THE REPRESENTATION AND STORAGE OF COMBINATORIAL
BLOCK DESIGNS

by

Hatem Nassrat

Submitted in partial ful lIment of the
requirements for the degree of
Master of Applied Computer Science

at
Dalhousie University

Halifax, Nova Scotia
APRIL 2009

¢ Copyright by Hatem Nassrat, 2009

DALHOUSIE UNIVERSITY
FACULTY OF COMPUTER SCIENCE
The undersigned hereby certify that they have read and recomend
to the Faculty of Graduate Studies for acceptance a thesis tgled \THE

REPRESENTATION AND STORAGE OF COMBINATORIAL BLOCK DESIGNS "

by Hatem Nassrat in partial ful lment of the requirements for the degree of
Master of Applied Computer Science.

Dated: APRIL 15, 2009

Supervisors:

P. Bodorik

P. Dobcsanyi

Reader:

C. Watters

DALHOUSIE UNIVERSITY

DATE: APRIL 15, 2009

AUTHOR: Hatem Nassrat

TITLE: THE REPRESENTATION AND STORAGE OF
COMBINATORIAL BLOCK DESIGNS

DEPARTMENT OR SCHOOL: Faculty of Computer Science
DEGREE: M.A.C.Sc. CONVOCATION: MAY YEAR: 2009

Permission is herewith granted to Dalhousie University toimculate and to
have copied for non-commercial purposes, at its discretiothe above title upon the
request of individuals or institutions.

Signature of Author

The author reserves other publication rights, and neither e thesis nor
extensive extracts from it may be printed or otherwise repmiuced without the
author's written permission.

The author attests that permission has been obtained for theise of any
copyrighted material appearing in the thesis (other than bef excerpts requiring
only proper acknowledgement in scholarly writing) and thatall such use is clearly
acknowledged.

Table of Contents

Abstract

Chapter
1.1
1.2

1.3
1.4

Chapter
2.1
2.2

2.3

Chapter
3.1

3.2

...................................... Vil

1 Introduction L 1
Combinatorial Block Designs 1
Project Phases: Motivation, Contributions, and Outlire. 3
1.2.1 External Representation of Block Designs. 3
1.2.2 Searching for Block Designs 4
1.23 Systeminterface, 5
Outline. e 5
Implementation Programming Language. 6
2 External Representation Version 3 8
Shortcomings of Version 2.
Solutions and Variations in Version 3.

221 FHom XMLtoJSON 10
2.2.2 Structural Manipulation 10
2.2.3 Functionality Enhancement 14
Implementing Ext Repv3 L Lo 15
231 Schemalanguage. 15
2.3.2 Conversionfromv2. 15
233 ExtRepv3Parser., 16
3 Database of Combinatorial Designs 18
Database Engine. 18
3.1.1 Hierarchical DBMS. 18
3.1.2 Relational DBMS. 19
3.1.3 Choosing between HDF5 and PostgreSQL 21
3.1.4 PrevalentDBMS 23
Designingthe DB. e 25

3.3 Database Population. 26

3.3 1 Storage e 26
3.3.2 Isomorphic Rejection. L. 27
3.3.3 DesignClassication. 28

3.4 QueryEngine. 30
3.4.1 QueryProtocol 30
3.4.2 DB User Management. 32
Chapter 4 Web Interface 33
4.1 Python Web Frameworks. 33
4.1.1 Quixote e e 34
412 TurboGears. 35
4.1.3 Django. 35
414 Pylons. e 35

4.2 Querylinterface. e 36
4.3 Interface With Query Engine 41
4.4 Displaying DesignsontheWeb. 42
Chapter 5 System Deployment 43
5.1 Installing the package 43
5.2 Interfacingtothe Web oL 44
5.2.1 Web Server Gateway Interface 44
5.2.2 Simple Common Gateway Interface 44
5.2.3 Fast Common Gateway Interface. 45
5.2.4 Apache JServ Protocol. 45
525 Reverse Proxy e 45
5.2.6 Final Deployment. 46

53 Performance. 46
5.3.1 Experimental Setup. L. 46
5.3.2 ExperimentDetails. 46
5.3.3 Categorical Access Experiment. 48
5.3.4 Search Form Experiment 49

\Y

5.3.5 Random Access Experiment 49

5.3.6 Experimental Summary 50
Chapter 6 System Interfaces and Usage 51
6.1 SearchingForaDesign 51
6.1.1 Utilizing the Summary Table 52

6.1.2 Using the Brief Design Search 55

6.1.3 Using the Full Design Search. 55

6.2 Usage Counts. 57
Chapter 7 Conclusion and Future Considerations 62
7.1 ExtRep Extensions. 62
7.2 RDBMS Alternatives 62
7.3 Interface Personalization. 63
7.4 High Performance. 63
7.5 Software Upgrade. 64
7.6 RESTIUl APl 64
7.7 Accepting Contributions L Lo 64
7.8 CoONCIUSIONS 65
Bibliography 66
Appendix A Ext Rep v3 Schema 70
Appendix B Design DB Entity Relational Diagram 82

Vi

Abstract

Combinatorial block designs are in essence a multiset of sglts of a base set with
certain properties. Many statistical and combinatorial poperties are associated with
block designs. These properties are often computationaligtensive to generate and
therefore capturing them once generated is important. Thiproject, composed of
three phases, aims to create a system to represent, store aaltbw searching for a
large collection of combinatorial block designs. The rst pase of the project dealt
with the representation of block designs. To ful | this step the External Representa-
tion (Ext Rep) of Block Designs was extended and re-implemtad to use JavaScript
Object Notation (JSON), creating version 3 of the Ext Rep. Fulling this phase
dealt with complexities in transforming designs in the preecessor version, which was
implemented in Extensible Markup Language (XML), to the newr version. The com-
plexities arose due to the inherent di erences between thevd languages. Moreover,
the new Ext Rep contains extensions to the functionality thetwere not available
prior. Block designs (represented as Ext Rep structures) gaired a storage scheme
that was created in the second phase of the project. A carefuldesigned database
schema was created along with the choice of a suitable datakeaengine. The nal
phase dealt with an implementation of a web interface to theatabase that hosted
over two and half million designs which are searchable by awny the Ext Rep criteria.

Vil

Chapter 1

Introduction

Combinatorial block designs are used in various applicaie that combine permu-
tations, combinations and partitions of element sets. Suchpplications are largely
seen in the eld of experimental design and various elds witin computer science.
Combinatorial block designs, also referred to as experimahand statistical block
designs, are of great scienti ¢ importance and are in need afmassive collection and
archiving scheme. Having an appropriate archive allows useto search and browse
the library of combinatorial block designs. This project dals with the issues involved
with archiving large sets of combinatorial block designsiaing them in a searchable
database and providing an interface to such a database.

1.1 Combinatorial Block Designs

A combinatorial block desigris a mathematical object of great importance in many
computational elds of study including statistics and computer science. Block de-
signs are described generally as a set system of a particutature. They were rst
used in the design of statistical experiments, as a systen@method of dealing with
di erences in experimental material 9. To statistically analyse the experimental re-
sults, test points (reatments) are partitioned into blocks, hence originating the term
\Block Design".

Combinatorialists and statisticians see block designs in drent ways. To a statis-
tician, a block design is a set of plots" (\ experimental units’) which is partitioned
into \ blocks', with a function from the set of blocks to the set of treatments' to be
experimented on. To combinatorialists, the set of treatmda is known as \points"
identifying each block as a subset of treatments occurrinquglots in that block. The
block designD is thus viewed as a set of point¥ and a multiset of subsets of points
(multiset of blocks B)) [21].

