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Abstract

Given a metric d on a permutation group G, the corresponding weight problem is
to decide whether there exists an element = € G such that d(m,e) = k, for some
given value k. Here we show that this problem is NP-complete for many well-known
metrics. An analogous problem in matrix groups, eigenvalue-free problem, and two
related problems in permutation groups, the maximum and minimum weight prob-
lems, are also investigated in this paper.
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1 Introduction

Given a metric d on S, the weight of m € S,, is defined to be wy(7) = d(7, €),
where e is the identity. Now we are interested in the following weight problems:

Problem 1 d-Weight Problem

Instance: Generators for G in the form of products of cycles, and k in the
range of d.

Question: Whether there is an element m € G such that wq(m) = k.
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Problem 2 d-Maximum Weight Problem

Instance: Generators for G in the form of products of cycles, and k in the
range of d.

Question: Whether max,cq wq(m) > k.

Problem 3 d-Minimum Weight Problem

Instance: Generators for G in the form of products of cycles, and k in the
range of d.

Question: Whether mingcq ey wa(m) < k.

Often the permutation group G is given by a set of generating permutations
{91, 92, -, gm } where each g; is presented as the product of cycles. From such
input much information, such as |G| and a membership test, can be obtained
by the Schreier—Sims algorithm in polynomial time [5]. There are also many
other polynomial algorithms obtained for different properties of G. For further
information, [16] is a good resource.

For the metrics studied in this paper (see Section 2), which include many
well-known metrics, the weight of a given permutation can be calculated in
polynomial time. Therefore the above three weight problems for them are in
NP. In this paper, we will investigate the computational complexity of these
problems.

As we will see in Section 3, the weight problems for permutation groups are
closely linked with the weight problems in coding theory. In [1], Berlekamp et al.
proved that the weight problem for linear binary codes is NP-complete. Later,
Vardy showed that the minimum weight problem is also NP-complete for lin-
ear binary codes in [18].

For the Hamming metric, the NP-completeness of the weight problem was
discovered by Buchheim and Jiinger in [2]. In permutation groups, the weight
problem is also related to the subgroup distance problem, where one asks
whether min, ¢y d(m,7) < K for a given 7 € S, a set of generators of a
subgroup H of S,, and an integer K. The complexity of this problem was
studied by Pinch for the Cayley metric in [14], and later generalized to other
cases by Buchheim et al. in [4].

In this paper, we give a simple reduction from the permutation group problem
to the coding problem and prove that, the weight problem and the minimum
weight problem of many well known metrics (Section 2) is NP-complete. For
the maximum weight problem, we show it is NP-complete for these metrics
by a reduction from a well known NP-complete problem NAESAT [13].
The case [, is a bit different, since the maximum weight problem is in P; the
other two problems are shown to be NP-complete by a different reduction. We
also prove the NP-completeness of a problem, the Eigenvalue-Free problem
(Section 7), for matrix groups over finite field. Let us remark here that an



extended abstract, including some of these results, has appeared in [7].

The remainder of this paper is organized as follows. After surveying some
metrics on a permutation group in Section 2, we investigate the connection
between the weight problems of permutation groups and codes in Section 3.
The maximum weight problem for Hamming metric is studied in Section 4
and the other cases is investigated in Section 5 with one exception, the [,
which is studied in Section 6. The problem in matrix groups is discussed in
Section 7 and we study some further topics with open problems in Section 8.

2 Some metrics on permutation groups

A metric d on S, is called right-invariant if d(w,0) = d(n7,o7) for any 7,0, 7 €
S,. If d is right-invariant, then d(m, o) = d(ro~', e) = wyg(mo~!). Conversely,
if w is any function from 5, to the non-negative real numbers satisfying

e w(m) =0 if and only if T = e,
e w(mo) < w(m)+ w(o) for any m,0 € S,

then w is the norm derived from a right-invariant metric on S,,.

