs satisfy condition (10) with k = q−1, γ = −1

and δ = q−1. Cameron (2003) gave two series of sets of partitions satisfying
conditions (1) and (10). They have q = 4m and k = 22m−1 ± 2m−1, for
positive integers m. For both series, α = 22m−2 and so γ = ±2m−1. But
q divides k(k − γ), so γ must be negative when k = 22m−1 − 2m−1 and
positive when k = 22m−1 + 2m−1.

These families are summarized in Table 5. The two smallest designs in
Families V and VI can be derived from the tables in Preece and Cameron
(1975).

Table 5 Parameters of three families of sets of three partitions satisfying condi-
tion (10): here RL denotes rectangular lattice

Family q k γ ψ E

RL any q − 1 −1 −2
q(q − 3)

(q − 1)(q − 2)

V 4m 22m−1
− 2m−1

−2m−1
−23m−2 2m−1(2m

− 3)

(2m − 1)(2m−1 − 1)

VI 4m 22m−1 + 2m−1 +2m−1 +23m−2 2m−1(2m + 3)

(2m + 1)(2m−1 + 1)

When condition (10) is satsified,

(C − kI)2 = 2αI + γ(C − kI)

on the space W , so the eigenvalues of C − kI on W are the zeros of the
polynomial x2 − γx − 2α, which is (x + γ)(x − 2γ). Let n1 and n2 be the
multiplicities of −γ and 2γ as eigenvalues of C−kI . Then 0 = −n1γ+2n2γ
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and n1 + n2 = 3(q− 1) and so n1 = 2(q− 1) and n2 = q− 1. The canonical
efficiency factors are equal to

2k + γ

3k
and

2(k − γ)

3k
,

with multiplicities 2(q − 1) and q − 1 respectively, and 1, with multiplicity
q(k − 3) + 2. Hence

Dqk−1 =

(

2(2k + γ)2(k − γ)

27k3

)q−1

and

(qk − 1)A−1 = q(k − 3) + 2 + 3k(q − 1)

(

2

2k + γ
+

1

2(k − γ)

)

.

Also, E = 2(k − γ)/(3k) if γ is positive but E = (2k + γ)/(3k) if γ is
negative.

Thus, for Family V, the non-unit canonical efficiency factors are

2m+1 − 3

3(2m − 1)
and

2m+1

3(2m − 1)

with multiplicities 2(22m − 1) and 22m − 1, while, for Family VI, they are

2m+1 + 3

3(2m + 1)
and

2m+1

3(2m + 1)

with multiplicities 2(22m − 1) and 22m − 1.
The two smallest designs are summarized in Table 6.

Table 6 Summary of designs for q = 16 and k = 6 or k = 10

Family V VI

k 6 10

multiplicity of efficiency factor 1 50 114

other efficiency factor with multiplicity 30 0.5555 0.7333

other efficiency factor with multiplicity 15 0.8888 0.5333

5 Discussion

Table 7 gives the parameters of the nine smallest designs in the families
defined in this paper, together with their A-, D- and E-measures of overall
efficiency.
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Table 7 Comparison of designs

v k design E ψ A D E triangles

21 3 I 0.6667 5 0.5975 0.6518 0.3565 252
II 0.3333 −2 0.6199 0.6595 0.4154 126

C32 0.5975 0.6518 0.3565 252
PW 0 5967 0.6524 0.2814 210

28 4 III 0.6250 −5 0.7190 0.7484 0.5174 630
IV 0.7500 2 0.7108 0.7459 0.4499 756

PW 0.7152 0.7473 0.4240 672
PWH 0.7190 0.7484 0.5174 630

55 5 I 0.8000 8 0.7459 0.7832 0.4418 2640
II 0.7000 −3 0.7520 0.7850 0.4789 2310

PW 0.7440 0.7830 0.3176 2508
PWH 0.7530 0.7852 0.4550 2244

66 6 III 0.7778 −8 0.7949 0.8218 0.5349 4620
IV 0.8333 3 0.7918 0.8209 0.4914 4950

PW 0.7924 0.8211 0.4047 4752
PWH 0.7942 0.8216 0.4922 4686

96 6 V 0.6667 −16 0.7859 0.8153 0.5555 5760
PW 0.7712 0.8141 0.2467 6912

C32 design given by John, Wolock and David (1972)
PW designs given by Patterson and Williams (1976b)
PWH designs given by Patterson, Williams and Hunter (1978)

5.1 Pairs of designs

For each design in each of the six families, the value E is the value of A,
D and E for estimating P1, P2 or P3 in model (4). Table 7 shows two
designs for the first four values of v and k. In every case, the design with
the lower value of E has higher values of A, D and E for the three-replicate
resolvable design. In particular, the optimal design found by Heiligers and
Sinha (1995) is not optimal as a resolvable block design. At first sight, this
seems surprising, because it is the opposite of what happens when r = 2.
However, Equation (5) shows that E increases with ψ, while Equations (9),
(8) and (7) show that A, D and E decrease as ψ increases.