The following example, from 19], emphasizes how block designs are used. There

1

2

are seven varieties of seeds (treatments), and they are to tasted in an agricultural
experiment. If there were 21 identical plots of land for thedst, then it would be
clear that three plots may be planted for each seed type. Howe, if the plots were
spread on 7 di erent farms in di erent regions, where each fan had three plots, then
the experiment's design would be modi ed. The following seéme would be a good
design for the experiment:

Blocks = [
[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5],
[1, 4, 6], [2, 3, 6], [2, 4, 5]

Each element in the set ofblocks would represent one farm and each element
within a block would represent the variety of seed to be testieon that particular
farm. Therefore onfarm [0]: seedvariety{0]; seedvariety[1]; seedvariety{2] would be
planted on each of the three plots. The above design is stditally optimal which
means that performing each of the experimental units allow®r the comparison of
the seven seed varieties.

The block design above is a special design famously known las YFano plan€' and
is part of a group of designs calleBalanced incomplete-block desigmms BIBD s [23].
More speci cally, the Fano plane is a member of set of desighesown ast-designs.
All t-designs have optimal statistical properties, and therefe are the best candidates
for experimental design21][29].

The Fano plane is labelled?-(7,3,1) meaning that there are seven varieties, each
block contains three of them and every two varieties occur ithe same block exactly
one time. The label is a grouping of four general properties a block design; v;r;
wheret =2, v=7,r =3, = 1. Usually the parametersb and k are also used
to label block designs, wherd is the number of blocks andk is the size of each
block (which is applicable only when the design has a constdnlock size). TheFano
plane design may be also labelled using the template (v;b;r;k;1) giving the label
2-(7,7,3,3,1) .

Combinatorial block designs are being utilized in many eld of study, with deep
roots in experimental design. Other areas where block dessgghave been used include

3

error-correcting codes, graph packing and covering probts 22}, and nite geome-

try [19]. Hamming codes are a great example of block design applicat as they

were discovered by Fischer as a design 5 years prior to R. W. H&ing's discovery
of them in the eld of error correction [19]. Many areas requiring combinations, per-
mutations, partitioning, and other functions on point sets nd block designs useful in

their application.

1.2 Project Phases: Motivation, Contributions, and Outlin e

This section outlines the three project phases that includExternal Representation,
database design, and system interface. For each of the phgsaotivations and con-
tributions are mentioned.

1.2.1 External Representation of Block Designs

Many statisticians, scientists and programmers utilize Qubinatorial block designs in
their work. Prior to the work of Cameron et al. R1] no standard format for represent-
ing block designs was available. Cameron et al. publishedetBxternal Representation
of block designwsersion 11 [21] in 2003 to |l this void. The External Representation
served as documentation for block design users on how to repent a block design in
a uni ed way. One of the reasons for the invention of this stashard was that it can be
utilized by all components of the research resource server @esignTheory.org The
External Representation protocol allowed any component othe server to commu-
nicate with any other component in a standard manner. The ptocol was designed
to allow external usersand applications to utilize resources provided by the resoee
servers and any servers that were designed to be compatiblghwthis format for rep-
resenting designs and their properties. The concept of Extep \users" is described
as both human and software agent2[].

The External Representation version 11, and later version 20, Extensible Markup
Language (XML) was chosen as the language to be used to reprsblock designs
and the design's various properties. The External Repregation paper [21] explains
the choice of XML over a few alternatives that were suitableof the implementation
of the External Representation. Their main motivation was de to the popularity of
XML and the availability of tools that worked with XML.

http://designtheory.org

4

Although XML had its advantages it did not seem to be a great mah for combi-
natorial block designs. XML seems best suited for text; Hower, a given dataset of
a mathematical nature requires a better suited representan language 36][53][10].
For this reason, a segment of this project deals with writinga new External Repre-
sentation of Block Designs that is based on a more suitablepresentation language.

In the following Chapter, labelledExternal Representation Version 31 discuss the
External Representation in general, the previous versiorshortcomings, how Version
3 solved these issues. Moreover, speci c examples of how piemented the Version
3, and how the designs already produced in the version 2 fortngere converted into
the newly developed version 3 format is also discussed.

1.2.2 Searching for Block Designs

Historically combinatorial block designs were publishedni papers and text books
published by the researchers that discovered the particulalesigns. Block designs
were sometimes available in survey publications that groeo a particular class of
designs. To nd a design users had to locate the document withwhich the design
was published. Moreover, many publications only displayetthe blocks of the design
or additionally particular properties of a design that wereused within the paper.
For the user to see the properties they are interested in thdyad to compute those
properties. The time required to compute these propertiesanonot be predetermined
due to the combinatorial nature of the designs. For that ream it is useful to store
those properties whenever they are computed, to reduce theeohead of recomputing
them when they are needed.

Aiming to gather the designs into a central repository, a gugp of researchers at
the Queen Mary University of London, under a fund from The Enigeering and Phys-
ical Sciences Research Council, UK, generated around twodaa half million block
designs and stored them using the External Representatior block designs version
2 (explained in section1.2.]) format. This marked the birth of DesignTheory.org
where their collection is currently stored along with otheresearch documents and
papers relating to the eld of combinatorial designs. The dagns in the collection
have been grouped in les by theirt;v;b;r;k; (see Sectionl.l) parameters (when
available).

http://designtheory.org

5

The DesignTheory.orgcollection is considered the largest single collection dblok
designs available for public use. This collection was notgied in a database system
(relational or otherwise), which makes it hard to search foa given design. Rather,
the collection was organized in a simple manner as les on a ksystem. To e ectively
search the entire collection for a particular design, the @s must download the entire
collection and recursively search the le contents to nd tle design.

Moreover, a dynamic searchable database of combinatoridbbk designs for any
collection was never attempted. Aiming to create a functical central repository
of combinatorial design, this project deals with placingdesignTheory.org les in a
searchable database. In Chapte3, | discuss the choice of the most suitable database
engine, the design of the internal structure of the databasthat hosts the design
collection, the process of populating the database, and tldesign and implementation
of the Query Engine sub-system used to query the database.

1.2.3 System Interface

In this project, a web interface was also designed and implemted to allow users to
utilize the database and nd designs they are interested inChapter 4 discusses the
choices made to implement the web interface, the design andplementation of the
interface code, and various screen shots displaying how theb interface is utilized
to query the database. The web interface with respect to braing the library and
viewing the search results is further described in chapté: In particular section 6.1
discusses how my system helped with a particular user's sefaffor a speci c design.

The objective of creating a centralized repository for conmatorial block designs
is to present a one stop shop for nding block designs, thus rkiag it simple for users
to nd the designs they are looking for. Moreover, this projet provides the framework
for external users to upload their personal designs to therdeal repository.

1.3 Outline

Before proceeding with the next chapters, the nal sectionfahis chapter discusses
the choice of programming language.

Chapter 2 describes the External Representation in detail, along witthe short-
comings of its version 2. Moreover, the chapter describesetdecisions made to come

http://designtheory.org
http://designtheory.org

6

up with the version 3, along with some of the tools implementeto aid with this
process.

The discussion continues with chapteB, where the design, implementation, and
population of the searchable combinatorial design databass described. Moreover,
the decisions that lead to the choice of a suitable databaseamagement system is
described, along with a unique query language that is used $earch the implemented
database.

| follow with the description of the web interface to the systm in chapter4. Some
of the various options available to implement the web framewrk are discussed, along
with brief implementation details and screen shots to dispy the interface.

In chapter 5, | discuss the various techniques utilized to create a systethat is
easily deployable. Moreover, the choice of web server, irfece to the implemented
web application and the tools implemented to automate the giéoyment on Unix based
machines are discussed. Furthermore, the results of a brefperiment to determine
the maximum system load is displayed in that chapter.

