The External Representation of Block Designs

Peter Dobcsanyi and Hatem A. Nassrat

December 10, 2008

Version: 3.0 8

Copyright (©) 2008 Peter Dobcsényi, and Hatem A. Nassrat.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with the Invariant Section DESIGN.RNC, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license can be read at gnu.org/copyleft/fdl.html .

This document and the information contained herein is provided on an “AS IS” basis and the
Authors DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL
NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

This document is based on The External Representation of Block Designs v1.1 by Peter J. Cameron,
Peter Dobcsanyi, John P. Morgan, and Leonard H. Soicher [8].

Please send comments, questions, bug reports to extrep at designtheory dot org .

http://www.gnu.org/copyleft/fdl.html
mailto:extrep@designtheory.org

Contents

1 Introduction

1.1 A Simple Example
2 What is a Block Design?
3 The Concept of External Representation
4 Schema Language

5 Indexing and Functions
5.1 Indexing and Ordering e
5.2 Functions and Index Flags

6 Permutation groups
7 Numerical Data Types

8 Block Designs

8.1 [Essential Properties
8.2 Indicators L e
8.3 Combinatorial Propertieso
8.3.1 Point Concurrences
8.3.2 Block concurrences
8.3.3 t-design properties
8.3.4 «a-resolvability oL
8.3.5 t-wise balance
8.4 Automorphisms
8.5 Resolutions L
8.6 Statistical Properties
8.6.1 Canonical variances
8.6.2 Pairwise varianceso
8.6.3 Optimality criteria
8.6.4 Other ordering criteria
8.6.5 Efficiency factors

11

12

15

8.6.6 Robustness properties
8.6.7 Computational details

8.6.8 Design orderings based on the information matrix
9 Lists of Block Designs
10 Implementation Policies
A Design Schema

B An example

42

44

46

54

1 Introduction

This document should be of interest to those working in combinatorial or statistical design theory,
as well as those interested in the development of standard electronic formats for mathematical
objects.

The Ezternal Representation of Designs is to be used to store designs and their combinatorial,
group theoretical and statistical properties in a standard platform-independent manner (external
means external to any software). This will allow for the straightforward exchange of designs and
their properties between various computer systems, including databases and web servers, and com-
binatorial, group theoretical and statistical packages. The external representation will also be used
for outside submissions to our design database.

We have concentrated our initial development effort in the area of block designs, and in this
document we present our standard for the External Representation of Block Designs. We shall
give a full explanation and provide examples. We have tried to make the document readable by
non-experts, since we don’t expect everyone to be an expert in all the areas covered.

1.1 A Simple Example

We start with a simple example. It is a list of designs, in our external representation, containing a
single design, known as the Fano plane.

{
"type" : "block_design",
"id" : "t2-v7-b7-r3-k3-L1-0",
"v" . 7,
"b" 7,
"blocks" : [
to, 1, 21, [o, 3, 41, [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6],
[2, 4, 5]
]
}

The design is described in JSON. Later in this document we discuss why we have chosen JSON
for the specification of block designs. For now, if we look at the example above code, we will see
listed within the list structure under the key designs the specification of the named design: it has
v = T points, b = 7 blocks, and the seven blocks are listed (the first one being [0, 1,2]). The design
also includes a string identifier. This identifier is a remiminent of the previous Ext Rep [3]. This
attribute will be discussed in the section (8.1) discussing essential properties of block designs.

In JSON there are two main structure and a set of basic data types. The main structures being
the list structure and the object structure. If you are familiar with scripting languages like
python, and JavaScript the JSON list structure is identical in syntax. Where elements of a list are
separated by commas. The object structure denotes a mapping data structure where a key maps
to a value. Both list elements and object values can be any JSON data type or structure where
as object keys need to be a basic data type. These data structures are used to build the external
representation of block designs described in this document. Design properties are represented by

keys within the various JSON objects within one design, where in some cases for compression they
have been grouped into a simple list structure when appropriate.

This document contains our specification of an “external representation” of block designs, together
with an explanation of the terms used, and some justification for doing it in the way we have chosen.

2 What is a Block Design?

Block designs are viewed in different ways by combinatorialists and statisticians. To a statistician,
a block design is a set of “plots” or “experimental units” which carries a partition into “blocks”,
and a function from this set to the set of “treatments”. A combinatorialist regards the set of
treatments as basic (and usually calls them “points”), and identifies each block with the multiset
of treatments occurring on plots in that block; thus, a block design is a set of points together with
a multiset of multisets of points.

A multiset is essentially the same thing as a sorted list which may contain repeated items. In this
documentation, and in the external representation of block designs, we represent a multiset as a
list in square brackets [],

For the purpose of this specification, we have chosen to use the representation as a multiset of
multisets.

Here is a small example. Suppose that we have six plots, numbered 1,2, 3,4, 5,6, with blocks [1, 2, 3]
and [4,5,6]. Suppose that treatment A is applied to plots 1,2, 4,5, and treatment B to plots 3 and
6. Then we represent the block design as having point set [A, B] and blocks [[A, A, B, [A, A, B]].
(Since the lists are sorted, we would represent the design in same way even if, say, treatment B was
applied to plots 1 and 5.) The names of the plots have disappeared, but the plots can be recovered
as incident point-block pairs or “flags”. We always represent block designs in this way.

In this example, blocks have the awkward property that they are multisets (rather than sets) of
points. While this does occur in practice, we have decided to exclude such designs for the time
being, for various reasons. A block design is called binary if no treatment occurs more than once
in a block, that is, if the blocks are represented by sets (rather than general multisets) of points.
All block designs in this document will be binary.

Here is an example of a binary design. It is the Fano plane from the Introduction, viewed in a
slightly different way. There are 21 plots, partitioned into seven blocks of three; there are seven
treatments, numbered from 0 to 6, as shown in the following table (whose columns represent the
blocks):

—_
w
Ut
w
W

Further details can be found in the items on block designs in the Encyclopaedia of Design Theory,
or in our survey paper [3].

http://designtheory.org/library/encyc

3 The Concept of External Representation

The concept of External Representation of designs can be best understood through its role in the
operation of the Design Theory Resource Server (DTRS). DTRS has many faces, it will be an ever
growing database of designs, application server, web server for design related online documents,
software repository etc. The main purpose of the external representation is to provide a platform
independent method for information exchange about designs. With other words, the external
representation acts as a communication protocol specialized for “talking about designs”. This
protocol is used in communication between various components of DTRS and its users. Here the
concept “users” covers both human and software agents. Some examples for such communicating
agents: database back-end for storing designs, middle layers between the database and the web
and/or application servers, a researcher uploading some particular collection of designs, a user
searching for designs having given properties, a statistical application program directly accessing
the DTRS database etc. While these agents are free to use any internal representation of designs,
they must use the standard external representation when they communicate with each other.

The external representation is used in three main areas:

1. An external representation is a formalism to encode various classes of designs as mathematical
objects together with their most important properties. Many of these properties are complex
mathematical objects in their own right.

2. The external representation can define invariants of a given list of designs. The use of such
invariants provides a method for formulating complex queries about designs. A query will
be expressed in terms of list invariants and the reply to this query will be a list of designs
satisfying these invariants.

3. The external representation will be used as a specification tool to determine the content and,
to some extent, the structure of the DTRS design database. Note, however, the database’s
internal representation can (and probably will) be quite different from this format.

Based on the above functionalities, we have determined the main technical requirements for an
external representation as it follows.

e It can express the particular mathematical structures.

e It represents a hierarchical structure: a rooted, labelled tree.
e It is hardware/software platform independent and text based.
e It can be easily parsed.

To satisfy the above requirements the authors of [3] discussed multiple options. They looked into
Lisp S-expressions and XML as possibilities for their external representation. And decided to use

XML to implement their external representations versions 1.1 [8] and 2.0 [7]. The main driving
force behind their decision was due to the practical considerations, since there are a wide variety

of tools available to parse and print XML formats. However, when working with XML one quickly

http://designtheory.org

sees that it takes time for the human eye to find information within an XML document. This
paper proposes the external representation for block designs version 3.0 implemented in JavaScript
Object Notation (JSON) [10]. This languages has many advantages over its predecessor XML in
terms of readability and reduced syntax. It does not carry the verbose quality of XML where tags
that denote subtrees require repetition. It is also more readable since it is easy to see the native
tree structure using the JSON data structures. It also satisfies the requirements for transfer of our
mathematical content due to its native support for numbers, booleans and strings when needed.
The example snippet displayed earlier along with more to come expose these qualities. Since its
creation in 2006 JSON has grown very popular in the data exchange realm due to its simplicity and
many parsers/dumpers have been written in many programming languages [!] which emphasizes
its practicality as a communication protocol.

In this documentation we focus on encoding block designs and their properties, while considering
human readability. This focus deals mainly with the first element in the quoted list of areas that
the external representation of block designs deals with. The other two functionalities and other
types of designs are subjects of further research and development.

In order to document the external representation trees implemented in JSON we use a novel schema
language reminiscent of the Relax NG [2] schema language for XML. The complete schema can be
seen in Appendix A of this document. Snippets will be placed within the sections of this document
to explain the related external representation structures and the JSON structures they produce.

4 Schema Language

When discussing a data representation a schema language is essential in order to explain how the
data looks and how it may be formed. Although examples may help explain how the data should
be presented, a formal schema is required to guide the users and serve as a reference when writing
complying documents. This schema is quite simple and is meant to resemble the language of choice
for the external representation (JSON) as to simplify the understanding process.

The schematic description of a JSON structure is the structure itself. In addition it is augmented
with some of the standard BNF symbols, specifically the ones listed in the following table:

0 Grouping

? Optional

\ An OR expression

* | Repition of zero or more
+ | Repition of one or more

These symbols are used slightly differently in our schema than their use in standard BNF. In
our schema the binary operators 7 | * + are placed prior to the entity they act upon. This
choice was made to add readability to the schema, especially when using large sub-structures in
the schema.

Since all of our internal tree node identifiers, represented by “object keys” in JSON structures,
are strings that do not contain any white space or similar special characters, we have removed the

quotation marks needed in JSON from the schema language. Similarly some quotation marks were
removed from string literals in the value segments of the structure when they need not be there.
This makes the schema languages easier to see and read. Otherwise any character appearing in
the schema is expected to be in a conforming “Ext Rep” v3.0 (short for external representation)
document. Needless to say, that the BNF symbols serve as syntax drivers and the produced
expansion is what the conforming document should match. The following example will help explain
the rest of the features of our simple schema language:

<map> = {
(<preimage> | <preimage_cardinality> | blank) ,
image : (<number> | not_applicable)

};

<preimage> = preimage : [
$integer *(, $integer)
| [$integer *(, $integer) 1 *(, [$integer *(, $integer) 1)
| entire_domain

13
<preimage_cardinality> = preimage_cardinality : $integer ;
<number> = $integer | $float | <rational> ;

<rational> = { Q : [$integer, $integer] } ;

From the above example we can see how basic data types are represented in this schema language.
The basic data types in JSON are number, string, and boolean [10]. In our schema we split number
into either integer, floating point or rational (§). Each of these types are represented in the schema
when preceded with a $ sign. The angle brackets (<>) surrounding the identifiers denote a place
holder. They can match a definition, i.e. when they are being defined, and they would precede an
equal (=) sign. These place holders may also occur within a definition, signifying that they should
be replaced with what was defined upon them. It is a rule for this schema language that in order
to use a place holder it has to be previously defined in the file. Documents which conform to our
schema are said to be “Extrep v3 Compliant”.

5 Indexing and Functions

We describe here some conventions referring to the indexing of objects, and the representation of
functions.

5.1 Indexing and Ordering

We adopt the convention that, if a block design has v points, then the points are the integers
0,1,...,v—1. This is a combination of two assumptions: the points are ordered; and the index set
starts at O (rather than 1).

There are several choices of ordering of sets (or multisets) of points. We have chosen to order in
the following way:
e first compare the length of the two lists; the shorter comes first.

e for lists of the same length, we order lexicographically. (Recall that the lists are sorted.)
So for example, here are a few sets in order:
[2]7 [07 1]7 [07 2]7 [17 2]7 [17 2]7 [07 17 3]7 [17 27 3]7 [07 17 27 3]

For the purpose of defining functions on the collection of blocks, we now index these blocks from 0
to b — 1, where b is the number of blocks of the design. If the above list contains all the blocks of
a certain design D, then we can refer to block 5 of D, which will be the set [0, 1, 3] in this case.