A metric d is left-invariant if d(7,0) = d(7m, 7o) for any m, 0,7 € S,. If wy is
the norm derived from a right-invariant metric d, then d is left-invariant if and
only if wy is conjugation-invariant, that is, w(omo™!) = w(rw) for all m, 0 € S,,.
This holds if and only if the metric d does not depend on the ordering of the
set {1,...,n} on which S, acts.

In this section we will survey some well known right-invariant metrics on S,,.
For more detailed discussion, we recommend [8,9].

e Hamming Distance: H(m, o) = |[{i|m(i) # o(i)}|.

o Cayley Distance: T(mw, o) is the minimum number of transpositions taking
mto o.

e Movement: The movement of a permutation 7 (see [15]) is defined as

M(r) = | max |x(4)\ Al

This is easily seen to be a norm, and so the corresponding metric given by
dyr(m,0) = M(om™ 1) is right-invariant.

e Footrule: ly(m,0) = Y0 |7n(i) — o(i)].

e Spearman’s rank correlation: la(m, o) = \/ (i) —o(1))2.

o I, (1<p<oo)ly(mo)= /s, |n(i) — a(i)

o | (T, 0) =max <<, |7(i) — o (i)].




e Lee Distance: L(m,0) = >0 min(|7(i) — o(i)|,n — |7(i) — o()|)
o Kendall’s tau: I(mw,0) = the minimum number of pairwise adjacent trans-
positions needed to obtain ¢ from 7, i.e,

I(m,0) = {0, )N <4, 5 < m,w(i) <7(5),0(i) > a(5)}]

e Ulam’s Distance: U(mw,0) = n — k, where k is the length of the longest
increasing subsequence in (o7~1(1),- -+, om 1(n)).

For a taste of the above metrics, we give the following table to show the weight
of elements in Klein four-group G = ((1,2)(3,4) (1, 3)(2,4)).

T cycles H|\M|T)|L Iy Ly | LT |U
[1,2,3,4] | (D)@2)B)Y4) | 0] 0]0o|0o]| 0 0 010]0]0
2,1,4,3] | (1,2)(34) | 4| 2 |2 |4| 2 Y4 114]2]2
3,4,1,2] | (1,3)(24) | 4] 2| 2|8 4 2¢/4 28412
[4,3,2,1] | (1,4)(23) | 4| 2 |28 |20 | ¢2(1+3°)| 3 |4]6]|3

The Hamming, Cayley and movement metrics are left-invariant; the others are
not.

We note that the minimum Hamming weight of a permutation group G is
usually called the minimal degree of GG; this parameter was extensively studied
in the classical literature of permutation groups.

3 A connection with coding theory

In this section, we will prove that the weight problem and minimum weight
problem for all the metrics given in Section 2 except for [, are NP-complete
by using a reduction from some problems in coding theory.

Recall that the Hamming weight w(c) of a binary word ¢ of length n is defined
to be the number of non-zero coordinates of c¢. A linear binary code C' is
a subspace of 7, given by a set of words forming a basis E for C. The
Hamming weight and maximum and minimum weight problems for linear
codes are defined as in the permutation group case.

Berlekamp et al. [1] proved that the weight problem for linear binary codes
is NP-complete, and their method was adapted by Vardy [18] to show that
the minimum weight problem for linear codes is also NP-complete. Now we
summarize their results as the following theorem.



Theorem 4 The weight problem and the minimum weight problem for linear
binary codes are both NP-complete.

Strictly speaking, the input linear code in their papers is given by a matrix A
such that the code C' = {z : zA = 0}, but we can use Gaussian elimination
to get a basis F for the code.

Given a linear binary code C' of length n, we can construct a permutation
group G(C) < S,,, isomorphic to the additive group of C, as follows: to
each codeword ¢ € FE, the basis for C', we associate a permutation 7. which
interchanges 2¢ — 1 and 2¢ if ¢; = 1, and fixes these two points if ¢; = 0. In
other words, {m. | ¢ € E} provides a set of generators for the permutation
group G. Since 7o, Te, = ey 4ey, We know 7 is well defined for each code word
in C' as well. The following example shows how this process works.