The overview of the full system and how each of the sub systernmgegrate is
explained in chapter6. Also included is a description of how my system should be
utilized, along with a brief example of a speci ¢ search for eertain design. Moreover,
the usage counts of the system for the year 2008 and the monthJanuary in 2009
are displayed in this chapter.

Finally I conclude with a summary of the e ort that took place along with future
possibilities and extensions to my project.

1.4 Implementation Programming Language

To implement this project many programming languages wererie y considered.
Since this project has a wide variety of aspects that requireode to be written,
including the parsing of documents, database creation andilization, and a web
application, it was best if the languages of choice was capalof performing all these
aspects. From the candidates considered Perl, PHP, Pythoand Ruby best ful lled
these criteria. After considering each of these candidateBython [50] was chosen as
the main programming language for this project for the folling reasons:

Large Standard Library

7

Similar to many programming languages, Python contains a fdge standard
library which allows for fast paced code development.

Numerical and Scienti ¢ Packages
Many packages that work with combinatorial designs have beeeither written
or wrapped in Python. Examples of such software includeYDESIGN [30] and
block-design31]. Such packages were required for the work that was done.

High Level
Python is a very high level programming language, which alils for expressive
scripts in a few lines of code. Such a style is shared by a fewet programming
languages, including Schemel9 and Ruby [34].

Web Programming
Python is growing to be the web programming language of cheic Many orga-
nizations are porting their web applications to Python 46][47]. The advantages
of Python de nitely contribute toward today's large-scalepush for its use. This
could arguably be similar to the boost that Ruby started expeencing a couple
of years ago. However, they both are high level languages lwftameworks that
allow for decoupled web applications.

These features directed the choice toward the Python prograning language.
Speed of development was the largest contributing factor,hich is contributed to by
each of the mentioned advantages. Such characteristics ar@eded to complete such
a scale of a project within the given time frame and resourcemstraints.

Chapter 2

External Representation Version 3

The External Representation (Ext Rep) as de ned in sectiorL.2.1is very important
when discussing designs. It provides a common protocol foarfies to be able to
communicate designs.

Essentially ablock designis a list of blocks, each of which is a list of points. To uti-
lize designs, in the various elds such as combinatorics amperimental designs, the
combinatorial and statistical properties of designs ofteneed to be considered. For
example when performing experiments designed utilizing mbinatorial designs, the
robustness properties (an entry under statistical propeis) are important. The ro-
bustness properties state the ability of a design to maintaiits statistical signi cance
in the case of a loss of particular plots or entire block&]][29. Combinatorial design's
properties, in general, are computationally intensive toaiculate and often rely on an
entire set of pairwise non-isomorphic designs (sometimegadable when the design
is generated), in which they are part of, to be available. Thefore, design proper-
ties must be stored along with the design once found since thee-computation is a
waste of time and resources and it is for that reason the Ext Reallowed for possible
properties of block designs to be placed within aBxt Rep structure

The notion of block design documents simply a set of blocks along with the
properties associated with the blocks. The Ext Rep documeation [21][29] describes
how to createExt Rep compliantdocuments. The Ext Rep documentation goes into
detail explaining each of the properties such that it is usef even for readers that are
not familiar with combinatorial block designs.

Since a combinatorial design is simply a set of blocks, pretiag a set of blocks is
the minimum needed to represent a design using the Ext Rep gtture. However, as
mentioned above, there are many statistical, combinatorigroperties, and functions
(such as generators that produce the isomorphic designsrfr@a given design) encoded
within the Ext Rep structure. The Ext Rep protocol is designd to allow users to input

8

9

as much, or as little information, depending on their spect needs or requirements.
This chapter describes the various shortcomings of the Extdp v2 protocol and
the new version of the External Representation2f] that | made to overcome these
problems of version 2. The full Ext Rep v3 schema can be seerAppendix A of this

document and in R9.

2.1 Shortcomings of Version 2

The previous version, External Representation2, is based on the Extensible Markup
Language (XML). After using this language its shortcoming®ecome apparent. The
need for a data representation language that would be clostr the mathematical
structure, in various mathematical systems, had become essial. Examples of such
systems include R 33, GAP [38], Mathematica [52], and SAGE H§§]. Also the ver-
bosity required for XML with regard to opening and closing tgs to denote entities
has been seen to make the document quite large and unreadable

2.2 Solutions and Variations in Version 3

Multiple representation languages had been investigatechd JSON 25 had been
found to be the most suitable for the representation of blockesigns. Where XML
is aimed to best serve text, JSON4] allows for basic data types and data structures
(arrays and associative arrays)36][53]. Moreover the syntax used in JSON is very
close to the syntax of the same data structures in the previsly mentioned mathe-
matical systems (B3|[38]) along with a few interpreted programming languages such
as Python (0. JSON's syntax is also much less verbose than its predecgsXML
as it does not contain the opening and closing tag system of KSEbased languages.
However, where XML can be directly 1-1 mapped from a tree strture, JSON con-
tains list structures that allow for a more condensed representatior repeated nodes
within a tree.

The External Representationv3 was written to closely follow the design of the
External Representationv2. However, due to the inherent di erences between XML
and JSON some changes had to be made. Moreover, there were es@manges that
were made to enhance the functionality of the Ext Rep documgrnts usefulness, and

10

<root>
<nodes> {
<node> <z>1</z> <node/> "root": {
<node> <d>1.5</d> <node/> "nodes™: [1, 1.5, {"Q" [2, 3]}]
<node> <g>2/3</g> <node/> }
</nodes> }
</root>

() (b) JSON
a) XML

Figure 2.1: Snippets showing the same structure in XML and I8N

level of readability.

This section describes the core di erences between tBxt Rep versions with ex-
amples to highlight these changes. An Extended BackusNauoim (E-BNF) schema
for the Ext Rep v3 is appended to this document (see AppendiX). It may also be
found along with the complete speci cation of the Ext Repv3 in [29].

2.2.1 From XML to JSON

A great advantage of the new Ext Rep is that it was written in J®N. The integrated
standard data types in JSON along with its two main data strutures (lists and
objects) allow for much more, and in a much simpler form, thaXML allows. It was
clear that JSON was better suited for mathematical structues. Figure2.1 displays
snippets of an XML tree .18 and its respective implementation in JSON 2.1b).

2.2.2 Structural Manipulation

The basic dierences in the underlying representation of # data begin with the
ability of JSON to store the basic data types, namelynumbers and strings. In the
previous version of Ext Rep, implemented in XML, these basidata types were not
implicitly present and were required to be explicitly decleed using wrapper tags that
re ect each of the data types. Since these are no longer rempd, these tags were all
\lifted". The only wrapper remaining that was used to de ne a data tye in the Ext
Rep v2 was therational number wrapper as rational numbers are also not a basic
data type in JSON. Figure 2.1 displays how each of the datatypes were represented
in Ext Rep v2 andv3.

11

<list_of designs design_type="block design" dtrs_prot ocol="2.0" no_designs="1"
pairwise_nonisomorphic="true" xmins="http://designth eory.org/xml-namespace">
<designs>

<block_design b="7" id="t2-v7-b7-r3-k3-L1-0" v="7">
<blocks ordered="true">
<block><z>0</z><z>1</z><z>2</z></block>
<block><z>0</z><z>3</z><z>4</z></block>
<block><z>0</z><z>5</z><z>6</z></block>
<block><z>1</z><z>3</z><z>5</z></block>
<block><z>1</z><z>4</z><z>6</z></block>
<block><z>2</z><z>3</z><z>6</z></block>
<block><z>2</z><z>4</z><z>5</z></block>
</blocks>
</block_design>
</designs>
</list_of designs>

Figure 2.2: the root nodes from an Ext Rep v2 document

The Ext Rep v2 contained tags special tags that were used to denote a refezh
structure (i.e. a list). For example more than oneblock were placed under the tag
blocks The tag block has beenlifted, since lists are standard structures in JSON
documents (see Fi@.1).