The same principle can be extended to lists of lists. Assuming that the “inner” lists are already
ordered, we first compare the length of the two lists, and if they are equal, we order the lists
“lexicographically” (with the order previously defined between list elements). This process can be
continued recursively to any level of nesting.

However, we do not require that this ordering is adhered to throughout the tree. Nevertheless, the
following objects must be ordered:

e cycle_type

e blocks
The following objects may be required to be ordered (they have a boolean attribute ordered):

e function_on_indices

e function_on_ksubsets_of_indices
e canonical_variances

e canonical efficiency_factors

Functions on indices, and on k-subsets of indices, are described next. For cycle types, see the
section 8.4 on Automorphisms.

10

5.2 Functions and Index Flags

A function f with finite domain can be given by listing all (x, f(z)) pairs. Note that this list when
spelled out in print can be a very large one, in particular, if the x-s are complex objects on their
own. To help on this problem we can do several things:

e Instead of using x-s themself we use only indices referring to them. function_on_indices is
defined to do this.

The underlying principle is that if the external representation explicitly contains the related
objects in a well defined (canonical) order then, in general, we use indexing as a way to refer
to these objects. Nesting, in this sense, is not allowed.

e Frequently the domain of our functions is the set of k-subsets of some of our objects. function_on ksubsets_o
is defined for this situation.

e Regarding the (x, f(z)) pair, we allow several kinds of “contractions” (see map below):

— If different x-s map to the same image, then instead of listing all these pairs we say
({x,z1,29,...}, f(x)). If the function f has just one image f(x) we may say (entire_domain, f(x)).

— Sometimes the user is not interested in the preimage {x,z1,z2,...} of f(z), but only in
its cardinality, so we allow (|{z,z1,z2,...}|, f(2)).

— Finally, we even allow leaving the preimage part of the pair blank, just giving the list of
function values (, f(z)).

In fact, the user may only be interested in the image cardinality, in which case the entire function
body may be blank.

In more detail, the function on_indices, is schematically (Section 4) described as:

<function_on_indices> = {

domain : (points | blocks) ,
n : $integer ,
ordered : (true | unknown) ,
7(image_cardinality : $integer ,)
7(precision : $integer ,)
7(title : $string ,)
maps : [?2(<map> *(, <map>))]

};

This specifies a function on either points or blocks. n is the cardinality of the domain. ordered
specifies whether the function entries are ordered (by preimages): if the function body is not blank
and each preimage is given explicitly or (if there is just one function image) or as the one element
list containing the string “entire_domain” (i.e. neither as a preimage_cardinality nor blank),
then the value of ordered must be “true”, otherwise it is “unknown”. precision is required if the
function values are real numbers and specifies the precision to which they have been computed. A
function is given by a sequence of map’s, each of which is specified as follows:

11

<map> = {
(<preimage> | <preimage_cardinality> | blank) ,
image : (<number> | not_applicable)

};

<preimage> = preimage : [
$integer *(, $integer)
| [$integer *(, $integer) 1 *(, [$integer *(, $integer)])
| entire_domain

1;

<preimage_cardinality> = preimage_cardinality : $integer ;

For an example of the use of function_on_indices, see section 8.5 on Resolutions.

The function_ on ksubsets_of_indices specification works in the same way when the domain
consists of all sets of points or blocks of fixed size k:

<function_on_ksubsets_of_indices> = {

domain_base : (points | blocks) ,
n : $integer ,
k : $integer ,
ordered : (true | unknown) ,
7(image_cardinality : $integer ,)
7(precision : $integer ,)
?(title : $string ,)
maps : [7(<map> *(, <map>)) 1]

};

For an example of its use, see the section 8.3.1 on Point concurrences.

We use the concept of index flag to store an element in a list of “fuzzy booleans”:
<index_flag> = "$integer" : ($boolean | unknown) ;

For example, we may want to record for which values of « a design is a-resolvable; for each value
of a, the answer may be “true”, “false”, or “unknown”.

6 Permutation groups

Permutation groups appear in many areas of design theory, in particular as automorphism groups
of designs.

The specification of an permutation group is:

<permutation_group> = permutation_group : {
degree : $integer ,
order : $integer ,

12

domain : points ,
<generators>
7(, <permutation_group_properties>)

3

<permutation_group_properties> = permutation_group_properties : {
<permutation_group_properties_member> *(, <permutation_group_properties_member>)

+

<generators> = generators : [7 (<permutation> *(, <permutation>)) 1;

<permutation> = [$integer *(, $integer) 1;

There are four compulsory properties:

degree
An attribute giving the number n of points on which the permutations are defined (the
permutation group will then act on the indices {0,...,n —1}).

order

An attribute giving the number of permutations in the group.

domain
An attribute specifying the domain indexed by the points 0,...,n — 1.

generators
A list of permutations which generate the group. A permutation is represented by the ordered
list of its values (the images of the points 0,...,n — 1 under the permutation).

For example, the permutation group which is the automorphism group of our Fano plane can be

given as:
"permutation_group" : {

"degree" : 7,

"order" : 168,

"domain" : "points",

"generators" : [
(1, o, 2, 3, 5, 4, 6], [0, 2, 1, 3, 4, 6, 5], [0, 3, 4, 1, 2, 5, 6],
(o, 1, 2, 5, 6, 3, 41, [0, 1, 2, 4, 3, 6, 5]

]
}

There are also various properties which can optionally be specified:

primitive
True if the group acts primitively on points. A permutation group is primitive if it preserves
no non-trivial equivalence relation. By convention, we assume that a primitive group is
transitive (that is, any point can be carried to any other by some group element). (So the
trivial group acting on two points is not primitive.)

13

generously_transitive, multiplicity free, stratifiable

Each orbit of the group acting on the set of ordered pairs of points can be represented by a
matrix of zeros and ones of order n (which can be thought of as the characteristic function of
the orbit). These basis matrices span the centraliser algebra of the group (the algebra of all
matrices commuting with the group elements). Now the group is generously transitive if all
the basis matrices are symmetric; it is multiplicity-free if the basis matrices commute; and it
is stratifiable if the symmetrised basis matrices commute. Each concept implies its successor
in the order given.

A transitive permutation group is generously transitive iff any two points can be interchanged
by some element of the group; it is multiplicity-free iff no irreducible constituent of the
permutation character occurs with multiplicity greater than 1; and it is stratifiable iff the
orbits of the group on unordered pairs form an association scheme. All these properties are
false if the group is not transitive.

no_orbits
The number of orbits on points. The group is transitive exactly when there is just one orbit
on points.

degree_transitivity
The maximum number s such that the group is s-transitive on points (that is, any s-tuple of
distinct points can be carried to any other by some group element).

rank
The number of orbits of the group on the set of ordered pairs of points. Note that this is
defined for any permutation group; if the group is transitive, it is equal to the number of
orbits of the stabiliser of a point.

cycle_type_representatives
see below

The cycle type of a permutation is the multiset of its cycle lengths (when it is written as a product of
disjoint cycles). The element cycle_type_representative consists of a cycle type and an element
of the group having that cycle type, and optionally the number of elements of the group having that
cycle type. cycle_type_representatives is a list of these cycle_type_representative elements,
one for each cycle type represented by an element of the group.

For the example above, there are five cycle types, [7],[1,2,4],[1,3,3],[1,1,1,2,2], and [1,1,1,1,1,1,1]
(the last being the identity). The cycle type representative for the second type is:

{
"permutation" : [0, 3, 4, 5, 6, 1, 2],
"cycle_type" : [1, 3, 3],
"no_having_cycle_type" : 56

}

14

7 Numerical Data Types

Some of the numerical data in the external representation are the result of possibly inexact com-
putations. Basically, there are three sources of this inaccuracy:

e The inaccuracy of the finite floating point representation.
e Arithmetical errors during computation.

e Cutting short an otherwise infinite approximation process.

The end result is that, in general, numbers in the external representation can be considered correct
only within certain limits. We say they are “precise” up to some significant figures (see the details
below).

The external representation version 1.1 provides the following numerical data types:

e Arbitrary precision integers (schematically $integer).

e Arbitrary precision rationals (schematically <rational>) written in {q : [a,b]} format where
a (the numerator) and b (the denominator) are both integers.

e Floating point decimals (schematically $float) up to some given precision specified as the
number of significant digits.

A conforming software implementation must provide the corresponding internal representations.

Here are the rules for representing numerical data in the external representation:

e If a number is the result of an inexact computation then it must be represented using the
decimal data type.

e The decimal representation of an inexact number must always contain the decimal point
regardless the number would round up to an integer.

e Exact numbers must be represented either using the integer or the rational data type.

The precision of decimal numbers is indicated by an optional attribute precision of particular
elements. The entries from our schema which can have this attribute are: <list_of_designs>,
<block_design>, <function. on_...>,

<statistical_properties>. The rationale for having many elements with the optional precision
attribute is to provide flexible scoping rules and avoid unnecessary repetition.

The precision attribute gives the number of significant figures of all decimal numbers in the tree
whose root contains the attribute. This precision can be overridden by giving different precision
in one or more subtrees. In general, a precision of a decimal number is the precision given in the
root of the smallest subtree containing the number and with a root having a specified precision
attribute. If an external representation document contains any data which is the result result of
inexact computation, precision must be specified.

15

8 Block Designs

Recall our blanket assumption that all block designs are binary: this means that no treatment occurs
more than once in a block, so that the blocks are sets rather than general multisets. However, it
can happen that the same set occurs more than once in the list of blocks; that is, the list of blocks
may be a multiset. In this case we say that the design has repeated blocks.

8.1 Essential Properties

The specification of block_design is as follows:

<block_design> = {

type : block_design ,
id : ($string | $integer) ,
v : $integer ,
?7C b : $integer ,)
?7(precision : $integer ,)
<blocks>

?7(, <point_labels>)

?(, <indicators>)

?(, <combinatorial_properties>)

?7(, <block_design_automorphism_group>)
?7(, <resolutions>)

7(, <statistical_properties>)

7(, <alternative_representations>)

?(, <info>)

};

The first four components of the specification are:

id
An identifier for the design, unique within the given document.
v
An attribute giving the number of points.
b
An attribute giving the number of blocks (optional).
blocks

The list of blocks (as described above). The list must be ordered:

<blocks> = blocks : [<block> *(, <block>) 1;

<block> = [$integer *(, $integer) 1;

Here is the design from the example in the Introduction, including only the components above:

16

"type" : "block_design",

"id" : "t2-v7-b7-r3-k3-L1-0",

Ilvll . 7’

Ilbll . 7’

"blocks" : [
to, 1, 21, [o, 3, 41, [0, 5, 61, [1, 3, 5], [1, 4, 6], [2, 3, 6],
(2, 4, 5]

]
}

All these components, except the attribute b, are essential. The subsequent elements are optional.
The first optional element is point_labels. If, for example, the design has been built from a set
of points in a projective geometry, the point labels might be the coordinates of the points. More
important for applications, the point labels could be the actual treatments associated to the points
in the experimental plan (after randomisation). The point labels, if present, should form a list of
length v.

The identifier must be unique within a given Ext Rep document. However, it cannot be guaranteed
that this identifier is globally unique unless matched against a database containing all combinatorial
designs. A design with some arbitrary “id” would be sent to the database for approval, once allowed
in the database, a globally unique identifier would be generated.

8.2 Indicators

Indicators are boolean variables which record certain properties which a block design may have.
We have included the following indicators:

repeated_blocks
True if the same set occurs more than once in the list of blocks.

resolvable
True if the design has a resolution, which is a partition of the blocks into subsets called parallel
classes or resolution classes, each of which forms a partition of the point set.

affine resolvable
True if the design is affine resolvable, which means that the design is resolvable and any two
blocks not in the same parallel class of a resolution meet in a constant number p of points.
If the design is affine resolvable then we optionally give this constant g (unless the design
consists of a single parallel class, in which case p is not defined).

equireplicate
True if each point lies in a fixed number r of blocks. If so, then we also optionally give the
replication number 7.

constant_blocksize
True if each block contains a fixed number k of points. If so, then we optionally also give the
block size k.

