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Abstract

Recently, P.J. Cameron studied a class of block designs which gen-
eralises the classes of t-designs, α-resolved 2-designs, orthogonal ar-
rays, and other classes of combinatorial designs. In fact, Cameron’s
generalisation of t-designs (when there are no repeated blocks) is a
special case of the “poset t-designs” in product association schemes
studied ten years earlier by W.J. Martin, who further studied the spe-
cial case of “mixed block designs”. In this paper, we study Cameron’s
generalisation of t-designs from the point of view of classical t-design
theory, in particular investigating the parameters of these generalised
t-designs. We show that the t-design constants λi (the number of
blocks containing an i-subset of the points, where i ≤ t) and λj

i (the
number of blocks containing an i-subset I of the points and disjoint
from a j-subset J of the points, where I ∩ J = ∅ and i + j ≤ t)
have very natural counterparts for generalised t-designs. Our main
result places strong restrictions on the block structure of Cameron’s
t-(v,k, λ) designs, an important subclass of generalised t-designs. We
also generalise N.S. Mendelsohn’s concept of “intersection numbers of
order r” for t-designs, and show that analogous equations to those of
Mendelsohn hold for generalised t-designs.

[Keywords: block design, t-design, generalised t-design, mixed block
design, orthogonal array, intersection numbers]
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1 Introduction

Recently, P.J. Cameron [1] studied a class of block designs which generalises
the classes of t-designs, α-resolved 2-designs, orthogonal arrays, and other
classes of combinatorial designs. His main interest was the possibility of
using Markov chain methods to generate such designs with block size 3 and
given parameters (such as 1-factorisations of complete graphs and Steiner
triple systems) uniformly at random. In fact, Cameron’s generalisation of t-
designs (when there are no repeated blocks) is a special case of the “poset T -
designs” in product association schemes (in particular the “poset t-designs”
in products of Johnson schemes) studied ten years earlier by W.J. Martin [6].
In [6], Martin applies the theory of Delsarte T -designs to determine lower
bounds on the number of blocks, and results on block intersections, for many
classes of designs at once, implicitly including generalised t-designs. Martin
[5] further studied in depth the special case of “mixed block designs”. See
also [7].

In this paper, we study Cameron’s generalisation of t-designs from the
point of view of classical t-design theory, in particular investigating the pa-
rameters of these generalised t-designs. We start by presenting some notation
and definitions used in this paper, including defining exactly what we mean
by a generalised t-design, as variants of this concept are given in Cameron’s
article [1].

Let V be a finite set and V = (V1, . . . , Vm) an ordered partition of V .
For S a subset of V , we define the V-height of S, denoted [S]V, to be the
m-vector of non-negative integers

(|S ∩ V1|, . . . , |S ∩ Vm|).

When the ordered partition V is clear from the context, we may just say
height for V-height, and denote the height of S by [S]. (Note that if V = (V )
then the V-height of a subset S of V is simply a vector with a single co-
ordinate giving the size of S.)

Let r = (r1, . . . , r`), s = (s1, . . . , sm) be vectors of integers. We write
r ≤ s to mean that ` = m and ri ≤ si for i = 1, . . . ,m. Now further suppose
that ` = m and s1, . . . , sm are non-negative. We denote

∑m
i=1 si by |s|, and

define (
s

r

)
:=

m∏
i=1

(
si

ri

)
,
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with the convention that
(

si

ri

)
= 0 if ri < 0 or ri > si. Thus, if V is a finite

set, V an ordered partition of V , and S ⊆ V , with s = [S]V, then |s| = |S|,
and

(
s
r

)
is the number of subsets R of S having [R]V = r.

A block design is an ordered pair (V,B), such that V is a finite non-empty
set, whose elements are called points, and B is a finite non-empty collection
(multiset) of subsets of V called blocks. For t a non-negative integer, a t-
(v, k, λ) design (or simply a t-design) is a block design (V,B) satisfying:

• V has size v;

• each block has the same size k, with k > 0 and t ≤ k;

• each t-subset of V is contained in the same (positive) number λ of
blocks.