Another tag that went through such alifting process is thdist_of_designtag. This
tag is found at the root of every Ext Repv2 document and was previously required
because XML requires a root node for every document. FR&2 and 2.3 display the
di erences between the root nodes of the Ext Rep trees in thespective versions.

Some structures in the previous Ext Rep version seemed to beodelled after
structures that are implicitly available in the JSON repregntation language. Exam-
ples include the various repeated tags which were transfoeah systematically into a
list of elements. Moreover, the Ext Rep contains a structurknown as \Index Flags'.
Such ags are index based structures and seemed to better tith the JSON object
structure. Therefore the list ofiIndex Flagswere transformed into mappings of indices
to the data represented by each index. This transformatiorsidisplayed in Fig2.4 of
this document.

Another process that was performed systematically in the ansformation into the
Ext Rep v3 was labelled Merging". A few sub-tress in Ext Repv2 contained pairs of
attributes which were dependant on on one another. These eiets were systematically

"external_representation_version" : "3.0",
"design_type" : "block_design",
"number_of designs" : 1,
"pairwise_nonisomorphic" : true,
"designs" : [
{
"type" : "block design",
“id" : "t2-v7-b7-r3-k3-L1-0",

"W 7,
"b" 1 7,
"blocks" : [

[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6],
[2, 3, 6], [2, 4, 5]
]

}
]
}
Figure 2.3: the root nodes from an Ext Rep v3 document
"t wise_balanced" : {
<t_wise_balanced> "1 {
<index_flag flag="true" index="1"> “lambda” : 3
</index_flag> 1,
<index_flag flag="true" index="2"> 2" |
</index_flag> "lambda" : 1
</t_wise_balanced> }

}
(@) v2
(b) v3

Figure 2.4: t_wise balancedin di erent Ext Rep versions

12

13

<indicators>

<repeated_blocks flag="false"> "indicators" : {

</repeated_blocks>

<resolvable flag="false">
</resolvable>

<affine_resolvable flag="false">
</affine_resolvable>

<equireplicate flag="true" r="3">
</equireplicate>

<constant_blocksize flag="true" k="3">
</constant_blocksize>

<t_design flag="true" maximum_t="2">
</t_design>

<connected flag="true" no_components="1">
</connected>

<pairwise_balanced flag="true" lambda="1">
</pairwise_balanced>
<variance_balanced flag="true">
</variance_balanced>
<efficiency_balanced flag="true">
</efficiency_balanced>

<cyclic flag="true">

</cyclic>

<one_rotational flag="false">
</one_rotational>

</indicators>

(a) v2

"repeated_blocks" : false,
"resolvable" : false,
"affine_resolvable" : false,
"equireplicate" : {
"3
2
"constant_blocksize" : {
"k" 3
}

"t design” : {
"maximum_t" : 2

2

"connected” : {
"no_components" : 1

3

"pairwise_balanced" : {
"lambda" : 1

2

"variance_balanced" : true,

"efficiency_balanced" : true,

"cyclic" : true,

"one_rotational" : false

(b) v3

Figure 2.5: indicators in di erent Ext Rep versions

merged into a single entry. For example the indicatot_designcan betrue or false,
in addition when it is true it has an associated value (the vale of the maximumt for
that design). Both the boolean value and the property maximon t have been merged
into a single entry which can either befalse or the key-value pairtmaximum : int.
Figure 2.5 displays this transformation.

Finally the \ cleaning' process was systematically applied when applicable. In¢h
Ext Rep v2 some sub-trees contained static values, which their prese was previ-
ously enforced. For many of such instances their presenceswaore aesthetic than
useful. Such instances were safely removed without losingyainformation conveyed
in the Ext Rep document. An example is the attributeordered on the blocks of a
design (as can be seen in Fig.6). This attribute was de ned to always be true. In

14

<blocks ordered="true">
<block><z>0</z><z>1</z><z>2</z></block>

<block><z>0</z><z>3</z><z>4</z></block> bl%CkS '2[0 3
<block><z>0</z><z>5</z><z>6</z></block> [0.1,2], [0, 3, 4],
<block><z>1</z><z>3</z><z>5</z></block> [2’ i’ 2]’ [;' 2 g]'
<block><z>1</z><z>4</z><z>6</z></block> [2’ 4' 5]’ [2. 3, 6],
<block><z>2</z><z>3</z><z>6</z></block> [2, 4, 5]
<block><z>2</z><z>4</z><z>5</z></block>]
</blocks>
(b) v3

(@) v2

Figure 2.6: blocksin di erent Ext Rep versions

the new version, the importance of keeping the blocks orderéas been placed in the
documentation and removed from each of the complying Ext Regtructures.

In addition to the above, there were a few more aesthetic chges made to the
names of certain entries in Ext Repv3 speci cation with respect tov2. Moreover,
there were changes introduced to enhance the functionalityf the Ext Rep from a
combinatorial point of view, they are discussed in sectioR.2.3

2.2.3 Functionality Enhancement

In combinatorial block designs, aBalanced Incomplete Block Designvould contain
di erent values for the property depending on the level of;0 <= t <=ty aximum
that is being investigated. For version 3 of the Ext Rep it waslesired to display the
values of for each applicable value of. In the previous Ext Rep, thet_wise balanced
subtree contains a set ofndex ags. These ags stated that a given design is &
designfor a stated value oft (see Fig2.4g. The index ags have been transformed to
allow the additional placement for the value of where the given design is &design
An example of this transformation can be seen in Figurg.4.

Another fundamental addition made in the Ext Repv3 was the speci cation of
invariants of an Ext Rep document. This sub-structure was left for futue considera-
tion by the previous Ext Rep version. As implied by its name tirepresents properties
within a list of designs that are maintained throughout eacliesign. Therefore the in-
variant sub-structure may be used to categorize the group designs presented in the
given list of designs, speci cally when looking at the genak parameterst; v; b; r; k;

15

that are invariant within the list.

2.3 Implementing Ext Rep v3

Moving from version to version of Ext Rep speci cation can be complicated task,
speci cally when there are vast di erences between the vemns. Similar to most
designed systems, a version bump of a partial version changeg. 2.0 to 2.1) denotes
changes that keep compatibility to the previous version. Meover, a version bump
of a full version number denotes large changes that geneyalireak compatibility to
older versions as is the case with Ext Rep3 [29. There has been many changes
to this version of the protocol and a system was created to makhe transformation
process as simple and intuitive as possible.

2.3.1 Schema Language

When discussing a data representation, a schema languageessential in order to
explain how the data looks and how it may be formed. Althoughxamples may help
explain how the data should be presented, a formal schema exquired to guide the
users and serve as a reference when writing complying docutse

The Ext Rep v2 has been implemented in XML and therefore an XML compliant
schema language was used to document the structure of comptydocuments. Due
to the clear and simple design of the Relax NG/[Schema language for XML, it has
been chosen to describe the Ext Rey2. The Ext Rep v2 schema has been published
in [20). In implementing the v3, there was an obstacle due to the lack of a clear and
simple schema languages to describe the new protocol. Foathreason | utilized a
novel schema language, built as an E-BNF, to describe Ext Re@. The full Ext Rep
v3 schema can be seen in Appendix and in [29] where it is described in detalil.