17

t_design
True if the block design is a t-design for some ¢ > 1. This means that the design has constant
block size and that any t points are contained in a positive constant number A of blocks. If
so, then we optionally give the maximum value of ¢ for which this holds.

connected
True if the incidence graph of the block design is a connected graph. (The incidence graph or
Levi graph of a block design is the bipartite graph whose vertices are the points and blocks
of the design, a point and block being adjacent if the point is contained in the block.) We
optionally give the number of connected components of the incidence graph.

pairwise_balanced
True if v > 1 and the number of blocks containing two distinct points is a positive constant
A. If so, then we optionally give this A.

variance_balanced
True if v > 1 and the intra-block information matrix has v — 1 identical, nonzero eigenvalues.
Equivalently, the v — 1 canonical variances are all equal (and finite). For definitions of terms
used here, see section 8.6 on Statistical Properties.

efficiency_balanced
True if v > 1 and the v—1 statistical canonical efficiency factors are identical and nonzero. For
equireplicate designs, this is equivalent to variance_balanced, but not genenerally otherwise.
Also see the section 8.6 Statistical Properties.

cyclic
True if the design has an automorphism which permutes all the points in a single cycle.

one_rotational
True if the design has an automorphism which fixes one point and permutes the other v — 1
points in a single cycle.

In the last two cases, an automorphism with the stated properties can be found under cycle type representative:
described in section 8.4 on Automorphisms.

The several different sorts of balance are explained in the Encyclopaedia. For a (binary) design
with constant block size, variance balance reduces to pairwise balance. For a equireplicate (binary)
design with constant block size, efficiency balance reduces to pairwise balance.

The schematic description for indicators is:

<indicators> = indicators : { <indicator> *(, <indicator>) } ;

<indicator> =
repeated_blocks : $boolean
| resolvable : $boolean
| affine_resolvable : ($boolean | { mu : $integer })
| equireplicate : ($boolean | { r : $integer })
| constant_blocksize : ($boolean | { k : $integer })

18

http://designtheory.org/library/encyc

t_design : ($boolean | { maximum_t : $integer })

|

| connected : ($boolean | { no_components : $integer })
| pairwise_balanced : ($boolean | { lambda : $integer })
| variance_balanced : $boolean

| efficiency_balanced : $boolean

| cyclic : $boolean

| one_rotational : $boolean

The indicators for our example are:

"indicators" : {
"repeated_blocks" : false,
"resolvable" : false,
"affine_resolvable" : false,
"equireplicate" : {
"r" . 3

},

"constant_blocksize" : {
"k" o 3

3,

"t_design" : {
"maximum_t" : 2

},

"connected" : {
"no_components" : 1

3,

"pairwise_balanced" : {
"lambda" : 1

3,

"variance_balanced" : true,

"efficiency_balanced" : true,

"cyclic" : true,

"one_rotational" : false

8.3 Combinatorial Properties

Combinatorial properties are those which can be computed exactly from the list of blocks of the
design. We include the following:

<combinatorial_properties> =
combinatorial_properties : {
<point_concurrences> ,
<block_concurrences> ,
<t_design_properties> ,
<alpha_resolvable> ,
<t_wise_balanced>

19

<point_concurrences> = point_concurrences : [
<function_on_ksubsets_of_indices> *(, <function_on_ksubsets_of_indices>)

1;

<block_concurrences> = block_concurrences : [
<function_on_ksubsets_of_indices> *(, <function_on_ksubsets_of_indices>)

1;

<t_design_properties> = t_design_properties : {
t_design_properties_member *(, t_design_properties_member)

};

<t_design_properties_member> =
parameters : {

t : $integer ,

v : $integer ,

b : $integer ,

r : $integer ,

k : $integer ,

lambda : $integer

}

| square : $boolean
| projective_plane : $boolean
| affine_plane : $boolean
| steiner_system : ($boolean | { t: $integer })
|

steiner_triple_system : $boolean

<alpha_resolvable> = { <index_flag> *(, <index_flag>) };

<index_flag> = "$integer" : ($boolean | unknown) ;

<t_wise_balanced> = { <t_index_flag> *(, <t_index_flag>) } ;
<t_index_flag> = "$integer" : ($boolean | unknown | { lambda: $integer }) ;

8.3.1 Point Concurrences

Fach entry in the point_concurrences is a function on the t-element sets of points, for some
positive integer t, giving the number of blocks containing each t-set. We use the general mechanism
for function_ on ksubsets_of_indices with k = ¢, to do this. Note that a block design is t-wise
balanced (see 8.3.5) if and only if the point concurrence function for k& = ¢ takes only a single value.

For example, here is a small block design:

{
"type" : "block_design",
"id" : "v3-bb-r3-1",
llvll . 3’

20

llbll . 5’
"blocks" : [
(o, 21, ro, 11, (1, 21, [0, 1, 2]

and here are its t-wise point concurrences for t = 1, 2:

"point_concurrences" : [
{

"domain_base" : "points",

"n" : 3,

k" o: 1,

"ordered" : true,

"title" : "replication_numbers",

"maps" : [

{

"preimage" : ["entire_domain"],
"image" : 3

}

(-

"domain_base" : "points",
"n" : 3,
"k" o2,
"ordered" : true,
"title" : "pairwise_point_concurrences",
"maps" : [
{
"preimage" : [
[0, 2]
1,
"image" : 1
3,
{
"preimage" : [
(o, 11, [1, 2]
1,
"image" : 2

}

8.3.2 Block concurrences
Similarly, here we record the functions giving the numbers of points in the intersection of t-sets

of blocks. The blocks are indexed from 0 to b — 1, and we again use the general mechanism for
function_on ksubsets_of_indices.

21

In practice, we almost always use the compressed representation of this function where we give only
the preimage cardinalities (as described in section 5.2 on Functions and index flags).

For example, in the Fano plane, any block contains three points, and any two blocks meet in one
point. This is recorded as follows:

"block_concurrences" : [
{
"domain_base" : "blocks",
"n" 7,
"k o1,
"ordered" : "unknown",
"title" : "block_sizes",
"maps" : [
{
"preimage_cardinality" : 7,
"image" : 3
}
]
},
{
"domain_base" : "blocks",
"n" 7,
"k 2,
"ordered" : "unknown",
"title" : "pairwise_block_intersection_sizes",
"maps" : [
{
"preimage_cardinality" : 21,
"image" : 1
}
]
}
]

8.3.3 t-design properties

(To be extended)
This is the area of greatest interest to combinatorialists.

Let t,v, k, A be natural numbers with ¢ < k < v and A > 0. A ¢-(v, k, \) design is a block design
with the properties

e there are v points;
e cach block contains exactly k points;

e any ¢ points are contained in exactly A blocks.

22

A t-design is a block design which is a t-(v, k, A) design for some v, k, A.

If our design is a t-design for some ¢ > 1, we record in the element t_design properties the
attributes ¢, v, b, r, k, \. Here v and b have their usual meaning, and k are the replication number
and block size, and ¢t and A have the properties of the definition. We do not guarantee that the
design is not a t’-design for some ¢’ > t. (On the other hand, a t-design is also an s-design for any
s<t.)

We also record some properties of the t-design. At present, we have the following:

square
True if the numbers of points and blocks are equal.

projective_plane
True if the design is a projective plane.

affine_plane
True if the design is an affine plane.

steiner_system
True if the design is a t — (v, k, 1) design for some ¢, v, k. We also optioanlly record the relevant
value of ¢ (which may not be the same as the attribute called t).

steiner_triple_system
True if the design is a 2 — (v, 3,1) design.

For example, the t-design properties of the Fano plane are as follows:

"t_design_properties" : {
"parameters" : {

"t 2,

IIVI| . 7

"b" 7,
"r" oo 3,
"k" o 3,
"lambda" : 1

>

1,
"square" : true,
"projective_plane" : true,
"affine_plane" : false,
"steiner_system" : {

"t 2
1,

"steiner_triple_system" : true

More properties will be included here. Among others, these will include different specific types of
t-designs, and intersection triangles for Steiner systems.

23

8.3.4 «a-resolvability

A resolution was defined above, but it can be described as a partition of the block multiset of the
design into subdesigns, each of which is equireplicate with » = 1. More generally, an a-resolution
is a partition of the design into subdesigns, each of which is equireplicate with r = a.

The element alpha resolvable is a mapping of index flags, which record, for relevant positive
values of «, whether the property is true, false or unknown. It is schematically represented as
follows:

<alpha_resolvable> = { <index_flag> *(, <index_flag>) };

<index_flag> = "$integer" : ($boolean | unknown) ;

An example for a t-design, with parameters t =2, v =9, k = 3, A = 1, displaying this attribute.

"alpha_resolvable" : {

s {
"lambda" : 4

3,

oy {
"lambda" : 1

3,

"4" . true

From the above snippet we can deduce that the above design contains atleast a resolution, since it
is a-resolvable for r=1, and that is a-resolvable, for r=2 and r=4.

8.3.5 t-wise balance

A block design is t-wise balanced if each set of ¢ distinct points is contained in a constant number
of blocks; it does not imply constant block size. (The two properties together specify a t-design.)
Unlike for t-designs, a block design may be t-wise balanced but not s-wise balanced for s < t.
We store information about the values of ¢ for which the design is ¢t-wise balanced as mapping of
t_index _flags.

Here is an example of the t_wise_balanced element for the Fano plane:

"t_wise_balanced" : {
s {
"lambda" : 3
1,
s {
"lambda" : 1
}
}

24

t-wise balanced is schematically described as:
<t_wise_balanced> = { <t_index_flag> *(, <t_index_flag>) } ;

<t_index_flag> = "$integer" : ($boolean | unknown | { lambda: $integer }) ;

8.4 Automorphisms

An automorphism of a block design is a permutation of the set of points of the design such that,
if this permutation is applied to the elements of each block, the multiset of blocks is the same as
before. (In other words: the block multiset is a list of lists; if we apply the permutation to all
elements of the inner lists, re-sort each inner list, and then re-sort the outer list, the result is the
same as the original list.)

The collection of all automorphisms forms a group, that is, it is closed under composition of per-
mutations. Thus, the automorphism group of a design is a permutation group on the set of points.

If the block design does not have repeated blocks, then each automorphism induces a permutation
on the set [0,...,b— 1] of block indices: this permutation carries ¢ to j if the image of the i-th block
under the automorphism is the j-th block. In this case, the automorphism group has an induced
action on the set of block indices. If there are repeated blocks, the action on the set of block indices
is undefined.

For example, the example in the Introduction has an automorphism [1, 3,5, 2,0, 6,4] (mapping 0 to
1, 1 to 3, etc.) Altogether this famous design has 168 automorphisms.

The specifications for automorphism groups and their properties for block designs are:

<block_design_automorphism_group> = automorphism_group: {
<permutation_group>,
<block_design_automorphism_group_properties>

};

<permutation_group> = permutation_group : {
degree : $integer ,

order : $integer ,
domain : points ,
<generators>

?7(, <permutation_group_properties>)

};

<block_design_automorphism_group_properties> =
automorphism_group_properties: {

block_primitive : ($boolean | not_applicable) ,
degree_block_transitivity : ($integer | not_applicable) ,
no_block_orbits : ($integer | not_applicable)

}
Permutation groups and their properties have already been described in section 6. Some properties

of the automorphism group are specific to block designs, and are (optionally) described separately
under automorphism group_properties. They are:

25

block_primitive
True if the group acts primitively on blocks. (If there are repeated blocks, this is not defined,
and takes the value not_applicable.)

no_block_orbits
The number of orbits on blocks. (If there are repeated blocks, this is not defined, and takes
the value not_applicable.)

degree_block_transitivity
The maximum number s such that the group is s-transitive on blocks. (If there are repeated
blocks, this is not defined, and takes the value not_applicable.)

8.5 Resolutions

Recall that a resolution of a block design is a partition of the blocks into subsets, each of which
forms a partition of the point set. Such a partition of the block (multi)set can be represented as
a function on the set of indices of blocks (the parts of the partition being the preimages of the
elements in the range of the function). We thus store a resolution as a function_ on_indices with
domain="blocks".