For t a non-negative integer and V a finite non-empty set, a t-(v,k, (λt))
design (or simply a generalised t-design) with point-set V is an ordered pair
(V,B), such that V is an ordered partition of V , (V,B) is a block design,
and the following properties hold:

• V has V-height v;

• each block has the same V-height k, with each entry in k positive, and
t ≤ |k|;

• for every tuple t of non-negative integers satisfying |t| = t and t ≤ k,
each t-subset T of V having [T ]V = t is contained in the same (positive)
number λt of blocks.

We call t,v,k, (λt) the parameters of a t-(v,k, (λt)) design D. The sequence
(λt), if explicitly given, is with respect to some fixed total ordering (say
lexicographic) of those t with |t| = t and t ≤ k. As we shall see, any one
such λt determines the others. We denote by V (D) the point-set of D.

Example 1 Let D := (V,B), where V := ({1, 2, 3, 4}, {5, 6, 7}) and

B := [{1, 2, 5}, {3, 4, 5}, {1, 3, 6}, {2, 4, 6}, {1, 4, 7}, {2, 3, 7}].

Then V (D) = {1, . . . , 7}, and D is a 2-((4, 3), (2, 1), (λ(1,1), λ(2,0))) design
with λ(1,1) = λ(2,0) = 1.
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Note that a t-(v,k, (λt)) design with k = (k) is the same thing as a t-
design with block size k, and a t-(v, (1, 1, . . . , 1), (λt)) design is the same thing
as an orthogonal array of strength t (possibly over variable-size alphabets).
The t-(v, (k1, k2), (λt)) designs are the mixed block designs studied by Martin
[5], where many constructions for these are given. Further examples and
classes of generalised t-designs are given by Cameron [1].

Cameron [1] almost exclusively studies t-(v,k, (λt)) designs with λt = λ
(a constant) for all t; these are called t-(v,k, λ) designs. (He also requires
0 < t < |k|, which we do not.) Thus, the design D in Example 1 is a 2-
((4, 3), (2, 1), 1) design. The main result of this paper is that a t-(v,k, λ)
design with block size k and 2 ≤ t ≤ k − 2 must have k ∈ {v, (k), (k −
1, 1), (1, k − 1), (1, 1, . . . , 1)}.

In the final section of this paper, we generalise Mendelsohn’s concept of
“intersection numbers of order r” for t-designs, and show that analogous
equations to those of Mendelsohn [8] hold for generalised t-designs, and then
apply the generalised equations to study a particular example.

2 Generalising the constants λi and λj
i of a

t-design

In a t-(v, k, λ) design, when i ≤ t, the number of blocks containing a given

i-subset of the points is a constant λi := λ
(

v−i
t−i

)
/
(

k−i
t−i

)
, not depending on

the choice of i-subset. Here we prove an entirely analogous result for gener-
alised t-designs, generalising Lemma 1.1 of [5], and providing useful necessary
conditions on the parameters of a generalised t-design.

Proposition 2.1 Suppose D = (V,B) is a t-(v,k, (λt)) design and I ⊆
V (D), with |I| ≤ t. Then the number of blocks λI containing I is a constant
λi, depending only on the parameters of D and the V-height i of I. Moreover,

λi = λt

(
v − i

t− i

)
/

(
k− i

t− i

)
,

for all tuples t of non-negative integers with |t| = t and i ≤ t ≤ k.