Example Consider the code C given by its basis £ = {c1,co} with ¢; =
0100 and ¢ = 0101. Then G = (7., 7.,) is a permutation group acting on
{1,2,---,8} with the following two generators:

e, = (3,4) and 7., = (3,4)(7,8).

Now the Hamming weight of 7. is twice the Hamming weight w(c) of ¢. More-
over, since |m.(7) —i| < 1 for all i, the weights defined by all our metrics except
l» are monotonic functions of the Hamming weight of ¢: we have

o wp(m.) = wy(m.) = wi(m.) = wy(m.) = w(c);
o wy(m.) = wr(m.) = 2w(c);
o wy (m.) = (2w(c)) V.

It follows that the weight problem and minimum weight problem for all the
metrics given in Section 2 except for [, are NP-complete:

Theorem 5 The weight problem and the minimum weight problem for the
Hamming, Cayley, movement, 1, (for 1 < p < oo), Kendall’s tau, Lee and
Ulam metrics are all NP-complete.

The weight and minimum weight problem for [, requires separate treatment,
as does the maximum weight problem for all metrics.

4 Maximum Hamming weight problem and the FPF problem

The largest possible weight for a linear code C' of length n is n; this is attained
only if C' contains the all-1 vector. Given a basis for C', this can be checked



in polynomial time. So we need a different argument for the maximum weight
problem.

Elements g € G with Hamming weight n (also called fized point free elements
or derangements) are of special interest in many applications. Formally, we
have

wy(g) =n < fixg(g) = {a € Qlag = a} =0.

All such elements form a subset of GG, denoted by:

FPF(G) = {glwn(g) = n} = {g € G|(Va € Q)arg # a}.

In short, we will call G fized point free (FPF) if FPF(G) # (). Notice that
wy(g) < n holds for any element g € G < S,,. Therefore, the problem of
deciding whether there is an element g € G with Hamming weight n is the
the same as the following problem:

Problem 6 Fized-Point-Free (FPF)
Instance: Generators for G in the form of product cycles.
Question: Whether G is FPF.

Since we can verify whether ¢ € FPF(G) in polynomial time by checking the
action of g on each point of 2, FPF belongs to NP. Now we will prove the
NP-completeness of the maximum Hamming weight problem by showing that
FPF is NP-complete. To this end, we construct a polynomial-time reduction
from NAESAT, an NP-complete problem [13] defined as:

Problem 7 NAESAT

Instance: Collection C' = {cy, o, -+, cm} of clauses on a finite set U of boolean
variables such that |c;| =3 for 1 <i < m.

Question: Is there a truth assignment for U such that in no clause are all three
literals equal in truth value (neither all true nor all false)?

Given an arbitrary instance of NAESAT (U, C), that is, a set of n variables
U={xy, -, x,} and a set of m clauses C' = {cy, 2, - -, ¢, }, each with length
3, we will construct a permutation group G such that GG is FPF if and only if
there exists a truth assignment of (U, C') such that no clause from C has all
literals true, or all literals false.

To this end we construct a domain Q = {1,2,---,2n+4m} and a permutation
group G acting on it. Here G = (g;, g/ | i = 1,---,n) and the cycle structure
of each generator is given as follows.

Step 1: For each z; in U, we have the variable gadget (2¢ — 1, 2¢) and associate



it with generators g; and g.

Step 2: For each clause ¢; = ¢;1 V ¢j2 V ¢; 3, we have the clause gadgets

hii=p+1,p+2)(p+3,p+4)
hia=@+1,p+3)(p+2,p+4)
hjs={@+1Lp+4)(p+2,p+3)

where p =2n +4(5 — 1).

Furthermore, each clause gadget is associated with a generator via the follow-
ing way:

o If ¢j; = x4, then hjy, is associated with generator g;.
o If ¢;, = T4, then hj is associated with generator g;.