An automorphism of a resolution is a permutation of the set of points of the design such that, if
this permutation is applied to the elements of each block in each resolution class, the (multi)set
of resolution classes is the same as before. The collection of all automorphisms of a resolution
of a design forms a subgroup of the automorphism group of the design itself, and we use the
same automorphism group structure for the automorphism group of a resolution as we do for
the automorphism group of a block design (although the automorphism group_properties for a
resolution are different than those for a block design).

We specify a resolution as follows:

<resolution> = A
function_on_indices: <function_on_indices>
7(, <resolution_automorphism_group>)

};

A block design D may have more than one resolution. We say that two resolutions R and S of
D are isomorphic if there is an element ¢ in the automorphism group of D, such that, when g is
applied to the elements of each block in each resolution class of R, the resulting resolution is equal
to S. Isomorphism defines an equivalence relation on the set of resolutions of D.

We use the element resolutions to store a nonempty list of (distinct) resolutions of a resolvable
design. The attributes of this entry are used to specify whether the listed resolutions are pairwise
nonisomorphic and whether all isomorphism classes of resolutions are represented in the list.

<resolutions> = resolutions : {

pairwise_nonisomorphic : ($boolean | unknown) ,
all_classes_represented : ($boolean | unknown) ,
value : [<resolution> *(, <resolution>)]

};

26

We now display a famous resolvable design, the affine plane of order 3, which has just one resolution.

"external_representation_version" : "3.0",
"design_type" : "block_design",
"number_of_designs" : 1,
"invariants" : {
"relations" : [
["e", "=", 2],
["v", "=t 9],
["p", "=", 12],
[z, "=, 4],
["k", "=", 3],
["lambda", "=", 1]
]
},
"pairwise_nonisomorphic" : true,
"complete_upto_isomorphism" : true,
"designs" : [
{
"type" : "block_design",
"id" : "t2-v9-b12-r4-k3-L1-0",
"y" . 9,
"b" : 12,
"blocks" : [
(o, 1, 21, [o, 3, 41, [o, 5, 61, [0, 7, 8], [1, 3, 58], [1, 4, 71,
(1, 6, 81, [2, 3, 81, [2, 4, 6], [2, 5, 71, [3, 6, 7], [4, 5, 8]

1,

"resolutions" : {
"pairwise_nonisomorphic" : true,
"all_classes_represented" : true,
"value" : [

{
"function_on_indices" : {
"domain" : "blocks",
"n" @ 12,
"ordered" : true,
"title" : "resolution",
"maps" : [
{
"preimage" : [0, 10, 117,
"image" : O
},
{
"preimage" : [1, 6, 9],
"image" : 1
},
{

"preimage" : [2, 5, 7],
"image" : 2

27

{
"preimage" : [3, 4, 8],

"image" : 3
}
]
},
"automorphism_group" : {
"permutation_group" : {
"degree" : 9,
"order" : 432,
"domain" : "points",
"generators" : [
(o, 2, 1, 4, 3, 6, 5,8, 7, [2,1,0,5,7, 3, 8, 4, 6],
(s, 6, 7, 4, 0, 2, 8, 5, 11, [1, 0, 2, 3, 5, 4, 7, 6, 8],
(o, 2, 1, 3, 4, 8, 7, 6, 51, [0, 3, 4, 1, 2, 5, 6, 8, 7],
(2, 1, 0, 3, 8, 5, 7, 6, 41, [0, 2, 1, 3, 4, 8, 7, 6, 5]
]
}
}

8.6 Statistical Properties

For a statistician, a block design is a plan for an experiment. The v points of the block design are
usually called treatments, a general terminology encompassing any set of v distinct experimental
conditions of interest. The purpose of the experiment is to compare the treatments in terms of the
magnitudes of change they induce in a response variable, call it y. These magnitudes are called
treatment effects.

In a typical experiment (there are many variations on this, but we stick to the basics to start), each
treatment is employed for the same number r of experimental runs. Each run is the application of
the treatment to an individual experimental unit (also called plot) followed by the observation of
the response y. An experiment to compare v treatments using r runs (or “replicates”) requires a
total of vr experimental units.

If the vr experimental units are homogeneous (for the purposes of the experiment, essentially
undifferentiable) then the assignment of the v treatments, each to r units, is made completely
at random. Upon completion of the experiment, differences in treatment effects are assessed via
differences in the v means of the observed values y for the v treatments (each mean is the average
of r observations). This simplest of experiments is said to follow a completely randomized design -
it is not a block design.

The concept of a blocked experiment comes into play when the vr experimental units are not
homogeneous. A block is a subset of the experimental units which are essentially undifferentiable
from one another, but which share a common characteristic thought to affect the response and which

28

differentiates them from other experimental units. If we can partition our vr heterogeneous units
into b such sets (blocks) of £ homogeneous units each, then after completion of the experiment, when
the statistical analysis of results is performed, we are able to separate the variability in response due
to this systematic unit heterogeneity from that induced by differences in the treatments, thereby
increasing the precision of treatment comparisons.

To make clear the essential issue here, consider a simple example. We have v = 3 fertilizer cocktails
(the treatments) and will compare them in a preliminary greenhouse experiment employing vr = 6
potted tobacco plants (the experimental units). If the pots are identically prepared with a common
soil source and each receiving a single plant from the same seed set and of similar size and age,
then we deem the units homogeneous. Simply randomly choose two pots for the application of
each cocktail. This is a completely randomized design. At the end of the experimental period (two
months, say) we measure y = the total biomass per pot.

Now suppose three of the plants are clearly larger than the remaining three. The statistically
“o00d” design is also the intuitively appealing one: make separate random assignments of the three
cocktails to the three larger plants, and to the three smaller plants, so that each cocktail is used once
with a plant of each size. We have blocked (by size) the 6 units into two homogeneous sets of 3 units
each, then randomly assigned treatments within blocks. Notice that there are 3!x3!=36 possible
assignments here; above there were 6!=720 possible assignments. The purpose of the blocking is
to allow variabilty due to initial size to be removed from treatment comparisons in the statistical
analysis. Because k = v this is called a complete block design.

The statistical use of the term “block design” should now be clear: a block design is a plan for an
experiment in which the experimental units have been partitioned into homogeneous sets, telling us
which treatment each experimental unit receives. The external representation is a bit less specific:
each block of a block design in external representation format tells us a set of treatments to use on a
homogeneous set (block) of experimental units but without specifying the exact treatment-to-unit
map within the block. The latter is usually left to random assignment, and moreover, does not
affect the standard measures of “goodness” of a design (does not affect the information matrix; see
below), so will not be mentioned again.

There are solid mathematical justifications for why the complete block design in the example above
is deemed “good,” which we develop next. This development does not require that & = v, nor
that the block sizes are all the same, nor that each treatment is assigned to the same number of
units. However, it does assume that the block sizes are known, fixed constants, as determined by
the collection (of fixed size) of experimental units at hand. Given the division of units into blocks,
we seek an assignment of treatments to units, i.e. a block design, that optimizes the precision of
our estimates for treatment effects. From this perspective, two different designs are comparable if
and only if they have the same v, b, and block sizes (more precisely, block size distribution).

Statistical estimation takes place in the context of a model for the observations y. Let y;; denote
the observation on unit ¢ in block j. Of course we must decide what treatment is to be placed on
that unit - this is the design decision. Denote the assigned treatment by d[i, j|]. Then the standard
statistical model for the block design (there are many variations, but here this fundamental, widely
applicable block design model is the only one considered) is

Yij = 1+ T g) + B85 + €ij

29

where 7 is the treatment effect mentioned earlier, §; is the effect of the block (reflecting how this
homogeneous set of units differs from other sets), p is an average response (the treatment and block
effects may be thought of as deviations from this average), and e;; is a random error term reflecting
variability among homogeneous units, measurement error, and indeed whatever forces that play a
role in making no experimental run perfectly repeatable. In this model the ¢;;’s have independent

probability distributions with common mean 0 and common (unknown) variance 2.

With n the total number of experimental units in a block design, the design map d (note: symbol d
is used both for the map and the block design itself) from plots to treatments can be represented as
an n X v incidence matrix, denoted A4. Also let Ny be the v X b treatment /block incidence matrix,
let K be the diagonal matrix of block sizes (= kI for equisized blocks), and write

Ca=AyAq— NgK™' N,

which is called the information matriz for design d (note: A’ denotes the transpose of a matrix
A). Why this name? Estimation focuses on comparing the treatment effects: every treatment
contrast Y ¢;1; with Y ¢; = 0 is of possible interest. All contrasts are estimable (can be linearly
and unbiasedly estimated) if and only if the block design is connected. For disconnected designs,
all contrasts within the connected treatment subsets span the space of all estimable contrasts. For
a given design d, we employ the best (minimum variance) linear unbiased estimators for contrasts.
The variances of these estimators, and their covariances, though best for given d, are a function of
d. In fact, if ¢ is the vector of contrast coefficients ¢; then the variance of contrast 7 = > ¢;7; is

026/0;6

where Cj is the Moore-Penrose inverse of Cy (if Cq = Y x4;Fy; is the spectral decomposition of
Cy, then CF = >ow T x%iEdi)' The information carried by C} is the precision of our estimators:
large information Cj; corresponds to small variances as determined by C’j.

We wish to make variances small through choice of d. That is, we choose d so that C is (in
some sense) small. Design optimality criteria are real-valued functions of C';' that it is desirable to
minimize. Obviously a design criterion may also be thought of as a function of d itself, which we
do when convenient.

With this background, let us turn now to what has been implemented for the external representation
of statistical properties:

<statistical_properties> = statistical_properties: {
precision: $integer

?(, <canonical_variances>)

?7(, <pairwise_variances>)

?7(, <optimality_criteria>)

?7(, <other_ordering_criteria>)

?7(, <canonical_efficiency_factors>)

?7(, <functions_of_efficiency_factors>)
?7(, <robustness_properties>)

30

The elements of statistical properties are quantities which can be calculated starting from
the information matrix Cjy.

8.6.1 Canonical variances

The v x v symmetric, nonnegative definite matrix Cy is never of full rank; its maximal rank is v —1,
which is achieved exactly when the block design d is connected. Denote the v — 1 ordered, largest
eigenvalues of Cy by

Ta1 S Xge < - < Tgp—1

Design d is connected if and only if x4 > 0. The corresponding nonzero eigenvalues of C’j are the
inverses of the nonzero x4’s ; for a connected design these are

Zdl 2 Zd2 2 2 Zdw—1

The 2y are called the canonical variances. They are the variances, aside from the constant o2,
of a set of contrasts whose vectors of coefficients are any orthonormal set of eigenvectors of Cy
orthogonal to the all-ones vector (called standard contrasts). We define a full set of v — 1 canonical
variances even for disconnected designs, in which case some of the z4 are taken as infinity. An
infinite canonical variance corresponds to a contrast which is not estimable.

Many of the commonly used design optimality criteria are based on the canonical variances. Be-
cause of their importance they have merited an element, canonical_variances, in the external
representation. Infinite values are recorded there as “not_applicable” and, as already explained,
correspond to zero values of x4;’s.

8.6.2 Pairwise variances

In statistical practice, some experiments focus on comparing the effect of each treatment to each
other treatment; these are the elementary contrasts T, — 7;7. The variances vy of the elementary
contrasts for a connected design d, aside from the constant o2, are

o+ + ot
Vgiit = Cgy; + Caprir — 2Cg50

for 1 <1i <4 <w, where cjl'“., is the general element of C;’ . Several optimality criteria are based
on the v(v — 1)/2 numbers vy, called pairwise variances. Moreover, partial balance properties
are reflected in the vg;. For these reasons, pairwise variances is also an element in the external
representation. For disconnected designs some elementary contrasts are not estimable; in the
external representation, the corresponding values vg;;» are recorded as “not_applicable.”

31

8.6.3

Optimality criteria

We are now in a position to define the design optimality_criteria that have been implemented.

phi O

phi 1

phi 2

®g = > log(za:)

This is the log of the product of the canonical variances, called the D-criterion (for “deter-
minant”). The product is proportional to the volume of the confidence ellipsoid for joint
estimation of the standard contrasts.