2.3.2 Conversion from v2

It is often hard to upgrade software or systems from a given rg&on to one that breaks
compatibility with the given version. However, developersf the new version often try
to aid users of older versions in their move to the newer veosi to cater for as many
users as possible. Software systems such as Pyth&t)] fecided to write scripts that

16

would automate the transformation of version 2 code to theinew version 3 Py3Kk)
[17]. Other software systems such aSqlAlchemy[24] have produced documentation
describing their changes required to transform old code mtcode that works with
their new version 5 1].

To complete the conversion of Ext Rep fronv2 to v3 it has been decided to adopt
a similar standpoint as the Python programming community. Asoftware utility was
developed to convert the XMLv2 [2]] into the JSON v3 [29]. This software utility is
extremely important to be able to transform the current docments that have been
previously produced in Ext Repv2. Such documents include a collection of over
2.5 million designs that have been produced by the research@t DesignTheory.org
Moreover the full collection of Ext Rep documents has beenansformed into com-
pliant Ext Rep v3 documents available at3]. The conversion of the full set of Ext
Rep les takes around 36 hours (2156 minutes).

The conversion utility mentioned here may be found in my degn database soft-
ware package42] under the extrep/utils directory.

2.3.3 Ext Rep v3 Parser

Many factors were considered when choosing JSON languagertplement the Ext

Repv3 speci cation. Factors such as readability, size and simpity, have been men-
tioned in the earlier sections of this chapter. Neverthelesanother decisive factor that
lead to choosing JSON is the parsability of the JSON languagén addition, there

are a large number of available software libraries implemia in various program-
ming languages that are able to parse JSOM][Having such a wide variety, further
encouraged the decision since users of combinatorial desidhave the exibility of

choosing their preferred language and architecture to imginent speci ¢ application
that utilize these designs.

Although there are many applications written in the Python programming lan-
guage to parse JSON, they all rely on the full JSON structure dang loaded into
memory prior to processing. This is not feasible when deatjrwith Ext Rep struc-
ture as many of the documents are extremely large in size. Tolge this issue a few
incremental parsers for JSON in other programming languagéave been considered.
The \Yet Another JSON Library" (YAJL) [47] library, implemented in C, has been

http://designtheory.org

17

found most suitable for my application. YAJL is a very compatlibrary that has
multiple advantages including fast parsing and good usaltij.

To use YAJL in my Python based project, the YAJL code had to bemcapsulated
in a Python friendly wrapper. After considering multiple ogions, the C-types [37]
module was chosen. The C-types module was added to the Pythstandard library
as of version 5 [2]. After wrapping the YAJL Library with the correct code, the
encapsulation allowed for the import of therAJL library as if it was a Python library.
Moreover, it allowed for an incremental parser in Python with did not exist prior.
The C-typeswrapper for YAJL 0:4 can be found in the software package accompanying
this document (found under theextrep module of theddb package).

Another required feature was the strict ordering of key vale pairs while reading
and transmitting JSON objects which are generally implemented as a hash map.
Since hash maps do not guarantee ordering, an ordered hashpnveas used to ful |
the strict ordering requirement. Since all of the standard SON parsers for python
use a standard hash map to represent a JSObbject it was yet another advantage
of implementing a custom parser built on the callback basedAdL library.

Similar to the other stages of my project, the utilization ofopen source software
provided a mutual bene t for my project along with the open sarce community. Due
to the use of the YAJL library, a couple of bug reports and patees were sent to the
author of YAJL which contributed toward the release of versin 04 of the library.

Chapter 3

Database of Combinatorial Designs

Combinatorial designs, as mentioned earlier, are very ugséstructures that are uti-
lized in many elds (seel.l). Therefore it is essential that users of such structures
be able to locate a speci c design on demand. Moreover, it hasen mentioned that
block designs (and their associated properties) are usyattomputationally intensive
to generate (see introduction of chapteR). Therefore it is important to store these
designs and their relevant properties once found. It is aldmportant to be able to
organize the collection in such a way as to allow for searclin For these reasons, a
database of combinatorial designs is required.

It is very strange that no e ort has been placed prior for sucla database as it is
quite essential for the users. My project aims to |l the gap.The following sections
describe the decisions and implementations that took plada order to materialize
the searchable database of combinatorial block designs.

3.1 Database Engine

When it comes to database systems there are many proprietagpftware packages
and many more that are freely available (open sourc@g]). These packages tend to
lie in one of two collections, eitheHierarchical or Relational database management
systems. The following subsections describes the di ereaptions considered for use
as the DB Engine. Only open source database engines have beensidered, due to
the reduced cost and faster speed of updates withessed withea source software in
general.

3.1.1 Hierarchical DBMS

Ext Rep structures, formed by organizing combinatorial degns and their properties,
are in essence hierarchical structures. It seemed neceggaat an attempt be made

18

19

to place the designs into a hierarchical databasddDF5 [35] was considered due to
the availability of a Python interface.

The HDF5 database is a very powerful hierarchical databassgstem used by many
researchers in the scienti c realm to store their results. ifilar to all hierarchical
systems, it is based on tables. In object oriented terms, anCHF5 table represents a
set of objects. In the ideal setup the combinatorial desigrdatabase would consist of
a single hierarchical table that host all the combinatoriatlesigns. Each combinatorial
design would be represented as an object, where some of thgeots may vary in the
amount of information withheld inside it. The variance is de to the optional subtrees
of an Ext Rep design that may have been left out for particuladesigns 29].

HDF5, and hierarchical systems in general, allow for storagand access of a large
amounts of data. However, what hierarchical systems miss tpdirom the relational
perspective, is a quick (computationally e cient) method d being able to perform
relations between tables and objects (rows).

The reasons for choosing HDF5 over other hierarchical DBM%& mainly due to
the availability of a Python interface to it. The Python package PyTables 11], aims
to link HDF5 (written in C) with Python and the Python scienti c libraries (such
as NumPy B4)). This interface provides all of the functionality availeble by HDF5
except for allowing for variable length elds within tables This is one of the most
important features needed by the application being develegd for my project due to
the possible variation in size of the combinatorial desigrirsicture. For that reason
some research is needed in order to nd the most suitable way sioring the variable
sized content within HDF5.

3.1.2 Relational DBMS

Relational databases have been a corner stone in many prdgehen dealing with
data. Since the introduction of the relational data model irthe early 1970s by E. F.
Codd, it has become more popular and more sophisticated. Tadthere is a large
market for and a large number of providers oRelational Database Management Sys-
tems Companies such as Oracle are leading the food chain and héneen deploying
many systems around the world that are pivoted around RDBM Sstems.

For this project, only open source software systems were smtered for the same

20

reasons mentioned earlier. Since there is a large number glea source Relational
DBMS available, | only considered mature and stable RDBMS. Aese restrictions
limited the available choices toSQLite, MySQL, and PostgreSQL

The storage structure for blocks was the initial concern asdimed to keep the
design for storing blocks as simple as possible. For this sea PostgreSQL 12|
was chosen as the RDBMS of choice, as it contains an Array datpe that can
e ciently store multi-dimensional arrays of a single dataype. However, only the
highest dimension may be of variable size, all sub dimensghave to be of constant
size.

Some designs may not have a constant block size for their dtscand, for that
reason, an approach had to be developed to manipulate thewwstture such that it can
be stored using the Array datatype. Each of the blocks was pddd with NULL s such
that it became the same size as the largest block of the desighhis transformation
is being done while inserting design blocks into the databasand is being reversed
as the blocks are being read from the database.

Representing a design as a Python object was an advantage &b that | wanted
while using PostgreSQL. Manipulating objects is much simef than creating a large
number of SQL templates to manipulate the database. For thateason an Object
Relational Mapper (ORM) was utilized to wrap the SQL tables into Classes and rows
into instances.