To show how the above transformation works, we give an example:

Example: The transformation from NAESAT to FPF.

We are given an instance of NAESAT (U, () as follows: U = {1, xs, 23},
and C = {cy, ¢g, c3, ¢4}, where

C1 :l’l\/.TQ\/.T3,

(6)) :If'l\/i‘g\/fg,

C3 :IL'l\/l‘Q\/fg,

cs =21V 2oV 3.

Then {t(x;) =T, t(xs) =F, t(xs) = T} is a satisfying truth assignment such
that all clauses take diverse values.

By the above transformation process, we have G' = (g1, g1, 92, 95, g3, g5), which
acts on the domain Q = {1,2,---,22}.

8)(9,10)(15, 16)(17, 18);
,12)(

)
H\—/

® g (1 2) 2)(

° gi = (1,2)h2 1h471 = (1, 2)( 13, 14)(19,20)(21,22);

® (o = (3,4)h1 ohsohyo = (3 )(7, 9)(8 10)(15, 17)(16, 18)(19,21)(20,22);
° gé = (3,4)h22 = (3,4)(11, 13)(12, 14)

o g3 = (5,6)h173h43 = (5,6)(7, 10)(8,9)(19, 22)(20, 21)

° gé = (5,6)h273h33 = (5,6)(1 ,14)(12, 13)(15, 18)(16 17)

It’s straightforward to show that g = g1¢593 € FPF(G), corresponding to the
truth assignment.

Because each instance of NAESAT with n variables and m clauses will be
transformed to a group G with 2n generators acting on a domain €2 of size
2n+ 4m, such procedure can be completed in polynomial time. Now we claim:

Lemma 8 For the group G constructed as above, FPF(G) # 0 if and only if



(U, C) has a truth assignment such that each clause has diverse values.

PROOF. Let t: U — {F, T} be a truth assignment of (U, C) such that each
clause of C' has diverse values. Consider the element, g = g¥'¢}' ™" - .. g¥n g/ 7",

where y; = 0 if ¢(z;) = F and y; = 1 otherwise. In other words,

g= 11 @ II 9

t(ui)zT t(Uj)ZF

Recall that G is acting on the domain 2 = {1,2,---,2n + 4m}. Now we will
show that g € FPF(G), i.e., ag # g for each point « € ), by considering the
following two cases:

e a < 2n. This implies a € [2k — 1,2k] for an integer £ € [1,n]. From
the construction of the generators, ag; = ag, = g for i # k. Therefore
ag = agltg, TV = a(2k — 1,2k) Y = o(2k — 1,2k) # a.

e « > 2n. In this case, a € [p+1,p+4] for some p =2n+4(j—1), 1 < j < m.
Without loss of generality, assume o = 2n+ 1 and ¢; = x1 V 25 V 23. Then

_ Y1 Y2 Y3 __ Y1 Y2 Y3
ag = agy g2 g3 = Oéh1,1h1,2h1,3 #

because v = (y1,¥2,y3) # (0,0,0) and v # (1,1,1), from the fact that ¢;
has diverse values.

In the other direction, as FPF(G) # 0, let g € FPF(G) for some g € G. Since
each generator of G has order 2, g = g¥'¢{*" - - - g¥n¢/,”" with y;, z; € {0, 1} for
1 <i < n.Now we claim z; = 1 — y; for each i. Otherwise for some k € [1,n],
we have z;, + y = 0 (mod 2), which implies ag = a(2k — 1, 2k)* % = « for
a € {2k — 1,2k}, a contradiction to the fact that g € FPF(G). Consider the
following truth assignment ¢ : U — {T', F'}:

t(z;) = F ify; =0, and t(x;) = T, otherwise.
Now we claim that each clause c; (1 < j < m) from C has diverse values
under this assignment. By contradiction, assume without loss of generality

that ¢, = 1 V 9 V 3 has the same values. That means, (y1,y2,y3) = (0,0,0)
or (y1,y2,y3) = (1,1,1). In both cases, we have

YL Y2 US 1Yl 1Y2 Y3
&g = Qg1 g2 93 = Qh1,1h1,2h1,3 =a,

for any a € [p+1, p+4], where p = 2n+4(j —1). This contradiction completes
the proof of this lemma.