1= zqi/(v—1)
This is the arithmetic mean of the canonical variances, called the A-criterion (for “average”).
It is also proportional to the average of the v(v — 1)/2 pairwise variances vg;; .

Dy =3 25/(v 1)

This is the mean of the squared canonical variances. For any fixed value of ®; this is minimized
when the z4; are as close as possible in the square error sense. Thus it is a measure of balance of
the design. A design is said to be variance balanced when all normalized treatment contrasts
are estimated with the same variance. This occurs if and only if all the z4 are equal, which
gives the smallest conceivable (and often unattainable) value for @5 for fixed ®; . Among
binary, equiblocksize designs, only balanced incomplete block designs achieve equality of the

Zdi-

maximum pairwise_variances

E_cri

8.6.4

The largest pairwise variance (max(vg;y)), called the MV-criterion (for “maximum variance”).
This is a minimax criterion: minimize the maximum loss (as measured by variance) for
estimating the elementary contrasts.

teria

Zdl t Za2 + ...+ Zdi

The sum of the ¢ largest canonical variances, called the F; criterion. FEj is usually called
“the” E-criterion; minimization of Fp is minimization of the worst variance over all possible
normalized treatment contrasts. F; is the counterpart of maximum pairwise_variances for
the set of all contrasts. More generally, minimization of FE; is minimization of the sum of the
1 worst variances over all possible sets of ¢ normalized orthogonal treatment contrasts. Thus
the F; are a family of minimax criteria. E, i is equivalent to ®;. A design which minimizes
all of the E; for i = 1,...,v — 1 is Schur-optimal (it minimizes all Schur-convex functions of
the canonical variances).

Other ordering criteria

In addition to the optimality criteria just listed, we also implement several ordering criteria for

block

designs (optimality criteria are ordering criteria that meet conditions described fully in a

later subsection).

32

no_distinct_canonical_variances
The number of distinct z4. For balanced incomplete block designs this value is 1. A balance
criterion; the fewer variances a design produces, the easier are the results to understand.

max_min_ratio_canonical_variances
The ratio of largest to smallest canonical variance (zq1/24,0—1), called the canonical variance
ratio. Again, the value for a balanced incomplete block design is 1. Values close to one
correspond to variances that are quite similar.

no_distinct_pairwise_variances
The number of distinct vy . Analogous to no distinct _canonical variances, but for
pairwise variances rather than canonical variances.

element max_min ratio_pairwise_variances
The ratio of largest to smallest pairwise variance (max(vg;)/ min(vg;)), called the pair-
wise variance ratio. Analogous to max min ratio_canonical variances, but for pairwise
variances rather than canonical variances.

trace_of_square
—2
> 2y = L w
The trace of the square of Cy. This is called the S-criterion. Typically invoked as part of an
(M,S)-optimality argument (minimize S subject to maximizing the trace of Cy). No direct
statistical interpretation, though usually leads to reasonably “good” designs.

It was mentioned above that a complete block design (each block size is v and each treatment
is assigned to one unit in each block) is a “good” design. Now we state why. Over all possible
assignments of v treatments to b blocks of size v, a complete block design minimizes all of the
criteria defined above (save for tr(C3), which it minimizes subject to the mean of the unsquared
components). The same statement holds for a balanced incomplete block design for constant block
size less than v (whenever a BIBD exists). Otherwise, the optimal block design problem can be
quite tricky, with such uniform optimality hard to come by.

An optimality value for any of the optimality criteria above has three elements: its numer-
ical value and two associated numbers absolute efficiency and calculated_efficiency (for
other_ordering criteria, the same concepts are implemented under the names absolute_comparison
and calculated_comparison so are not separately discussed here - see the later subsection on de-
sign orderings). Given any two designs, d; and dg say, they can be compared on any of the listed
optimality criteria. The relative efficiency of design dy with respect to criterion ® , compared to
design dy, is ®(dy)/®(dz). If dy is in fact an optimal design as measured by ® (d; minimizes ®(d)
over all d), then the relative efficiency of any d compared to d; is the absolute_efficiency of d.
Both of these efficiencies are between 0 and 1, with smaller criterion values corresponding to larger
efficiencies; the absolute efficiency of an optimal design is 1.

The concept of absolute efficiency depends on what is meant by the phrase “all d”. It has already
been explained that comparisons are for designs with the same v, b, and block sizes. In the external
representation, an absolute efficiency is for the class of all binary designs with the same v,
b, and block size distribution, called the reference universe. When the minimum criterion value
over the reference universe is not known, absolute efficiency takes the value “unknown.” For a

33

disconnected design absolute efficiency takes the value “0” regardless of whether the optimal
value is known or not. It happens, only rarely, that a smaller value of a criterion can be found for
a nonbinary design with the same v, b, and block sizes, in which case the absolute efficiency
of the nonbinary design will be greater than 1. Nonbinary designs are not at present considered
in the external representation. Relative efficiencies when the best value over the reference universe
is not known, or within a subclass of the reference universe, can be calculated on a case-by-case
basis; in external representation terminology, this is a calculated efficiency. For instance, one
may wish to compare only resolvable designs. calculated efficiency takes the value “0” for all
disconnected designs.

8.6.5 Efficiency factors

There is another set of values, the canonical efficiency factors, that are used to evaluate a
design but which has not yet been discussed. Let r; be the number of units receiving treatment i
(this is the general diagonal element of A’ A;) and let R be the diagonal matrix with the \/7; along
the diagonal. The canonical efficiency factors

eqr <egp << egu-t

for design d are the v — 1 largest eigenvalues of Fy = R~'CyR~'. The remaining eigenvalue of Fy
is 0.

In the incomplete block design, the variance of the estimator of z/7 is equal to 2'Cj; wof;p, while
the variance in a completely randomized design with the same replication is 2’ R‘%a%RD, where
the two values of 02 are the variances per plot in the incomplete block design and the completely
randomized design respectively. Therefore the relative efficiency of the IBD to this CRD is

PRz oipp

?Cyx UIQBD

The first part of this, which depends on the design but not on the values of the plot variances, is
called the efficiency factor for the contrast z/7. Put R~'2z = u. Then the efficiency factor for z'r

can be expressed as
u'u

wEy u’
which, if u is an eigenvector of F' with eigenvalue ¢, is equal to ¢.

Since Fy is symmetric, it can orthogonally diagonalized. The contrast x'7 is called a basic contrast
if x = Ru for an eigenvector u of F,; which is not a multiple of Rug, where ug is the all-1 vector.
Thus the canonical efficiency factors are the efficiency factors of the basic contrasts. The basic
contrasts span the space of all treatment contrasts; moreover, if uq is orthogonal to us then the
estimators of (Ruy)'T and (Rug)'7 are uncorrelated (and independent if the errors are normally
distributed).

Fach efficiency factor lies between 0 and 1; at the extremes are contrasts that cannot be estimated
(efficiency factor = 0) and contrasts that are estimated just as well as in an unblocked design
with the same o2 (efficiency factor = 1). Thus 1 — ey is the proportion of information lost to

34

blocking when estimating a corresponding basic contrast (or any contrast in its eigenspace); eg; is
the proportion of information retained. Design d is disconnected if and only if e;; = 0.

The comparison to a completely randomized design with the same replication numbers is the key
concept here. Efficiency factors evaluate design d over the universe of all designs with the same
replications 71, ..., 7, as d, constraining the earlier discussed reference universe of competitors with
the given v and block size distribution. This constrained universe of comparison is typically justified
as follows: the replication numbers have been purposefully chosen (and thus fixed) to reflect relative
interest in the treatments, or the replication numbers are forced by the availablity of the material
(for example, scarce amounts of seed of new varieties but plenty of the control varieties), so the
task is to determine a best (in whatever sense) design within those constraints. The idealized best
(in every sense) is the completely randomized design (no blocking) so long as this does not increase
the variance per plot. Though experimental material at hand has forced blocking, the unobtainable
CRD can still be used as a fixed standard for comparison.

Variances of contrasts estimated with a CRD exactly mirror the selected sample sizes. If the
replication numbers are intended to reflect relative interest in treatments, then a reasonable design
goal is to find d for which variances of all contrast estimators enjoy the same relative magnitudes
as in the CRD. This is exactly the property of efficiency balance: design d is efficiency balanced if
its canonical efficiency factors are all equal: eq; = ez = ... = eqy—1-

For equal block sizes k (< v), the only equireplicate, binary, efficiency balanced designs are the
BIBDs. Unfortunately, an unequally replicated design cannot be efficiency balanced if the block
sizes are constant and it is binary. Thus in many instances the best hope is to approximate the
relative interest intended by the choice of sample sizes. Approximating efficiency balance (seeking
small dispersion in the efficiency factors) will then be a design goal, typically in conjunction with
seeking a high overall efficiency factor as measured through one or more summary functions of the
canonical efficiency factors. The harmonic mean of the canonical efficiency factors (see below) is
often called “the” efficiency factor of a design; if the value is 0.87, for instance, then use of blocks
has resulted in an overall 13% loss of information.

For an equireplicate design (all r; are equal—to r say) the canonical efficiency factors are just 1/r
times the inverses of the canonical variances; some statisticians consider them a more interpretable
alternative to the canonical variances in this case. If all the efficiency factors are 1, the design is fully
efficient, a property achieved in the equiblocksize case (with k£ < v) only by complete block designs.
Consequently, efficiency factors for equireplicate designs can also be interpreted as summarizing the

loss of information when using incomplete blocks (block sizes smaller than v) rather than complete
blocks.

The external representation contains the following commonly used
summaries_of efficiency factors. In terms of these measures, an optimal design is one which
mazimizes the value. Each summary measure induces a design ordering which is identical to that
for one of the optimality_criteria above, based on the canonical variances, provided the set of
competing designs is restricted to be equireplicate. More generally, these measures should only be
used to compare designs with the same replication numbers.

harmonic_mean

(v=1)/21/ea)

35

This is the harmonic mean of the efficiency factors. Equivalent to (produces the same design
ordering as) ®; in the equireplicate case.

geometric_mean
exp(3-log(eq)/(v — 1))
This is the geometric mean of the efficiency factors. Equivalent to (produces the same design
ordering as) ®(in the equireplicate case.

minimum
The smallest efficiency factor (eq1). Equivalent to Ej in the equireplicate case.

The Introduction gives an example of a block design which is called the Fano plane. It is a BIBD for
7 treatments in 7 blocks of size 3. As with any BIBD, it is pairwise balanced, variance balanced,
and efficiency balanced, and it is optimal with respect to all of the optimality criteria over
its entire reference universe. Here are all of the statistical properties, that have been discussed
so far, for this example:

"statistical_properties" : {
"precision" : 9,
"canonical_variances" : {

"no_distinct" : 1,
"ordered" : true,
"value" : [
{
"multiplicity" : 6,
"canonical_variance" : 0.428571429
}
]

1,

"pairwise_variances" : {
"domain_base" : "points",
"n" . 7,

"k" o 2,
"ordered" : true,
"maps" : [
{
"preimage" : ["entire_domain"],
"image" : 0.857142857
}
]

1},

"optimality_criteria" : {
"phi_0" : {

"value" : -5.08378716,
"absolute_efficiency" : 1,
"calculated_efficiency" : 1
1},
"phi_1" : {
"value" : 0.428571429,
"absolute_efficiency" : 1,

36

1,

"calculated_efficiency"

"phi_Q" . {

1,

"maximum_pairwise_variances"

1,

"value" : 0.183673469,

"absolute_efficiency" : 1,

"calculated_efficiency"

"value" : 0.857142857,

"absolute_efficiency" : 1,

"calculated_efficiency"

"E_criteria" : {

}
1,

lllll . {
"value" : 0.428571429,
"absolute_efficiency"

1

1

"calculated_efficiency" :

3,

l|2l| : {
"value" : 0.857142857,
"absolute_efficiency"

"calculated_efficiency" :

3,

l|3l| : {
"value" : 1.28571429,
"absolute_efficiency"

"calculated_efficiency" :

3,

"4y A{
"value" : 1.71428571,
"absolute_efficiency"
"calculated_efficiency"

3,

"s" o Ao
"value" : 2.14285714,
"absolute_efficiency"

"calculated_efficiency" :

T,

l|6l| : {
"value" : 2.57142857,
"absolute_efficiency"

"calculated_efficiency" :

}

"other_ordering_criteria" : {
"trace_of_square_of_C" : {

1,

"value" : 32.6666667,

"absolute_comparison" : 1,

"calculated_comparison"

1

"max_min_ratio_canonical_variances" : {

"value" : 1.0,
"absolute_comparison" : 1,
"calculated_comparison" : 1
1,
"max_min_ratio_pairwise_variances" : {
"value" : 1.0,
"absolute_comparison" : 1,
"calculated_comparison" : 1
1,
"no_distinct_canonical_variances" : {
"value" : 1,
"absolute_comparison" : 1,
"calculated_comparison" : 1
1,
"no_distinct_pairwise_variances" : {
"value" : 1,
"absolute_comparison" : 1,
"calculated_comparison" : 1
}
1,
"canonical_efficiency_factors" : {
"no_distinct" : 1,
"ordered" : true,
"value" : [
{
"multiplicity" : 6,
"canonical_efficiency_factor" : 0.777777778
}
]
1,
"functions_of_efficiency_factors" : {

"harmonic_mean" : O.777777778,
"geometric_mean" : 0.777777778,
"minimum" : O.777777778

8.6.6 Robustness properties

Experiments do not always run successfully on all experimental units. In the fertilizer/tobacco
example above, if midway through the growth period one of the pots is accidentally broken, then
one experimental unit has been “lost.” One is effectively left with a different block design, with
different properties than the one initiated.