There were a few options for ORMs available for Python, but $&lchemy [24]
was the nal choice. Like many ORMSs, it makes working with RDBAS simpler. The
mapper contains information about all foreign keys and relad tables, thus allowing
the full Ext Rep design to be abstracted as a single object. Thfeature was a great
advantage for the development of this application, due to #variation in size of each
of the Mathematical Objects (Ext Rep block designs) being prcessed. Each of the
optional sub-trees of an Ext Rep design was separated into@lient tables. However,
at the application level, the complete Ext Rep structure is bstracted as a single tree
(mapped to an Ext Rep Design object).

21
3.1.3 Choosing between HDF5 and PostgreSQL

Prototypes were created for both HDF5 and PostgreSQL for itial experimentation.
The general target of the prototypes was to create a colleon of Ext Rep designs
using only the root level properties (design idy, b, blocks) and the indicators sub-
tree. Due to the variable nature of the blocks, and the unauability of a simple
method of storing these blocks in HDF5, three prototypes werbuilt. Each of the
prototypes di ered only in the method of storing the blocks.For PostgreSQL a single
prototype was implemented.

Two types of experimental runs took place on each of the prdypes, reading and
writing. There were 5 iterations of each of the experimentaluns where the outliers
were removed and the middle 3 runs were averaged. The expegith consisted of
a write to the database followed by a read. The rst run wrote @0 records, while
the last one wrote 10,000 records to the database, using iaorents of 100 between
each of the experimental runs. The time elapsed for both wiitg and reading the
databases for each of the experimental runs was recorded amds used to compare
HDF5 and PostgreSQL performance.

The following sub-subsections describe the specics of baof the experiments
and the results.

HDF5 Experiments

Combinatorial Design blocks are in nature variable in sizeith respect to number of
blocks and the size of each block. To decide weather HDF5 wastable to store the
blocks of a design three experiments were set-up. Each of gbeinitial experiments
only dealt with storing the root node of each design tree algnwith only the indicators
subtree, rather than the full tree with all the possible vamtions. As mentioned
earlier, PyTables only allows elds of a predetermined xedength, which required
some design of how the blocks are to be stored. PyTables and Hballow an Array
structure, alongside the Table structure. There are multije types of arrays that
PyTables provides each of which formed the basis of the thregperiments.

In each of the experiments the blocks were stored using diemt HDF5 arrays
implementations such that the best internal representatio can be chosen. All the
implementations stored the blocks in an array structure, dgrnal to the designs table,

22

while storing the array index in the designs table. Thereferto nd the blocks of a
particular design, the index would be taken from the designbgect and used to lookup
the external array.

The rst (PyTables Experiment 1) stored the design in an HDF5Variable Length
Array (VLArray). The list of blocks were serializedfickled) using the Python Pickle
library [51] and directly stored into the array.

The second variation stores the design blocks into an HDF5 Emgeable Array
(EArray). The blocks were similarly pickled and stored character by character into
the large array. In the designs table the begin and end o sebf the blocks were
stored. Therefore, all the blocks for all the designs wereosed in a single array and
each design had the begin and end o sets for its particular tsef blocks. According
to a conversation between myself and the main developer of Rables, this approach
seems to be close to how the VLArray structure is implementedternally [15].

Similar to the rst design, for the last prototype each desig had a record within
a large 2-dimensional VLArray, with an index inserted into he particular record in
the designs table. To store all the blocks into a VLArray, allthe points for each
block of a given design were placed within a single list (i.¢he boundaries between
the blocks were removed). A second VLArray was created to cgirthe o sets of the
blocks (i.e. the boundaries) of each design, thus allowinbd regeneration of the block
boundaries.

The nal prototype was considered to be the most suitable duéo the fact that
the data was stored in its numerical form rather than a serigded form. Following
the general experiment guide (sectioB.1.3 the various PyTables experiments were
run. Figure 3.1 shows the results of these experiments.

The experiments show a slight variation between the di erénunderlining imple-
mentation. However, due non-binary nature of the third impémentation, it is the
most reasonable for storinglesign blocksunder PyTables/HDF5.

PostgreSQL Experiment

Using the above concepts, a simple experiment was designedid an initial compar-
ison with the PyTables prototypes discussed earlier. Thisomparison was used to
complete the decision of which DBMS to use for this project. i§ure 3.2 shows the

23

800

T

Exp 1 (Write)

Exp .2 (Write) -------

Exp 3 (Write) ==«----

oor VEXp 1 (Read) i
" Exp 2 (Read) -~~~ -

< Exp,@(Read) ===

600
500 =

400

Timegg,

300

200

100

R

0 PV At - : .
0 2000 4000 6000 8000 10000 12000
Number of designs

Figure 3.1: Results of the PyTables experiments

results of the similar experiment (see experimental guideés in section3.1.3.

The results, as expected, show that writes to the SQL databasre slow, compared
to reads. However, since the application is a read-intensiapplication where the
database is built rst, then the users of the database wouldrowse its contents, the
read speeds to the database are the main concern with respexiperformance.

3.1.4 Prevalent DBMS

After preliminary tests, and practical assessment (from aalelopment perspective)
it was clear that with the current state of both database mangement systems that
PostgreSQL is the right choice. The main factors that lead tthis decision is due to
the faster read speed of PostgreSQL and the simpli cation dfow blocks are stored
internally. Moreover, it was apparent that relational queres would be faster with the
RDBMS than with HDF5. Most of the users would be reading fromhe database and
thus it was necessary to consider that carefully.

Alongside the relational database, the use an object relanal mapper (ORM)
would bring the best of both worlds. ORM would allow the full Ext Rep design to
be viewed as a single object, while allowing the use of the paul relational nature
of SQL to query the database.

It has not been decided that the Hierarchical Database syste or PyTables should

1200 T T T T

.Write
Read
1000 = -
800 | -
8
£ 600 = -
=
400 | L
200 = -
0 L " M i M
0 2000 4000 6000 8000 10000 12000
Number of designs
Figure 3.2: Results of the PostgreSQL Experiment
1200 T T T T T
PostgreSQL (Write)
PyTables (Write)
Postgresql(Read) --------
PyTables gRead)
1000 -
800 | -
o
w%
£ 600 | -
E
400 | L
200 b
0 2000 4000 6000 8000 10000 12000

Number of designs

Figure 3.3: Combined Preliminary Results of the DBMS Expements

25

not be reconsidered in the future. On the contrary, the belfds that with future re-
leases and added functionality, the performance of hierdichal databases in general,
and HDF5 in particular, when hosting Ext Rep designs may exee the performance
of RDBM Systems (see Sectioii.2).

3.2 Designing the DB

In chapter 2 the Ext Rep structure has been described as a complicated ¢ceMore-
over, it is a tree with many optional sub-trees, such that edcobject conforming to
the Ext Rep speci cation may vary greatly in what it contains. Some objects may
contain all the sub-trees, while some may not. There a few ®ans for such variation,
the simplest being that the person who generated a particuldesign neglected to pro-
vide all the statistical and combinatorial information, ard simply just provided the
blocks. However, the more practical and realistic reason tlsat many combinatorial
designs do not have some of the speci c properties that otteemay. For example, the
designresolutions' are only available when a design iesolvablé. Since the majority
of designs are notesolvable they would not contain the resolution sub trees, while a
few designs may have one or more than omesolution. Therefore the database had
to be designed to allow for such variation between the struate.

After analyzing the Ext Rep v3 schema 29, it was decided that each sub-tree
would be placed in a separate table linking back to its paremode. However, some of
the sub trees contain segments that can recur a variable numbof times. For example
the Automorphism Group of a design is represented in its own table, but it may have
a variable number ofgenerators. To insert the Automorphism Group subtree into
the database, a second table was created to host thenerators The generator table
has a relationship of one to many with the parent table Automorphism Group).