Furthermore, the above lemma implies:
Theorem 9 FPF is NP-complete.
The following corollary is an easy consequence of our construction.

Corollary 10 FPF is NP-complete even when G is an elementary abelian
2-group and each orbit has size at most 4.

Because FPF is a special case of the maximum Hamming weight problem,
now we obtain the following theorem:

Theorem 11 The maximum Hamming weight problem is NP-complete, even
when G 1s an elementary abelian 2-group and each orbit has size at most 4.

We remark that the NP-completeness of FPF can be proved by a reduction
from 3SAT, as was done in [2], but the argument given here allows smaller
groups to be used. This will be important for similar arguments in Section 7.

5 The maximum weight problem for other metrics

In this section we will consider the maximum weight problems corresponding
to the metrics defined in Section 2, with the exception of /..

5.1  Cayley metric and movement

Lemma 12 For an elementary abelian 2-group G, we have

w(g) = M(g) =2-wr(g) for allg € G.

PROOF. Because G is an elementary abelian 2-group, we know each g € G
has only 1-cycles and 2-cycles. And any 1-cycle contributes 0 to Hamming and
Cayley weights and movement, while 2-cycles contribute 2 to the Hamming
weight and 1 to the Cayley weight and movement.

The above lemma implies that the Cayley weight problem and the movement
weight problem can be reduced to the Hamming weight problem. In other
words, it leads directly to the following theorem.

Theorem 13 The mazimum movement and Cayley weight problems are NP -
complete, even when G is an elementary abelian 2-group and each orbit has



size at most 4.

5.2 1, metric

We define the span of an orbit O to be max(O) — min(O).

Similar to the transformation process in Section 4, this problem can be re-
duced from NAESAT. For any instance of NAESAT with n variables and m
clauses, the domain is Q = {1,2,---,2n+ 12m} and the permutation group G
is given by 2n generators, which are constructed by variable gadgets and clause
gadgets. Now the variable gadgets are the same as that in Section 4 but the
clause gadgets needed to be modified a bit: for each clause ¢; = ¢;1V¢j2Vejs,
the clause gadgets act on a block [q,q + 12], where ¢ = 2n + 12(j — 1), as
follows.

Woy=(q+1,q+2)(q+3,q+4)(q¢+5,¢+7)(¢+6)(qg+8)
(¢+9,¢+12)(¢+10,q + 11)

Wiy=(q+1,¢+3)(q+2,¢+4)(q+5,¢+8)(qg+6,g+7)
(q+9,¢+10)(g + 11,9 + 12)

Wys=(q+1,q+4)(q+2,¢+3)(q+5¢+6)(qg+7,q+8)
(q+9,q+11)(qg + 10,9 + 12)

Calculation shows that wy, (b)) = wi, (M) = wy, (hf3) = V6 +4-20 +2-3p
for 1 < p < co. On the other hand, wy, (2i — 1,2i) = ¥/2 for i € [1,n]. Let

K=n¥V24+mv6+4-20+2.3p.

Since h'; ) = R h 5, hig = R 0.5 and B3 = b R, we know wy,(9) < K
holds for any g € G. Furthermore, g € FPF(G) if and only if w;,(g) = K.
Therefore an argument similar to that in Section 4 leads to the following

theorem:
Theorem 14 For 1 < p < oo, the maximum [, weight problem is NP-

complete, even when G is an elementary abelian 2-group and each orbit has
span at most 12.