The concept of robustness of a block design is here considered as its ability to maintain desirable
statistical properties under loss of individual plots or entire blocks. Such a loss is catastrophic if
the design becomes disconnected. Less than catastrophic but of genuine concern are losses in the
information provided by the design, as measured by various optimality criteria. The two elements
of robustness_properties accommodate these two perspectives.

38

The element robust_connected makes the statement The design is connected under all possi-
ble ways in which number lost of category_lost can be removed. If the reported value of
number_lost is known to be the largest integer for which this statement is true then is_max takes
the value “true” and otherwise takes the value “unknown” (the value “false” is not allowed).

The element robust_efficiencies reports A, E, D, and MV efficiencies for a given number
(number_lost) of plots or blocks (category_lost) removed from the design. The efficiencies can
be calculated from two different perspectives. If loss_measure =“average” then the criterion value
used is the average of all its values over all possible deletions of the type and number prescribed.
If loss_measure =“worst” then the criterion value used is the maximum of all its values over all
possible deletions of the type and number prescribed.

Balance measures have not been incorporated under robust_efficiencies. This is because de-
signed balance is typically severely affected by plot/block loss and in ways that need have no relation
to treatment structure.

The calculations associated with the values reported here can be quite expensive.

8.6.7 Computational details

As has already been explained, the elements of statistical properties are quantities which can
be calculated starting from the information matrix Cy. There are three fundamental calculations:
the canonical variances, the pairwise variances, and the canonical efficiency factors.

The canonical variances are the inverses of the eigenvalues of Cy, eigenvalues of zero corresponding
to canonical variances of co. Thus we need the roots of the polynomial |Cy — zI| = 0. As Cy is
a rational matrix, this polynomial admits a factorization into irreducible factors over the rational
field. Thus, in theory, the multiplicities of the canonical variances can be determined exactly, even
if some of the values themselves are irrational. If the eigenvalues of C; are numerically extracted
directly without factoring the characteristic polynomial, then the problem of inexact counts of those
eigenvalues can arise.

Pairwise variances are defined above in terms of the Moore-Penrose inverse C’;’ of Cy: vy =
c:{ii + c;ri,i, — 2c:{ii,. In fact, any generalized inverse C; of Cy can be used, from which vy =
Cgii T Caqirir — 2¢4- Let J be an all-ones matrix. If d is connected, then Cy + a.J is invertible for any
a+# 0and C; = (Cy+aJ)~! is a generalized inverse of Cy (the same operation can be carried out
for the connected components of Cy if d is disconnected). Thus pairwise variances can be calculated
by inversion of a rational, nonsingular matrix.

Efficiency factors are defined as eigenvalues of the matrix F; = R~'CyR™!, which can certainly
be irrational. Extracting the roots of NyK !N ! with respect to R?, that is, solving the equation
|NdK_1NC/l — pR?| = 0, produces values g for i = 1,...,v satisfying pg, = 0 and otherwise
nai = 1 — eg;. Thus efficiency factors can be found by extracting roots of a symmetric, rational
matrix, involving the same computational issues as for the canonical variances.

The number of infinite canonical variances equals the number of connected components of d less
1 (this being zero for any connected designs). Numerical extraction of eigenvalues of Cj can
potentially produce, at a given level of precision, values indistinguishable from zero that are in
actuality positive, consequently producing an erroneous number of infinite canonical variances.
This approximation error is prohibited by cross-checking against the connected indicator.

39

8.6.8 Design orderings based on the information matrix

The external representation implements optimality criteria and other ordering criteria as aids in
judging statistical properties of of members of a class of block designs. Definitions and motivating
principles for these two classes of criteria are given here.

Denote by C the class of information matrices for the class of designs D under consideration, that
is,

CZ{Cd:dED}.

If ¢ map elements of C to a subset of the reals plus co, then ¢ provides an ordering on d:
di >2gdy <= g(Ca1) < 9(Ca2)

Usually D is our reference universe, but need not be so. In any case D is finite and g(Cy) = oo if
and only if d is disconnected.

While it is trivial to define ordering functions g, what does it mean for a function g : C — R to
be an optimality criterion? Any ordering of information matrices could be allowed, but not all
orderings reflect a reasonable statistical concept of optimality. We work here towards appropriate
definitions.

The first fundamental consideration is that of relative interest in the v members of the treatment
set. Let P be the class of v x v permutation matrices. If treatments are of equal interest, then
order g should satisfy the symmetry condition

g(Cq) = g(PCyP") for every P € P.

Only g satisfying this condition are considered here.

Another fundamental principle arises from the nonnegative definite ordering on information matri-
ces:
Cay 2nnd Ca, <= (4, — C4, is nonegative definite

Now Cy4, Znna Ca, <<= 0;2 > nnd C’;{l so this ordering says varg, (l/’;) < varg, (l/’;) for every
contrast I’T. A reasonable restriction to place on an optimality criterion ¢ is that it respect the
nonnegative definite ordering:

Cc-lz Znnd C;; = g(Cdl) < g(Cdz)

Fact: In the reference universe of all binary block designs with v treatments and fixed block size
distribution, C’;{z > nnd C’jl — (O =Cgp
Proof: The trace tr(Cy) is fixed for all d in the reference universe. Consequently Cy, >nnd Ca,

says that Cy, — Cy, is a nonnegative definite matrix with zero trace, that is, it is the zero matrix.

Thus the nonnegative definite ordering does not distinguish among ordering functions g for the
reference universe. While the external representation does not currently include nonbinary designs,
we take as part of our definition that an optimality criterion g must respect the nonnegative definite
ordering; effectively, it must be able to make this fundamental distinction in the larger class of all

40

designs with the same v and block size distribution. A criterion that cannot do this has little (if
any) capacity to detect inflated variances.

Typically one wishes to consider not arbitrary functions on the matrices Cy, but functions of some
characteristic(s) of those matrices. Of particular interest are the lists of canonical variances and
pairwise variances. A criterion which is a function of a list of values should respect orderings of lists,
as follows. A list Ly of s real values calculated from Cy may be thought of as the uniform probability
distribution p(l) = % for each I € L;. Probability distributions may be stochastically ordered:
the distribution of X is stochastically larger than that of Y, written X >, Y, if Pr(X < a) <
Pr(Y < a) for every a. Thus define Ly, to be stochastically larger than Lg,, written Lg, > Lq,, if
|La, < al < |Lg < a| for every a. Criterion g respects the stochastic ordering with respect to list

L if

Ld2 >s Ld1 = Q(Cdl) < g(cdz)

The nnd order on information matrices (or their M-P inverses) implies the stochastic order on both
the lists of canonical variances and the lists of pairwise variances.

Fact: In the reference universe of all binary block designs with v treatments and fixed block size
distribution, if L is the list of canonical variances, then Ly, >3 Ly, <= Lg, = Lg;.

Proof: This follows from fixed trace of the information matrix in the reference universe, and that
element-wise inversion of nonnegative lists reverses the stochastic ordering.

Thus every ordering criterion that is a function of the list of canonical variances trivially respects
the stochastic order over the binary class. This may not be so for a criterion based on the list of
pairwise variances.

A weaker ordering of lists than stochastic ordering, which is of some interest and which is not
trivially respected in the binary class, is the weak majorization ordering. Let Lg; be the ith
largest member of list Ly. Define L4, to weakly majorize Lg,, written Lg, >, Lg, , if Z';f:l L, =
St Ly, for every t = 1,2,...,s. If also equality of the two sums holds at ¢ = s, then Ly, is said
simply to majorize Lg,. Criterion g respects the weak majorization ordering with respect to list L
if

Ld2 >m Ld1 = Q(Cdl) < g(cdz)'

The weak majorization ordering is respected by every function of the form ¢(Cy) = > i_; h(La;)
for continuous, increasing, convex h.

For any connected design d, the inverses of the canonical variances are the eigenvalues of the
information matrix Cy. Now the list of eigenvalues has constant sum for all d in the reference
universe; for these lists, majorization and weak majorization are equivalent. Moreover, if two lists
of eigenvalues are ordered by majorization, then the corresponding lists of canonical variances are
ordered by weak majorization. Consequently, weak majorization can sometimes be determined for
canonical variances over the reference universe via the corresponding eigenvalues of information
matrices.

Relationships among the three ordering principles discussed are

nnd ordering = stochastic ordering = weak majorization ordering

41

the latter two for either the pairwise variances or the canonical variances. None of the implications
can in general be reversed.

We call a symmetric ordering criterion an optimality criterion if (1) it preserves the nnd definite
ordering of information matrices over the generalized universe of all designs for given v and block size
distribution, and (2) it admits direct interpretation as a summary measure of magnitude of variances
of one or more treatment contrast estimators. Fach of the functions in optimality_criteria
possesses these two properties.

Ordering criteria can fall outside this scope yet still be of interest, such as those provided in
the element other_ordering_criteria. These functions, discussed next, typically fail on both
requirements for an optimality criterion, but may preserve orderings in restricted classes.

The S-criterion (tr(C?)) is typically employed as the second step in a so-called (M, S)-optimality
argument: first maximize tr(Cy) (that is, restrict to the binary class - our reference universe), then
minimize S. Within the binary class, S preserves the weak majorization order on the canonical
variances; outside of that class, it is possible to find considerably smaller values of S, though
inevitably at considerable cost on one or more optimality criteria. Thus S may be viewed as an
ordering criterion suitable for use in restricted classes, and/or in a subsidiary role to one or more
optimality criteria in a multi-criterion design screening.

The function max_min_ratio_canonical_variances preserves the weak majorization order over
the binary class (indeed within any fixed tr(Cy) class), and max_min_ratio_pairwise_variances
preserves the majorization order over that class. Both suffer the same defects as S outside the
reference universe. Each of these three criteria is a summary measure of scatter of variances, not of
magnitude; minimizing over too large a class will reduce scatter at the cost of increasing magnitude.

Two additional ordering criteria implemented are the support sizes of the distributions of canon-
ical variances and pairwise variances. These, too, can be informative as subsidiary criteria in a
multi-criterion design search, but because they do not employ the values in the corresponding dis-
tributions, no_distinct_canonical_variances and no_distinct_pairwise_variances cannot
be guaranteed to preserve (outside of the reference universe) any of the list orderings discussed.
Like S and the variance ratios, these measures give information on scatter in a list of variances,
and thus are fairly called balance criteria.

Included with other_ordering_criteriaare absolute_comparisonsand calculated_comparisons.
These serve the same role, and are computed with the same rules, as absolute_efficiencies and
calculated_efficiencies for optimality_criteria. Because other_ordering_criteria typ-
ically do not measure magnitude of variance, we do not consider it correct terminological usage to
call their relative values “efficiencies.”