Proof. If i 6≤ k, then λI = λi := 0. Now let t be a tuple of non-negative
integers, such that |t| = t and i ≤ t ≤ k. We count in two ways the number
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N of ordered pairs (T, B), such that B is a block of D, I ⊆ T ⊆ B and

[T ]V = t. Each such T contributes exactly λt pairs, so N =
(
v−i
t−i

)
λt. On

the other hand, each block B containing I contributes exactly
(
k−i
t−i

)
pairs,

so N = λI

(
k−i
t−i

)
. Thus λI = λi := λt

(
v−i
t−i

)
/
(
k−i
t−i

)
.

Corollary 2.2 A generalised t-design is a generalised s-design for each s =
0, . . . , t.

Corollary 2.3 Let b = λ(0,...,0) be the number of blocks of D. Then

λt

(
v

t

)
= b

(
k

t

)
,

for all tuples t of non-negative integers with |t| = t and t ≤ k. In particular,
the sequence (λt) is determined by t,v,k and b.

Example 2 Let H be the cyclic group of order 10 generated by

(1, 2, 3, 4, 5)(7, 8, 9, 10, 11, 12, 13, 14, 15, 16),

and let B be the union of the H-orbits of the sets {1, 2, 3, 9, 11, 14, 16},
{1, 2, 4, 7, 10, 11, 13}, {1, 2, 6, 7, 8, 9, 11} and {1, 3, 6, 10, 11, 15, 16}. The reader
can verify that

E := (({1, . . . , 6}, {7, . . . , 16}),B)

is a 2-((6, 10), (3, 4), (λ(0,2) = 4, λ(1,1) = 6, λ(2,0) = 6)) design. (The design E
was found using the function BlockDesigns in the DESIGN package [10] for
GAP [3]. Indeed, using this function it is easy to classify, up to isomorphism,
the 36 H-invariant generalised 2-designs with the same parameters as E.)
Now any generalised 2-design with the same parameters as E is also a 1-
((6, 10), (3, 4), (λ(0,1) = 12, λ(1,0) = 15)) design, and also a 0-((6, 10), (3, 4), 30)
design.

In a t-(v, k, λ) design, when i + j ≤ t, the number of blocks containing
an i-subset I of the points and disjoint from a j-subset J of the points, with
I ∩ J = ∅, is a constant λj

i := λ
(

v−i−j
k−i

)
/
(

v−t
k−t

)
, not depending on the choice

of i-subset or disjoint j-subset (see [9]). Here we prove an entirely analogous
result for generalised t-designs. In addition, the proof will generalise the
usual “intersection triangles” for t-designs and Steiner systems.
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Proposition 2.4 Suppose D = (V,B) is a t-(v,k, (λt)) design. Let I, J ⊆
V (D), I ∩ J = ∅, and suppose that |I ∪ J | ≤ t, or D is a t-(v,k, 1) design
and I ∪ J is contained in some block of D. Then the number λJ

I of blocks
containing I and disjoint from J is a constant λj

i, depending only on the
parameters of D and the V-heights i and j of I and J respectively. Moreover,
if |i + j| ≤ t and b is the number of blocks of D, then

λj
i = b

(
v − i− j

k− i

)
/

(
v

k

)
= λt

(
v − i− j

k− i

)
/

(
v − t

k− t

)
,

for all tuples t of non-negative integers with |t| = t and t ≤ k.

Proof. We shall use the following notation. For u = (u1, . . . , um) an m-
tuple of integers, and ` ∈ {1, . . . ,m}, let

u(`+) := (u1, . . . , u`−1, u` + 1, u`+1, . . . , um),

u(`−) := (u1, . . . , u`−1, u` − 1, u`+1, . . . , um).

We proceed by induction on |j|, the size of J . If |j| = 0 then J = ∅. We
then have λJ

I = λi if |I| ≤ t, and otherwise, by assumption, I is contained in
a unique block, so λJ

I = 1.
Now suppose |j| > 0, j = (j1, . . . , jm), and V = (V1, . . . , Vm). Choose `

such that j` > 0 and let a ∈ J ∩ V`. Then a 6∈ I, and

λJ
I = λ

J\{a}
I − λ

J\{a}
I∪{a}.