From a programming perspective, the database structure (adescribed above)
would be viewed using the ORM as the original tree structurethus allowing the
generation of the original Ext Rep representation with easand simplicity. Moreover,

1A resolution is a partition on the blocks of a design such thata point may only appear in a
single partition

2A design that has one or moreresolutions

3Automorphism Group generators are functions that act on the points of a given design to
permute them and create isomorphic designs (equivalent dégns).

26

the Entity Relationship (ER) Diagram for this database woudl be similar to displaying
the Ext Rep structure as a Tree. This was important to maintan the simplicity of the
system. The Entity Relationship Diagram for this database @&n be seen in Appendix
B of this document.

Using the available tools, applications were written to be lde to create the
database and generate the objects that would map back to thethbase tables. This
allowed for easy manipulation, tweaking and xing of the sobma as the system pro-
gressed. Similar to all areas of the system, the code writtdrere was structured to
allow for easy manipulation and modularity. Such that any sgment may be replaced
at any point within the development. Similarly the object rdational mappers were
loosely coupled to the system, and the ORM system itself alled for con guring and
using a di erent RDBMS back-end easily.

3.3 Database Population

Combinatorial and Statistical designs are in general veryand to nd. Once they are
found it is a good idea to store then, for quick access in thettwe. This was the
driving force behind my project. Sectionl.2.2mentioned that DesignTheory.orghad
generated and stored a collection of over.ZM designs. Sectior2.3.2 describes the
conversion utilities written to convert les written in the previous Ext Rep version.
Following the conversion of the Ext Reps2 documents generated bipesignTheory.org
to v3, the designs were uploaded to the PostgreSQ@bmbinatorial designsdatabase.

3.3.1 Storage

The upload process involved the integration of the Ext Rep paer described in section
2.3.3 The parser callbacks were written such that each design wasnsformed
into an ORM instance (database mapped object). These objectvere then saved in
the database. After the completion of this stage, the datals® was populated with
the full set of designs from theDesignTheory.orgcollection. This collection did not
guarantee that all of its designs are pairwise non-isomorigh Therefore Itering out
the isomorphic designs was necessary.

The storage of 2559 638 designs (full Ext Rep trees) into the database takes a
total time of 63:8 hours, which is about 1115 Ext Rep objects per second.

http://designtheory.org
http://designtheory.org
http://designtheory.org

27

3.3.2 Isomorphic Rejection

Two block designs are considered isomorphic if there existpermutation of the point
set which transforms the blocks of the rst design into the ldcks of the second design.
Basic analysis of the blocks of a design do not indicate thawb particular designs
are non-isomorphic, since a permutation on the point set mayenerate a design with
a new set of blocks.

The isomorphism testing of block designs can be easily reeddo the isomorphism
testing of graphs. The graph isomorphism problem belongs tP but is not known
(neither is believed) to be NP-Complete. NAUTY 9] is the best available software
package for graph isomorphism testing. For this reason tHdockdesign[31] Python
package, used to test isomorphism, is based on NAUTY.

It is required to keep a single copy of a design due to the fadhdt isomorphic
designs can be generated from a given design. Moreover, the Eep speci cation al-
lows for de ning the automorphism group of a design as a \geregtor" function. Thus
allowing the users to generate all the isomorphic design froa given design. Gener-
ating isomorphic designs may be useful in speci ¢ applicatns such as cryptography

[43.

The blockdesignPython package was used to compute a certi cate for each ofeh
designs. All designs within the same isomorphism class hatlee same certi cate.
The computed certi cate is quite large and hence was hashedto a standard sized
integer (32 bits). This hash value was then stored in the dabase for later reference.

Two designs can only be isomorphic if they have the same paratars (number
of blocks, points and block sizes when applicable). The isomphic rejection process
was designed to look at all designs that have the same paramet and hash value.
Designs matching that query would further trigger the certicate generating routine
to check if the designs are isomorphic (rather than just hang a collided hash value,
due to the hashing function used).

The isomorphic rejection process reduced the original inpget of 2,559 638 to
2;556 583, rejecting 3055 designs. This pruning completes in under ®rhours.

28

3.3.3 Design Classi cation

Design may be classi ed into categories using various meit® and techniques. The
classi cation system used to categorize the original set bfock designs DesignTheory.org
collection, see sectiorl.2.2), is done using thet; v; b;r; k; ;q;x . Parametersv (num-
ber of points) and b are the only ones that must be available for any block design
[29).

For block designs the categories created using (suitable)bsets from the general
parameter sett;v; b;r;k; (described in sectionl.l) are arranged hierarchically 13],
such that the set with the least number of designs is at the btwm. This concept
may be represented as an inverted pyramid (see 8 4), such that the bottom (tip of
the pyramid) has the least number of designs. Traversing ugnds the parameter set
becomes less strict including more designs from the univakset of designs.

Once any level in this pyramid is known to be complete, meargrall non-isomorphic
designs from the universal set that are categorized (for trggven parameter set) have
been discovered, all of the levels lower than it (with a strter version of the parameter
set) must also be complete. This is because designs in a $&iccategory, are a strict
subset of the set of designs with a looser parameter set.

As mentioned earlier the original collection of block desng was divided into cat-
egories (using parameters; v;b;r;Kk; ;q;x). Moreover, the users of combinatorial
designs are very interested in browsing a certain category designs. Therefore it
was essential to have the same classi cation schema avallaffrom my system. Note
that lower categories are more restrictive (more speci c)hian higher categories in the
pyramid diagram. Figure 3.4, displays an example of thes = 6; b= 40; k = 3 general
category going down to thea =3;v=6;b=40;r =20;k =3; =2 specic category.

The numbers next to each category in gure3.4 represent the number of designs
available in the database. The label complete is attached tthe category that is
known to be complete (i.e. we have all possible designs fomathparticular category
in the database). All categories below (stricter) than the e labelled complete are
also complete (by the de nition mentioned earlier), while he ones above it may or
may not be complete.

Knowledge that a category is complete (or not complete), maag all designs
for the given parameter set have not been found, requires geating all the pairwise

http://designtheory.org

29

Design Count

vb-b40-k3 13

vB-b40-r20-k3 13

(2-vB-b40-r20-k3-rs 13 COnplete

t3-ve-BE0=F20-k3-\2 1

L

@J

Figure 3.4: Levels of a v6-b40-k3 design category from the $dgn DB. For the last
two levels it is known that all designs are discovered

non isomorphic designs for the given parameter set (categhr This is due to the

combinatorial nature of designs and how they are generated@he only way to prove
that a given set of designs is not complete, is by presentingdasign that belongs to
the category which was not placed in the set. Since the systewill be displaying

all designs it has knowledge of, design categories will eethbe complete, or in an
unknown state. Thus the only situation where designs wouldebin an \incomplete"

set is while yielding query results.

To produce aSummary Tableof the categories available in the database a few
obstacles were overcome. Due to the method used to generale tdesigns from
the DesignTheory.orgcollection (see sectiorl.2.2, which is simply described as a
search in a large combinatorial space that is narrowed dowraked on the initial
parameter set, some runs of the application took a very longnte to complete and
were Killed before they could search the entire space. Howevwhen the application
that generates those designs was killed, the designs thatrerdound up to that point
are saved. For that reason some designs were found using thea ¢ parameter set,
yet were not when using the generalized parameter set (due itdaking too long).

To solve the mentioned issue, designs were linked to all cgteies which they
belong to. This lead to the generation of categories that wemot considered in the

http://designtheory.org

30

original collection. These new categories needed to be dtext whether they contain
all designs for a given parameter set. A category can be madkas complete if and
only if a more general category was marked complete in the ginal collection.