9 Lists of Block Designs

A list of block designs is essentially what the name implies. However, the listed designs must be
distinct, and we allow assertions to be made about this list; in particular, it will be possible to say

e the designs in the list are pairwise non-isomorphic;

42

e these are all the designs with such-and-such properties.

Here is the schema definition for the list_of_designs entity which is the root element of any valid
external representation document.

<list_of_designs> = {

<header> ,
<designs>
+;
<header> =
external_representation_version : "3.0"
design_type : (block_design | latin_square | mixed)
number_of_designs : ($integer | unknown))
?7(, <invariants>)
?7(, pairwise_nonisomorphic : ($boolean | unknown))
?(, complete_upto_isomorphism : ($boolean | unknown))
7(, number_of_isomorphism_classes : ($integer | unknown))
7(, precision : $integer)

’

?(, <info>)

<designs> = designs : [<design> *(, <design>)] ;

There are two compulsory entries:

external representation_version

It will be used by applications to check compliance of documents and of themselves. It must
contain a fixed string representing the current protocol version of external representation
schema.

In the future, the minor version number will be incremented when backward compatible mi-
nor changes have been made. That means that older documents satisfying previous protocols
with the same major version number remain valid under the new protocol. The correspond-
ing requirement for implementations is that an implementation in compliance with a given
protocol version should be able to deal with any document of the same major and a lower
protocol version.

The major version will be incremented between not entirely compatible versions or when
significant new structures have been introduced.

designs

This is the entry under which each design is listed.

The optional 1list_definition component will be used to define list_invariants and to formulate
queries to the database. These concepts are the subjects of future development.

43

10

Implementation Policies

(Under development)

The external representation for block designs gives the implementor a great deal of choice about
what to include when specifying a block design and its properties. Here we record our policies
about what (and what not) to include in certain cases:

How far to go with point_concurrences?

If the given block design is not a t-design (with ¢ > 2), then include the k-wise point con-
currences only for k = 1 and (unless there is just one point) k = 2. In both cases, the full
preimage should be given (which may be entire domain). This policy gives the replication
number for each point and the pairwise point concurrences. If the given block design D is
a t-design (with ¢ = 2) then include the k-wise point concurrences for k = 1,2,..., max(t)
for which D is a t-design. Again, full preimages should be given and they are all, of course,
entire_domain.

How far to go with block_concurrences?

Include the k-wise block concurrences for k£ = 1 and (unless there is just one block) k = 2.
In both cases, preimages should be collapsed to preimage cardinalities. This policy gives the
sizes of the blocks, the number of blocks of each size, the sizes of the pairwise intersections
of blocks, and the number of pairs of blocks giving each intersection size.

How far to go with t_wise_balanced?

This is analogous to point_concurrences. If the given block design D is not a t-design (with
t = 2), then normally include whether or not D is ¢-wise balanced only for t = 1 and t = 2.
Otherwise, include this information for ¢t = 1,2,...,maxz(t) for which D is a t-design. Note
that this maximum ¢ is recorded in the t_design indicator.

References

Javascript object notation (json). http://www. json.org.
Relax ng schema language for xml. http://relaxng.org.

R.A. Bailey, Peter J. Cameron, Peter Dobcsanyi, John P. Morgan, and Leonard H. Soicher.
Designs on the web. Discrete Mathematics, 306(23):p3014 — 3027, 20061201.

T. Beth, D. Jungnickel, and H. Lenz. Design Theory, volume 1 and 2 (Second edition).
Cambridge University Press, 1999.

T. Calinski and S. Kageyama. Block designs: A randomization approach. In Lecture Notes in
Statistics 150. Springer, New York, 2000.

Peter J. Cameron, editor. Encyclopaedia of DesignTheory. 2004.

Peter J. Cameron, Peter Dobcsanyi, John P. Morgan, and Leonard H. Soicher. Dtrs protocol
version 2.0, 2004.

44

http://www.json.org
http://relaxng.org

[8] PJ Cameron, P. Dobcesényi, JP Morgan, and LH Soicher. The External Representation of
Block Designs.

[9] C.J. Colbourn and J.H. Dinitz, editors. The CRC Handbook of Combinatorial Designs. CRC
Press, 1996.

[10] Douglas Crockford. Rfc4627: Javascript object notation, 2006.

[11] K. R. Shah and B. K. Sinha. Theory of Optimal Designs. Springer, New York, 1989.

45

A Design Schema

#

The External Representation of Block Designs
#

an EBNF based schema

#

<list_of_designs> = {

<header> ,
<designs>
}
<header> =
external_representation_version : "3.0"
design_type : (block_design | latin_square | mixed)

~

number_of_designs $integer | unknown))
?(, <invariants>)

($boolean | unknown))
?(, complete_upto_isomorphism ($vboolean | unknown))
7(, number_of_isomorphism_classes : ($integer | unknown))
7(, precision $integer)

?(, <info>)

?(, pairwise_nonisomorphic

<invariants> = invariants : {
relations which hold over the list of designs
conjunction implicitly assumed
?7(relations : [
[<rel_arg>, <rel_op>, <rel_arg>]
*(, [<rel_arg>, <rel_op>, <rel_arg>])
]
optional invariant description as needed
?7(invariant_description : $string)

I

<rel_arg> = <design_parameter> | <scalar> ;
<design_parameter> =t | v | b | ... | resolvable | ... ;
<rel_op> = "=" | MI=" | ongm o |ongsn | onsno | onsan
<designs> = designs : [<design> *(, <design>)] ;
<design> = <block_design> | <latin_square> ;

<block_design> = {

type : block_design ,
id : ($string | $integer) ,
v : $integer ,

?7(b : $integer ,)

46

?7(precision : $integer ,)
<blocks>
7(, <point_labels>)
?(, <indicators>)
?7(, <combinatorial_properties>)
7(, <block_design_automorphism_group>)
?(, <resolutions>)
7(, <statistical_properties>)
?(, <alternative_representations>)
?(, <info>)

};
<blocks> = blocks : [<block> *(, <block>) 1;
<block> = [$integer *(, $integer)];
<point_labels> = point_labels : [
($integer *(, $integer))
| ($string *(, $string))
1;

<latin_square> = { latin_square : <to be defined later> };

<indicators> = indicators : { <indicator> *(, <indicator>) } ;

<indicator> =

repeated_blocks : $boolean
| resolvable : $boolean
| affine_resolvable : ($boolean | { mu : $integer })
| equireplicate : ($boolean | { r : $integer })
| constant_blocksize : ($boolean | { k : $integer })
| t_design : ($boolean | { maximum_t : $integer })
| connected : ($boolean | { no_components : $integer })
| pairwise_balanced : ($boolean | { lambda : $integer })
| variance_balanced : $boolean
| efficiency_balanced : $boolean
| cyclic : $boolean
| one_rotational : $boolean

<combinatorial_properties> =
combinatorial_properties : {
<point_concurrences> ,
<block_concurrences> ,
<t_design_properties> ,
<alpha_resolvable> ,
<t_wise_balanced>

};

<point_concurrences> = point_concurrences : [
<function_on_ksubsets_of_indices> *(, <function_on_ksubsets_of_indices>)

47

1;

<block_concurrences> = block_concurrences : [
<function_on_ksubsets_of_indices> *(, <function_on_ksubsets_of_indices>)

1;

<t_design_properties> = t_design_properties : {
t_design_properties_member *(, t_design_properties_member)

};

<t_design_properties_member> =
parameters : {

t : $integer ,

v $integer ,

b $integer ,

r $integer ,

k : $integer ,

lambda : $integer

}

| square : $boolean
| projective_plane : $boolean
| affine_plane : $boolean
| steiner_system : ($boolean | { t: $integer })
|

steiner_triple_system : $boolean

<alpha_resolvable> = { <index_flag> *(, <index_flag>) };

<index_flag> = "$integer" : ($boolean | unknown) ;

<t_wise_balanced> = { <t_index_flag> *(, <t_index_flag>) } ;
<t_index_flag> = "$integer" : ($boolean | unknown | { lambda: $integer }) ;

<resolutions> = resolutions : {

pairwise_nonisomorphic : ($boolean | unknown) ,

all_classes_represented : ($boolean | unknown) ,

value : [<resolution> *(, <resolution>)]
+;
<resolution> = {

function_on_indices: <function_on_indices>

?7(, <resolution_automorphism_group>)

+;

<resolution_automorphism_group> = resolution_automorphism_group : {
<permutation_group>
?7(, <resolution_automorphism_group_properties>)

};

<resolution_automorphism_group_properties> =

48

resolution_automorphism_group_properties : <to be defined later> ;

<block_design_automorphism_group> = automorphism_group: {
<permutation_group>,
<block_design_automorphism_group_properties>

};

<permutation_group> = permutation_group : {
degree : $integer ,

order : $integer ,
domain : points ,
<generators>

7(, <permutation_group_properties>)

};

<permutation_group_properties> = permutation_group_properties : {
<permutation_group_properties_member> *(, <permutation_group_properties_member>)

+;
<permutation_group_properties_member> =
primitive : $boolean
| generously_transitive : $boolean
| multiplicity_free : $boolean
| stratifiable : $boolean
| no_orbits : $integer
| degree_transitivity : $integer
| rank : $integer
|

<cycle_type_representatives>

<block_design_automorphism_group_properties> =
automorphism_group_properties: {

block_primitive : ($boolean | not_applicable) ,
degree_block_transitivity : ($integer | not_applicable) ,
no_block_orbits : ($integer | not_applicable)

};

<cycle_type_representatives> = cycle_type_representatives : [
<cycle_type_representative> *(, <cycle_type_representative>)

1;
<cycle_type_representative> = {
permutation : <permutation>,
cycle_type : [$integer *(, $integer)] ,

no_having_cycle_type : $integer

+;
<generators> = generators : [7 (<permutation> *(, <permutation>)) 1;

<permutation> = [$integer *(, $integer)];

49

<alternative_representations> = alternative_representations : {
<incidence_matrix>

};
<incidence_matrix> = incidence_matrix: {
shape : points_by_blocks ,
<matrix>
};
<matrix> =
Nno_rows : $integer ,
no_columns : $integer ,
?(title : $string ,)
matrix : [<row> *(, <row>)]

<row> = [<number> *(, <number>)];

<statistical_properties> = statistical_properties: {
precision: $integer
?(, <canonical_variances>)
?7(, <pairwise_variances>)
?7(, <optimality_criteria>)
7(, <other_ordering_criteria>)
?(, <canonical_efficiency_factors>)
?7(, <functions_of_efficiency_factors>)
?7(, <robustness_properties>)

};

<robustness_properties> = robustness_properties: {
?7(<robustness_properties_member> *(, <robustness_properties_member>))

};
<robustness_properties_member> =
robust_connected_plots : <robust_connected_value>
| robust_connected_blocks : <robust_connected_value>
| robust_efficiencies_plots : <robust_efficiencies_value>

| robust_efficiencies_blocks : <robust_efficiencies_value>

<robust_efficiencies_value> = {
precision: $integer ,
robustness_efficiency_values: [
<robustness_efficiency_values> * (, <robustness_efficiency_values>)

]
+
<robustness_efficiency_values> = {
number_lost : $integer ,
loss_measure : (average | worst) ,
7(, phi_0 : <robustness_efficiency_values_value>)

50

7(, phi_1 : <robustness_efficiency_values_value>)
7(, maximum_pairwise_variances : <robustness_efficiency_values_value>)

?(C , E_1 : <robustness_efficiency_values_value>)
};
<robustness_efficiency_values_value> = {
self_efficiency : <number>
7(, absolute_efficiency : (<number> | unknown))

?7(, calculated_efficiency : (<number> | unknown))

};

<robust_connected_value> = {
number_lost : $integer ,
is_max : (true | unknown)

};

<functions_of_efficiency_factors> = functions_of_efficiency_factors: {
geometric_mean : <number> ,
minimum : <number> ,
harmonic_mean : <number>

};

<canonical_efficiency_factors> = canonical_efficiency_factors: {
no_distinct: $integer | unknown | not_applicable ,
ordered: true | unknown ,

value: [
{ multiplicity : ($integer | not_applicable) ,
canonical_efficiency_factor : (<number> | blank) }
*(, { multiplicity : ($integer | not_applicable) ,
canonical_efficiency_factor : (<number> | blank) })
]