Thus, by induction, for every ` ∈ {1, . . . ,m} such that j` > 0, we have:

λJ
I = λj

i := λ
j(`−)
i − λ

j(`−)
i(`+).

In particular, λJ
I depends only on the parameters of D and i and j.

Now let b be the number of blocks of D, and let i, j be tuples of non-
negative integers, with i + j ≤ v and |i + j| ≤ t. To establish the stated
formulae for the constant λj

i, we count in two ways the number N of ordered
triples (I, J, B), such that I, J ⊆ V (D), I ∩ J = ∅, [I]V = i, [J ]V = j, B is a

block, I ⊆ B, and J ∩ B = ∅. There are
(
v
i

)
choices for I, for each I there

are
(
v−i
j

)
choices for J , and for each I and J there are λj

i choices for B, so

N =
(
v
i

)(
v−i
j

)
λj

i. For the second count, there are b choices for B, for each B
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there are
(
k
i

)
choices for I, and for each B and I there are

(
v−k

j

)
choices for

J , so N = b
(
k
i

)(
v−k

j

)
. Thus

λj
i =

b
(
k
i

)(
v−k

j

)
(
v
i

)(
v−i
j

) = b

(
v − i− j

k− i

)
/

(
v

k

)
.

Now, by Corollary 2.3, for all tuples t of non-negative integers with |t| = t
and t ≤ k, we have

λj
i =

λt

(
v
t

)(
v−i−j
k−i

)
(
k
t

)(
v
k

) = λt

(
v − i− j

k− i

)
/

(
v − t

k− t

)
.

3 The block structure of t-(v,k, λ) designs

In this section, we determine strong restrictions on the block structure of a
generalised t-design with constant λt.

Lemma 3.1 Suppose D = (V,B) is a t-(v,k, λ) design with t > 0, and let
I ⊆ V (D), with |I| = t−1 and [I]V = (i1, . . . , im) ≤ k = (k1, . . . , km). Then,
for each j with kj > ij, the number of blocks of D containing I is equal to

λ(vj − ij)/(kj − ij).

Proof. This follows from Proposition 2.1.

Lemma 3.2 Suppose D = (V,B) is a t-(v,k, λ) design with t > 0, v =
(v1, . . . , vm), k = (k1, . . . , km), block size k ≥ t+1, and with ki = vi for some
i. Then k = v.

Proof. Without loss of generality, suppose k1 = v1, and to obtain a con-
tradiction, assume k 6= v. Then m > 1, and we can suppose, without
loss of generality, that k2 < v2. Now take I ⊆ V with |I| = t − 1 and
[I]V = (i1, . . . , im) ≤ k, such that k1− i1 ≥ 1 and k2− i2 ≥ 1 (this is possible
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since t > 0 and k ≥ t + 1). Now, applying Lemma 3.1, we get that the
number of blocks containing I is equal to

λ(v1 − i1)/(k1 − i1) = λ,

and is also equal to
λ(v2 − i2)/(k2 − i2) > λ,

a contradiction.

Theorem 3.3 Suppose D is a t-(v,k, λ) design with t ≥ 2 and block size
k ≥ t + 2. Then k ∈ {v, (k), (k − 1, 1), (1, k − 1), (1, 1, . . . , 1)}.

Proof. Suppose D = (V,B), v = (v1, . . . , vm) and k = (k1, . . . , km). If
m = 1 then k = (k), and there is nothing to prove. We shall consider the
cases m = 2 and m ≥ 3 separately.