This behaviour is also linked to Paterson’s (1983) conjecture about tri-
angles in the variety-concurrence graph G of ∆ (Patterson and Williams,
1976a). Triangles in G are of two types. Some arise from sets of three treat-
ments in the same block. There are 3qk(k − 1)(k − 2) such triangles. The
remaining triangles have one edge contributed by each replicate. The num-
ber of such triangles is equal to 3 trace(X12X23X31 + X13X32X21) − 6qk.
However, trace(X12X23X31 + X13X32X21) = q(ψ + φ) = (q − 1)ψ + 2k3.
Hence E and the number of triangles increase together.
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Paterson’s conjecture, which seems most likely to be true for designs
where all concurrences are 0 or 1, is that optimal designs are to be found
among those whose graphs have fewest triangles. Although none of A, D, E
is monotonically related to the number of triangles across the whole range
of designs, the relation does seem to be monotonic at the top end. Thus the
apparent paradox is consistent with Paterson’s conjecture.

5.2 Comparison with other designs

How do these designs compare with other designs in the literature? Clatwor-
thy (1973) gives no designs with these parameters, resolvable or not. John,
Wolock and David (1972) give a cyclic design C32 for 21 treatments in
21 blocks of size 3. It has A = 0.5975 and can be shown to be isomorphic to
the poorer of the two new designs for these parameters in Table 7; certainly
the other of those two designs is an improvement on C32.

As shown in Section 2, when q is prime the designs in this paper are α-
designs, so it is useful to compare them with good α-designs given elsewhere.
In the notation of Patterson, Williams and Hunter (1978), an α-design is
defined by an r × k array α whose entries are integers modulo q. Let B be
the permutation matrix of the q-cycle (1 2 . . . q). If ∆ is the design defined
by α then Xij is a sum of powers of B, the indices being αip−αjp for p = 1,
. . . , k. Hence the eigenvalues of C are the eigenvalues of the r× r matrices
obtained by replacing B in C by the complex q-th roots of unity.

For q = 7 and k = 3, Patterson and Williams (1976b) give

α =
0 0 0
0 1 2
0 6 5

.

Hence X12 = I + B−1 + B−2, X13 = I + B + B2 and X23 = I + B2 +B4.
Table 7 shows the values of A, D and E. This design is worse than both the
Family I design and the Family II design.

Patterson and Williams (1976b) also give designs for the other four pairs
of values of v and k in Table 7. Their efficiency factors are summarized in
Table 7. For q = 7 and k = 4, and for q = 11 and k = 6, their design
is E-worse than both the Family III design and the Family IV design, but
intermediate with regard to both A and D. Their design with q = 11 and
k = 5 is worse in all respects than the designs from Families I and II.

Patterson, Williams and Hunter (1978) give a list of recommended α-
designs for k ≥ 4. Their design for q = 7 and k = 4 has α-array

0 0 0 0
0 1 2 4
0 3 6 5

,
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which has the property that

{α2p − α1p : p = 1, . . . , 4} = {α3p − α2p : p = 1, . . . , 4}
= {α1p − α3p : p = 1, . . . , 4}
= {0, 1, 2, 4} ,

which is the set of squares modulo 7. Hence this design is isomorphic to the
Family III design.

Their designs for q = 11, k = 5 and q = 11, k = 6 are summarized
in Table 7. The design with k = 5 is slightly better than the Family II
design with respect to both A and D, but E-worse. The design with k = 6
is slightly worse than the Family III design with respect to both A and D,
and considerably E-worse.

Table 7 also compares two designs with q = 16, k = 6. The one from
Family V has no triangles of the second type. It is superior to the design
given by Patterson and Williams (1976b).

Overall, it appears that the designs from Families II, III and V are highly
efficient, even though the examples with q = 11, k = 5 show that they may
not always be optimal.
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