10



5.8 Lee metric

The maximum Lee weight problem is similar to the [, weight problem. More
precisely, if G is a permutation group on a domain {1,...,n} which fixes all
points i > n/2, then the Lee weight and [; weight coincide on G. This implies
the following theorem:

Theorem 15 The mazximum Lee weight problem is NP-complete, even when
G is an elementary abelian 2-group and each orbit has span at most 12.

5.4  Kendall’s tau and Ulam metrics

We use the same construction as that for [, weight problem in Section 5.2. Now
w;(hgﬂ) = wl(h;ﬂ) = wl(h;g) = 12 and wU(h;J) = wU(hgﬂ) = wU(h;73) =7,
which imply the following theorem:

Theorem 16 The maximum Kendall’s tau and Ulam weight problems are
NP-complete, even when G is an elementary abelian 2-group.

6 The [, weight problems

The proof that the [, weight problem is NP-complete is similar but a bit
more complicated. Part of the reason for this is the following result:

Theorem 17 The I, maximum weight problem is in P.

PROOF. The [, norm of any permutation in G is bounded above by the
maximum span of an orbit of (G. Moreover, this bound is attained, since there
exists 7 € G with 7(min(0O)) = max(O) for any orbit O. Now the result
follows since the orbits can be calculated in polynomial time (they are the
connected components of the union of the functional digraphs corresponding
to the generators of G).

However, the following holds:

Theorem 18 The [, weight problem and minimum weight problem for G are
both NP -complete, even when G is an elementary abelian group and each orbit
has span 7.

11



PROOF. We use the usual strategy, reduction from NAESAT, with an extra
trick. The clause gadgets are a bit more complicated. Define permutations

h'17 h’27 h3 by

hi = (1,3)(2,4)(5,7)(6,8)(9, 13)(10, 14)(11, 15)(12, 16)(17, 23) (18, 24)
(19,21)(20,22)

hy = (1,5)(2,6)(3,7)(4,8)(9,15)(10, 16)(11, 13)(12, 14)(17, 19)(18, 20)
(21, 23)(22,24)

hs=(1,7)(2,8)(3,5)(4,6)(9,11)(10, 12)(13, 15)(14, 16)(17, 21)(18, 22)
(19, 23)(20, 24)

Note that each of these has [, weight 6. We also take a permutation

g=1(1,8)(2,7)(3,6)(4,5)(9,16)(10, 15)(11, 14) (12, 13)(17, 24)(18, 23)
(19, 22)(20, 21)

Note that g has weight 7 but gh; has weight 5 for i = 1,2, 3. We can translate
each of these permutations to act on the block [p+1, p+24] in the obvious way
without changing the [, weight. In other words, for an instance of NAESAT

with n variables and m clauses, we will construct a domain Q = {1,2,---,2n+
24m}.

For a variable gadget we can simply take one of the permutations h;, and the
same permutation g.

Now let H be the group produced as in Section 3, and GG be generated by H
and the element which acts as g on every gadget. Consider the question: does
G have an element of norm 57 Such an element must be of the form gh, where
h is non-identity on each block; so norm 5 is realised if and only if the group
in Section 3 has a FPF element, which we have shown is NP-complete.

Since the minimum [,-norm of elements of G is either 5 or 6, the NP-
completeness for minimum norm is also established.

7 The weight problem for matrix groups

In linear groups over finite fields, eigenvalue-free matrices (that is, matrices
having no eigenvalues) play a similar role to fixed-point-free matrices in per-
mutation groups. See, for example, the enumeration results for classical groups
in [12].

12



So we want to consider the following problem in matrix groups corresponding
to the FPF problem in permutation groups:

Problem 19 Figenvalue-Free (EF)
Instance: Generators for a matrixz group M.
Question: Whether M contains an Eigenvalue-free matrix.

Now we have the following theorem:

Theorem 20 The Eigenvalue-free problem (EF ) is NP-complete.

PROOF. We follow the proof for FPF, using matrices rather than permu-
tations as our variable and clause gadgets.