Suppose m = 2. If k1 = 1 or k2 = 1 there is nothing to prove, and
so we assume that k1, k2 ≥ 2. Now take U ⊆ V (D) with |U | = t − 2 and
[U ]V = (u1, u2), such that k1 − u1 ≥ 2 and k2 − u2 ≥ 2 (this is possible since
t ≥ 2 and k ≥ t + 2). Let V = (V1, V2), let ai ∈ Vi \ U and let ni be the
number of blocks containing U ∪ {ai} (i = 1, 2). Now, applying Lemma 3.1,
we have:

n1 = λ(v1 − (u1 + 1))/(k1 − (u1 + 1)) = λ(v2 − u2)/(k2 − u2),

n2 = λ(v1 − u1)/(k1 − u1) = λ(v2 − (u2 + 1))/(k2 − (u2 + 1)).

Thus
(v1 − u1 − 1)(k2 − u2) = (v2 − u2)(k1 − u1 − 1), (1)

(v1 − u1)(k2 − u2 − 1) = (v2 − u2 − 1)(k1 − u1). (2)

Subtracting (2) from (1), we obtain

−k2 + u2 + v1 − u1 = −v2 + u2 + k1 − u1,

and so v1 + v2 = k1 + k2, and since 0 ≤ ki ≤ vi, we must have k1 = v1 and
k2 = v2; that is, k = v.

Suppose now m ≥ 3 and k 6= (1, 1, . . . , 1). Without loss of generality,
k1 ≥ 2. Now take U ⊆ V with |U | = t−2 and [U ]V = (u1, . . . , um) ≤ k, such
that k1−u1 ≥ 2, k2−u2 ≥ 1 and k3−u3 ≥ 1 (this is possible since t ≥ 2 and
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k ≥ t + 2). Let V = (V1, . . . , Vm), let ai ∈ Vi \U and let ni be the number of
blocks containing U ∪ {ai} (i = 1, 2, 3). Now, applying Lemma 3.1, we have:

n1 = λ(v1 − (u1 + 1))/(k1 − (u1 + 1)) = λ(v2 − u2)/(k2 − u2),

n3 = λ(v1 − u1)/(k1 − u1) = λ(v2 − u2)/(k2 − u2).

Thus n1 = n3, and so

(v1 − u1 − 1)(k1 − u1) = (v1 − u1)(k1 − u1 − 1).

From this we obtain −k1 + u1 = −v1 + u1, and so v1 = k1. By Lemma 3.2,
we have k = v, and the proof is complete.

We remark that the block multiset of a t-(v,k, λ) design with k = v
consists of the complete point-set repeated λ times. A t-(v,k, λ) design with
k = (k − 1, 1) (or (1, k − 1)) and k > t > 0 is more interesting. In such
a design, the point set is the disjoint union of a v1-set V1 and a v2-set V2,
a block consists of a (k − 1)-subset of V1, together with a “label” from V2.
Restricting the blocks to V1, we get a t-(v1, k − 1, λ) design, and the labels
from V2 define a partition of this t-design into (t− 1)-(v1, k − 1, λ) designs.

We additionally remark that the preceding theorem says nothing about
the interesting case of t-(v,k, λ) designs with block size k = t + 1. Many
interesting examples of such designs, with small t and k, are studied in [1].

4 Intersection numbers of order r for gener-

alised t-designs

Mendelsohn [8] introduced the concept of intersection numbers of order r
for a t-design, with respect to a block of that design, and showed that these
intersection numbers satisfy a certain system of integer linear equations. The
concept of intersection numbers of order r, and Mendelsohn’s equations, have
since been generalised and applied to block designs which are not necessarily
t-designs and to graphs (see [12, 2, 11]).

In this section we provide another generalisation of intersection numbers
of order r and the equations they satisfy, this time in a way appropriate for
generalised t-designs.

9



Let D = (V,B) be a generalised t-design, with B = [B1, . . . , Bb], and let
S ⊆ V (D) with |S| ≥ t and s := [S]V. Further, let i be a tuple of non-
negative integers with i ≤ s. Then for r a positive integer, the i-th intersec-
tion number of order r, with respect to S, denoted n

(r)
i (S) (or n

(r)
i (D, S)), is

defined to be the number of r-subsets R of {1, . . . , b}, such that ∩i∈RBi ∩ S

has V-height i. In particular, n
(1)
i (S) is the number of blocks B of D (count-

ing repeats), such that [B ∩ S]V = i.