};

<other_ordering_criteria> = other_ordering_criteria : {
7(<other_ordering_criteria_member> *(, <other_ordering_criteria_member>))

I
<other_ordering_criteria_member> =
trace_of_square_of_C : <ordering_criteria_valuel>
| max_min_ratio_canonical_variances : <ordering_criteria_valuel>
| max_min_ratio_pairwise_variances : <ordering_criteria_valuel>
| no_distinct_canonical_variances : <ordering_criteria_value2>
| no_distinct_pairwise_variances : <ordering_criteria_value2>

<ordering_criteria_valuel> = {
value : (<number> | not_applicable)
?7(, absolute_comparison : (<number> | unknown))
7(, calculated_comparison : (<number> | unknown))

};

o1

<ordering_criteria_value2> = {
value : ($integer | unknown | not_applicable)
7(, absolute_comparison : (<number> | unknown))
?(, calculated_comparison : (<number> | unknown))

};

<optimality_criteria> = optimality_criteria: {
7(<optimality_criteria_member> *(, <optimality_criteria_member>))

};
<optimality_criteria_member> =
phi_0 : <optimality_criteria_value>
| phi_1 : <optimality_criteria_value>
| phi_2 : <optimality_criteria_value>
| maximum_pairwise_variances : <optimality_criteria_value>
| E_criteria : { <E_value> *(, <E_value>) }

<optimality_criteria_value> = {

value : (<number> | not_applicable)
?7(, absolute_efficiency : (<number> | unknown))
?7(, calculated_efficiency : (<number> | unknown))
+;
<E_value> = "$integer" : {
value : (<number> | not_applicable)
?7(, absolute_efficiency : (<number> | unknown))
7(, calculated_efficiency : (<number> | unknown))
+

<pairwise_variances> =
function with domain_base=points and k=2
pairwise_variances: <function_on_ksubsets_of_indices> ;

<canonical_variances> = canonical_variances: {
no_distinct : ($integer | unknown | not_applicable) ,
ordered : (true | unknown) , # do we need this?
value: [

{ multiplicity : ($integer | not_applicable) ,

|
canonical_variance : (<number> | blank | not_applicable) }
*(, { multiplicity : ($integer | not_applicable) ,
canonical_variance : (<number> | blank | not_applicable) })
]
+;
<function_on_ksubsets_of_indices> = {
domain_base : (points | blocks) ,
n : $integer ,
k : $integer ,
ordered : (true | unknown) ,

7(image_cardinality : $integer ,)

52

7(precision : $integer ,)

?(title ¢ $string ,)
maps : [7(<map> *(, <map>))]
3
<function_on_indices> = {
domain : (points | blocks) ,
n : $integer ,
ordered : (true | unknown) ,
?7(image_cardinality : $integer ,)
?7(precision : $integer ,)
?(title : $string ,)
maps : [?7C <map> *(, <map>))]
3
<map> = {
(<preimage> | <preimage_cardinality> | blank) ,
image : (<number> | not_applicable)
+

<preimage> = preimage : [
$integer *(, $integer)
Removed: word ksubset, substituting with a seq of lists
| [$integer *(, $integer) 1 *(, [$integer *(, $integer)])
| entire_domain

1;
<preimage_cardinality> = preimage_cardinality : $integer ;

<info> = info : {

software : [$string *(, $string)]
?7(, reference : [7($string *(, $string)) 1)
?(, note : [7C $string *(, $string)) 1)

};

scalars

<scalar> = <number> | $boolean | $null | unknown
<number> = $integer | $float | <rational> ;
<rational> = { Q : [$integer, $integer] } ;

93

B An example

Here in its entirety is the example which we have seen in parts throughout this document.

"external_representation_version" : "3.0",
"design_type" : "block_design",
"number_of_designs" : 1,
"invariants" : {
"relations" : [
fhen, "=", 2],
("v", "=", 71,
[("p", "=", 71,
("r", "=, 3],
("k", "=", 3],
["lambda", "=", 1]
]
3,
"pairwise_nonisomorphic" : true,
"complete_upto_isomorphism" : true,
"info" : {
"software" : [
"[DESIGN-1.1, GRAPE-4.2, GAPDoc-0.9999, GAP-4.4.3 1",
"[bdstat-0.8/280, numarray-1.1.1, pydesign-0.5/274, python-2.4.0.candidate.1 1",
"[’python 2.5.2.final.0’, ’blockdesign 0.1.5°, ’ddb2 0.2.1°, ’ddb-xt2json 0.1°]"
]
1},
"designs" : [
{
"type" : "block_design",
"id" : "t2-v7-b7-r3-k3-L1-0",
"y" oo 7,
"p" 7,
"blocks" : [
o, 1, 21, (o, 3, 41, [0, 5, 61, [1, 3, 5], [1, 4, 6], [2, 3, 6],
[2, 4, 5]
1,
"indicators" : {
"repeated_blocks" : false,
"resolvable" : false,
"affine_resolvable" : false,
"equireplicate" : {
"r" : 3
1},
"constant_blocksize" : {
"k" 3
1,
"t_design" : {
"maximum_t" : 2
3,

"connected" : {

54

"no_components" : 1

3,
"pairwise_balanced" : {
"lambda" : 1
1,
"variance_balanced" : true,
"efficiency_balanced" : true,
"cyclic" : true,
"one_rotational" : false
1,
"combinatorial_properties" : {
"point_concurrences" : [
{
"domain_base" : "points",
"n" . 7,
"k" 01,
"ordered" : true,
"title" : "replication_numbers",
"maps" : [
{
"preimage" : ["entire_domain"],
"image" : 3
}
]
1},
{
"domain_base" : "points",
"n" : 7,
"k" o1 2,
"ordered" : true,
"title" : "pairwise_point_concurrences",
"maps" : [
{
"preimage" : ["entire_domain"],
"image" : 1
}
]
}
1,
"block_concurrences" : [
{
"domain_base" : "blocks",
"n" . 7,
"k" i1,
"ordered" : "unknown",
"title" : "block_sizes",
"maps" : [
{
"preimage_cardinality" : 7,
"image" : 3
}

55

[

"domain_base" : "blocks",
"n" 7,
"k" o 2,
"ordered" : "unknown",
"title" : "pairwise_block_intersection_sizes",
"maps" : [
{
"preimage_cardinality" : 21,
"image" : 1
}

]

}

1,
"t_design_properties" : {

"parameters" : {
"t 2,
Ilvll
Ilbll
llrll
"k" o 3,
"lambda" : 1

},

"square" : true,

>

>

>

W w NN

"projective_plane" : true,
"affine_plane" : false,
"steiner_system" : {
"t 2
1},
"steiner_triple_system" : true
3,
"alpha_resolvable" : {
"3" : true
3,
"t_wise_balanced" : {
o {
"lambda" : 3
1,
"2n s {
"lambda" : 1
}
}
1,
"automorphism_group" : {
"permutation_group" : {
"degree" : 7,
"order" : 168,
"domain" : "points",
"generators" : [

o6

(1, 0, 2, 3, 5, 4, 6], [0, 2, 1, 3, 4, 6,
(o, 3, 4, 1, 2, 5, 6], [0, 1, 2, 5, 6, 3,
[0, 1, 2, 4, 3, 6, 5]

1,

"permutation_group_properties" : {
"primitive" : true,
"generously_transitive" : true,
"multiplicity_free" : true,

"stratifiable" : true,
"no_orbits" : 1,
"degree_transitivity" : 2,
"rank" : 2,
"cycle_type_representatives" : [
{
"permutation" : [1, 3, 5, 2, 0, 6, 4],
"cycle_type" : [7],
"no_having_cycle_type" : 48
1,
{
"permutation" : [0, 2, 1, 5, 6, 4, 3],
"cycle_type" : [1, 2, 4],
"no_having_cycle_type" : 42
1,
{
"permutation" : [0, 3, 4, 5, 6, 1, 2],
"cycle_type" : [1, 3, 3],
"no_having_cycle_type" : 56
1,
{
"permutation" : [0, 1, 2, 4, 3, 6, 5],
"cycle_type" : [1, 1, 1, 2, 2],
"no_having_cycle_type" : 21
1,
{
"permutation" : [0, 1, 2, 3, 4, 5, 6],
"cycle_type" : [1, 1, 1, 1, 1, 1, 1],
"no_having_cycle_type" : 1
}
]
}
3,
"automorphism_group_properties" : {
"block_primitive" : true,

"no_block_orbits" : 1,
"degree_block_transitivity" : 2
}

},

"statistical_properties" : {
"precision" : 9,
"canonical_variances" : {

"no_distinct" : 1,

o7

"ordered" : true,
"value" : [
{
"multiplicity" : 6,

"canonical_variance"

}
]
3,

"pairwise_variances" : {

"domain_base" : "points",

|Inll . 7’

Ilkll . 2’
"ordered" : true,
"maps" : [

{

0.428571429

"preimage" : ["entire_domain"],

"image" : 0.857142857

}
]
},
"optimality_criteria" : {
"phi_0" : {
"value" : -5.08378716,
"absolute_efficiency" :

1,

"phi_1" : {
"value" : 0.428571429,
"absolute_efficiency" :

"calculated_efficiency" :

1,

"phi_2" : {
"value" : 0.183673469,
"absolute_efficiency" :

+s

1,
"calculated_efficiency" :

1,
"calculated_efficiency" :

1

"maximum_pairwise_variances" : {

"value" : 0.857142857,
"absolute_efficiency" :

},
"E_criteria" : {
Illll : {

"value" : 0.428571429,
"absolute_efficiency" :
"calculated_efficiency" :

T,
Il2ll . {

"value" : 0.857142857,
"absolute_efficiency" :
"calculated_efficiency" :

1,
"calculated_efficiency" :

1

1,
1

1,
1

o8

3,
"3r o q
"value" : 1.28571429,
"absolute_efficiency" : 1,
"calculated_efficiency" : 1
3,
"4 o o
"value" : 1.71428571,
"absolute_efficiency" : 1,
"calculated_efficiency" : 1
3,
"o o
"value" : 2.14285714,
"absolute_efficiency" : 1,
"calculated_efficiency" : 1
3,
"' : {
"value" : 2.57142857,
"absolute_efficiency" : 1,
"calculated_efficiency" : 1
3
}
3,
"other_ordering_criteria" : {
"trace_of_square_of_C" : {
"value" : 32.6666667,
"absolute_comparison" : 1,
"calculated_comparison" : 1
1,
"max_min_ratio_canonical_variances"
"value" : 1.0,
"absolute_comparison" : 1,
"calculated_comparison" : 1
1,
"max_min_ratio_pairwise_variances"
"value" : 1.0,
"absolute_comparison" : 1,
"calculated_comparison" : 1
1,
"no_distinct_canonical_variances"
"value" : 1,
"absolute_comparison" : 1,
"calculated_comparison" : 1
1,
"no_distinct_pairwise_variances"
"value" : 1,
"absolute_comparison" : 1,
"calculated_comparison" : 1

}
3,

"canonical_efficiency_factors" : {

99

"no_distinct" : 1,
"ordered" : true,
"value" : [
{
"multiplicity" : 6,
"canonical_efficiency_factor" : 0.777777778
}
]

},

"functions_of_efficiency_factors" : {
"harmonic_mean" : O.777777778,
"geometric_mean" : 0.777777778,
"minimum" : O.777777778

60

	Introduction
	A Simple Example

	What is a Block Design?
	The Concept of External Representation
	Schema Language
	Indexing and Functions
	Indexing and Ordering
	Functions and Index Flags

	Permutation groups
	Numerical Data Types
	Block Designs
	Essential Properties
	Indicators
	Combinatorial Properties
	Point Concurrences
	Block concurrences
	t-design properties
	-resolvability
	t-wise balance

	Automorphisms
	Resolutions
	Statistical Properties
	Canonical variances
	Pairwise variances
	Optimality criteria
	Other ordering criteria
	Efficiency factors
	Robustness properties
	Computational details
	Design orderings based on the information matrix

	Lists of Block Designs
	Implementation Policies
	Design Schema
	An example