A matrix is eigenvalue-free if and only if it acts fixed-point-freely on the pro-
jective space. Now the projective line over IF3 contains four points, and admits a
Klein four-group, induced by the quaternion subgroup H = {£I, +a;, *as, *a3}
of GL(2,F3), where

01 11 1 -1
ay = ) Az = ) as =
—-10 1 -1 -1 -1
We have a} = a3 = a2 = ajagaz = —1.

Let @ denote the image of a in PGL(2,F3), and H={a:a€c H} = H/F;.
Then H is isomorphic to the Klein group Zs X Zs, as is the subgroup formed
by the clause gadgets in Section 4.

Now it’s easy to check that ai, as and az are eigenvalue-free. Take one of
them, say a;, as the variable gadget. Similar to the proof in Section 4, we
construct a matrix group M = (My, M],---, M,, M!) with each M, of size
(2n + 2m) X (2n + 2m) for an arbitrary instance (U,C') of NAESAT with
|U| =n and |C| = m. The matrix M; has the following block structure:

Mt = diag{Al,AQ, c '7AnyBla Ty Bm}7

where A; is the variable gadget a; and all other A; (i # t) are I, and B is
a; for some 1 < j < 3 if and only if 2; appears in the j-th position of clause
¢; and the others are I. The same method is used to construct M, while we
should notice that B; is a; if and only if #; appears in the j-th position of
clause ¢.

The proof that (U, C') has a satisfying assignment for NAESAT if and only

13



if M contains an eigenvalue-free matrix is similar to that in Section 4 and we
will leave it as an exercise to the reader.

8 Further topics and open problems

In this section, we discuss further topics and open problems related to weight
problems.

8.1 Fized-point-free elements in transitive groups

Although FPF is NP-complete in arbitrary permutation groups, it is trivial
in transitive groups, because of an old result of Jordan [11,17]: for n > 1, the
answer is always “Yes”; that is, every transitive group of degree n > 1 contains
a FPF element. It is further known [6] that a proportion at least 1/n of the
elements of such a group are FPF. We could modify the problem to ask: How
hard is it to find a FPF element?

There is a very simple randomized algorithm to find a FPF element. If we
choose kn elements of G' at random, then the probability that we do not find
a FPF element is at most

1 kn
(1 — —) < e*k,
n

that is, exponentially small.

We conjecture that there is a deterministic polynomial-time algorithm to find
a FPF element in a transitive group. The algorithm (based on a proof in [10])
would run as follows:

Step 1: Since blocks of imprimitivity can be found in polynomial time, and
since an element of g which fixes no block of imprimitivity must be FPF on
points as well, we can reduce to the case where the group G is primitive.

Step 2: Now a minimal normal subgroup /N of GG is transitive, and is a product
of isomorphic simple groups. If IV is regular, then any of its elements except
e is FPF. Otherwise, one more iteration of Steps 1 and 2 gives a group which
is primitive and non-abelian simple.

Step 3: Now we identify the simple group and its action (using the Classifica-
tion of Finite Simple Groups), and from this knowledge, find a FPF element
directly.
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For example, suppose that the simple group G is an alternating group A,,,
(with its “natural” action on the set {1,...,m}), and let H be the stabiliser
of a point in the given action on {1,...,n}. Then H is a maximal subgroup
of G. If H contains a 3-cycle (in the natural action), then H is the stabiliser
of a subset or a partition of {1,...,m}, and in either case we can choose an
element of A,, lying in no conjugate of H. Otherwise, a 3-cycle (in the natural
action) is FPF (in the given action).

It seems likely, but is not entirely clear, that Steps 2 and 3 can be done in
polynomial time. Certainly the algorithm is by no means simple!

In [10], it is shown that a transitive permutation group of degree greater than 1
contains a FPF element whose order is a power of a prime. The proof of this
theorem, unlike Jordan’s, requires the Classification of Finite Simple Groups.
What is the complexity of finding such an element? The algorithm outlined
above may work for this question as well.