Theorem 4.1 Let D = (V, [B1, . . . , Bb]) be a generalised t-design, and let
all heights be with respect to V. Let S ⊆ V (D) with s := |S| ≥ t and let r be
a positive integer. Then for each tuple j of non-negative integers such that
|j| ≤ t and j ≤ s := [S], we have:

∑
j≤i≤s

(
i

j

)
n

(r)
i (S) =

(
s

j

)(
λj

r

)

(where λj is the number of blocks containing a point-subset of height j).

Proof. Let j be a tuple of non-negative integers with |j| ≤ t and j ≤ s, and
count in two ways the number Nj of ordered pairs (R, J), such that R is an
r-subset of {1, . . . , b} and J is a subset, of height j, of both S and ∩i∈RBi.

Now each subset J of S with [J ] = j contributes exactly
(

λj

r

)
pairs of the

form (∗, J) to Nj, and so

Nj =
∑

J⊆S,[J ]=j

(
λj

r

)
=

(
s

j

)(
λj

r

)
.

On the other hand, each r-subset R of {1, . . . , b} contributes exactly(
[
⋂

i∈R Bi
⋂

S]

j

)

pairs of the form (R, ∗) to Nj, and so

Nj =
∑

R⊆{1,...,b},|R|=r

(
[
⋂

i∈R Bi
⋂

S]

j

)
=

∑
j≤i≤s

(
i

j

)
n

(r)
i (S).

Hence the result.
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We remark that this result is proved for the case when D is a t-design
and S is a block in [8], and in general for t-designs in [12]. A different
generalisation to graphs and general block designs is given in [11] (from
which we have adapted our proof of Theorem 4.1).

Example 3 Let D = (V,B) be any 2-((6, 10), (3, 4), (λ(0,2) = 4, λ(1,1) =
6, λ(2,0) = 6)) design. We apply our generalisation of Mendelsohn’s equa-
tions in the case r = 1 to obtain some information about the V-heights of
intersections of blocks of D.

Let B be a block of D, k := [B]V = (3, 4), and let ni := n
(1)
i (B) for the

(twenty) non-negative integer tuples i ≤ k. Then the following six linear
equations hold:∑

j≤i≤k

(
i

j

)
ni =

(
k

j

)
λj for j ∈ {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}, (3)

together with the inequalities:

ni ≥ 0 for i < k, and nk ≥ 1. (4)

Now the system consisting of all the linear constraints in (3) and (4) can
be studied using exact linear or integer programming methods, which in
particular can be used to obtain upper and lower bounds on each ni. Here we
make use of the exact linear programming package simplex in the computer
algebra system Maple [4].

For example, given the linear constraints in (3) and (4), the function
maximize of the simplex package tells us that n(3,4) ≤ 9/5 in any solution
to these constraints with rational ni, and so n(3,4) ≤ 1 in any solution with
integer ni, and so D cannot have repeated blocks. Similarly, the minimize

function of simplex tells us that n(1,2) ≥ 2 in any solution with rational ni,
and so each block B of D must intersect at least two blocks in a subset of
V-height (1, 2). Furthermore, after adding to (3) and (4) the two constraints
n(1,4) ≥ 1 and n(2,3) ≥ 1, the simplex package function feasible informs us
that there are no solutions with rational ni (and hence none with integer ni).
This tells us that in D, there can be no blocks B, X, Y , with B ∩X having
V-height (1, 4) and B ∩ Y having V-height (2, 3).

Finally, we remark that, as well as our generalisation of Mendelsohn’s
equations, the block intersection polynomial techniques of Cameron and
Soicher [2, 11] can also be used to study generalised t-designs with given
parameters.
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