We have been unable to decide the complexity of the weight problems for the
other metrics considered in this paper restricted to transitive groups.

Another open question is to decide the complexity of #FPF, the counting
problem of FPF, for a transitive group G. For general groups, this problem
is #P complete since our transformation from NAESAT is parsimonious.
(See Welsh [19] for background.) However, when G is transitive, the FPF
problem is trivial but the complexity of #FPF remains unknown though the
approximation is easy via a conclusion in [6].

8.2 Other metrics

If ¥ is any set of generators of S, satisfying ¥ = X!, the Cayley graph
Cay(Sy, X) has vertex set S, and an edge from 7 to on for any = € S,,. The
distance function in the Cayley graph is a right-invariant metric. It is left-
invariant if and only if ¥ is a normal subset of S,, that is, 7¥7~! = X for all
T™ES,.

The Cayley metric and Kendall’s tau arise in this way, taking > to be the set
of all transpositions and the set of all adjacent transpositions respectively.

Given a set 3 which can be specified with a polynomial amount of information
(for example, ¥ of polynomial size or consisting of elements with one of a list
of polynomial size of cycle types), we can ask about the Weight Problem for
the metric defined by the Cayley graph Cay(.S,,%).

Metrics on .S, which are not right-invariant have also been studied. In this case,
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in place of the weight problem as stated earlier, we ask whether a particular
value of the metric is attained as the distance between two elements of the
given subgroup G.

For example, the commutation distance on S,, is the distance in the commu-
tation graph, whose vertex set is S, \ {e}, with an edge between 7 and o if
and only if 7o = om. (Since e commutes with every element, extending this
metric to all of S, in the obvious way would make the commutation distance
trivial!) Our techniques are of no help in the problem of deciding which values
of this distance occur on G \ {e} for a given group G. This metric is neither
right nor left invariant but it is conjugation-invariant.

For the metrics mentioned in Section 2, there is a dichotomy for their weight
problems: each is either in P or NP-complete. Is there a general dichotomy
theorem for problems of this type? If not, can we construct some metrics whose
weight problems are between these two categories?

8.8 Complex linear groups

Our questions about Hamming distance for permutation groups can be gener-
alised to linear groups, if we do not require that the “norm function” is derived
from a metric. The character of a complex linear representation of a group
G is the function yx, where x(g) is the trace of the matrix representing g, for
g € G. Note that any permutation group has a natural matrix representation
(by permutation matrices); the character of this representation is given by
x(g) = fix(G), the number of fixed points.

So the analogue of the Weight Problem is: Given matrices generating a group
G (over the complex numbers) and a complex number ¢, is there an element
g € G with x(g) = ¢? This problem is NP-complete since it includes the
Hamming weight problem for permutation groups.

There is also an analogue to the material in Section 8.1. A theorem of Burn-
side [3, p.319] shows that, if the complex representation of G with degree
greater than 1 is irreducible, then there is an element g € G with x(g) = 0.
(This is analogous to Jordan’s result, but is not a generalisation since the
representation of a transitive permutation group by permutation matrices is
not irreducible.) So we can ask the question: what is the complexity of finding
such an element?
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8.4 Other properties

We conclude this section with a general observation. For some cycle structures,
deciding whether a permutation group given by a set of generators contains a
permutation with such structure is NP-complete. For example, in Section 4,
we showed that FPF is NP-complete, and in our example, a FPF element
is necessarily a product of 2-cycles. On the other hand, the total number of
cycles of a permutation 7, including fixed points, is n —wr (7). Therefore from
Section 5.1, to decide whether G contains an element with a specified number
of cycles is NP-complete.

Similarly we can “translate” problems concerning metrics into related proper-
ties. For Ulam’s metric, we can define an associate sequence s of a permutation
7 to be a longest increasing subsequence in (7~1(1),..., 7 !(n)). Then to de-
cide whether G contains a permutation with associate sequence with given
length is hard. The same approach can be used to find hard problems for
other metrics.
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