Adhering to the \Keep it Sweet & Simple" (KISS) principle [5], The Summary
Table was designed as a table with its columns being the parametergmking up the
categories, along with count and completeness informatioA many to many relation-
ship was setup with between the summary table and the desigmgich that a design
may belong to multiple categories, and a category containsuttiple designs. The com-
pleteness information, was propagated from the old collech by checking whether the
collection was previously marked complete in the originalotlection. Moreover, any
new ones that were theoretically complete (due to parent lely completeness) were
also marked complete. Finally, after all designs were prased, aggregate queries
were run to determine how many designs are in each summary Bn{class), and
these numbers were stored in the summary table for a quick eeénce.

The main Summary Tablecalculation process, occurred during the design upload
phase and thus the timing for this stage is enclosed within ghaverage time displayed
in section3.3.1 As for the count aggregate phase, it consumes less thab @ours to
process 1757 categories.

3.4 Query Engine

Having such a large database makes querying the database pticated. Although
SQL is a very powerful yet simple language, building queri¢s search all areas of the
database is arguably more complicated a task than buildinghe database. A query
interface was required to modularize the task of querying th large database.

3.4.1 Query Protocol

To allow querying of all areas of the database a language oropocol to simplify this
task was required. This protocol would be used by the web inface designed for
the general users of the system, and in the future would be dotly used by power
users to communicate with the database using an applicatiggrogramming interface
(API).

31

The aim was to make a simple query protocol, while allowing ghuser to query
for any design in the system via any of its parameters. Moreexr, the Ext Rep
speci cation, includes notes about further research into dving a query language
written in Ext Rep [21][29], and thus the query protocol discussed in this section can
be considered the rst prototype for the desired query langage.

The standard Ext Repv3 [29 structure implemented in JSON, was modi ed to
act as a query language (or protocol) to the database systenit.was rst modi ed
such that the leaf nodes of the trees would contain an relatial conditions rather
than literal values. These conditions are represented in MH as a two element list.
The rst being a conditional operator drawn from the set 5! =;<=;<;>;> =, and
the second being the right hand operand of the conditional epator. The left hand
operand is the parent node of this list structure which repients the database column
to be queried. Figure3.5a displays a query, designed using this method, to search
for designs with canonical variance 0:22.

The query language design described above was the rst iteéi@n, which only
allowed for one set of relations and thus was not practical engh. It was further
extended to allow more exibility when searching for a restiset. The second variation
allowed for having multiple conditions for each leaf node. Rese conditions are joined
using the implicit & (\and") operation. Figure 3.5b, shows how you would have
searched for designs with:@2 < canonical variance<= 0:34. To use thejj (\or")
operation, multiple queries would be issued to the system dnhe union of each result
set would be the full query result.

The nal obstacle for the design of the query language was thienslation between
this language and the SQL query language which is understody the relational
database system. Modules were built with the aid of the objecelational mapper to
traverse a query (which is an Ext Rep tree like structure), ash convert each level of
the tree and apply the correct join condition needed to ful Ithe query.

The advantage of this query language is that it is still JSONthus allowing the
reuse of the available parsing code for JSON. Moreover, it lagres to the structure
speci ed in the Ext Rep document, as was advised i2]][29], and allowing for a
common and familiar method of communication to and from the atabase. Users
would be able to issue Ext Rep like queries and be able to geteih results back as

32

{
{ "designs" : [{
"designs" : [{ "statistical_properties" . {
"statistical_properties" : { "canonical_variances" . {
"canonical_variances" . { "value" : {
"value" : { "canonical_variance": [
"canonical_variance": [">", 0.22] ['<", 0.34], [">", 0.22]
}]
} }
} }
1 }
} 1
}

(a) Iter 1
(b) Final

Figure 3.5: Snippets Showing the Experimental Ext Rep Queryanguage

an Ext Rep document (set of designs).

3.4.2 DB User Management

Since many queries return a large number of records, my systéhas to be able to
handle and manage the user queries. Users would be able to ngesystem to query
the database, followed by calls that would allow them to brose their queried result
set.

To reduce unnecessary load on the database system, the startt cursor was
extended such a subset of the results were cached. An actuatabase query request
on the cursor would occur only if the user requested a querysidt that was not
already in the cache. This allowed for traversing both forwd and backward within
the result set. Following that a session management systenasvimplemented such
that users would issue a system call that would return a DB csor id and any
subsequent queries would include the issued cursor id. Thésre subsequent queries,
and browsing requests, would go through the issued cursor.

Chapter 4

Web Interface

In general, web applications require no special con guratns on users PCs and many
people today are familiar with the internet and are acquairdgd with web browsers.

Deploying an update to a system that utilizes a web interface arguably much
easier than having to rollout updates to each of the users. Emapplication is updated
on the server side and the users instantly can view the updatsystem. This is done
with very limited downtime thus allowing users to be able to ecess the application
24 hours a day, seven days a week.

Viruses and malicious code distribution are less likely toappen with web ap-
plications. Many users are paranoid about installing apptations on their machines.
Web applications generally avoid this issue, thus allowinfpr a larger potential user
base.

Data centralization, which is an advantage of all network bsed applications, is
an important advantage. My system, requires this feature,sit will not be feasible
to have each user deploy the combinatorial design database their local machines.

For the above reasons it was decided that a web interface wdwest suit my sys-
tem. The following sections describe the choices that wereade and the applications
used to develop the web interface to the combinatorial desiglatabase.

4.1 Python Web Frameworks

Python is a powerful language that has been fairly used in theeb application realm
in the past. Today more and more Python based web frameworkssebeing developed,
all of which aim to make development easier and faster. Withquwerful Model-View-
Controller (MVC) architectures they allow for decoupled sgtems that are easy to
maintain.

The MVC design pattern splits an application into seperatedyers labelledmodel
view and controller. The modellayer is responsible for the data access, while theew

33

34

layer is responsible for the user interface. In the middle swes thecontroller which
is responsible for the business logic of the applicatio]]

The availability of a wide range of web frameworks for Pythordid not make
the search an easy one. These frameworks have a large rangteatures that make
development easier, increase security and allow for the insion of various open source
and customized middle ware to the system.

Python web frameworks are divided into two schoolsGlue and Full-stack frame-
works. Glue frameworks, as the name implies, glue togetheanous available open
source components (such as a template renderer, object telaal mapper, develop-
ment http server) in order to establish the framework. Examles of such frameworks
are TurboGears and Pylons Full stack frameworks on the other hand are custom
built from the ground up, they do not use any other projects asomponents within
their project. Examples of such frameworks aréd/eb2Py Quixote, Zope and Django.

Although frameworks that use a variety of minor componentsa make up the
framework (i.e. glue frameworks) arguably have a faster edses and more combined
resources, frameworks such as Django (full-stack) are mogivery fast. Neverthe-
less, many frameworks including Django, are moving away frothe strict full stack
methodology and allow for the swapping of the standard compents. In this sec-
tion a few frameworks that have been looked at are describeiMloreover, the chosen
framework is described in detail along with the reason for olesing it.

4.1.1 Quixote

Quixote is a very simple, yet powerful full-stack web framework. Li all web frame-
works to be discussed here, Quixote contains a standalonegphserver to directly

serve the application on the web. Quixote also features sigs management, a sim-
ple template language known aPTL, and allows for the integration of any template
language of choice.

Quixote allows for integration with various database intefiaces, and allows to be
run under the Simple Common Gateway Interface (SCGI). The a@ntage of this
framework is that it has a very small code base and allows foagy auditing and
bullet-proo ng.

35

4.1.2 TurboGears

TurboGears is an example of a glue framework that utilizes mg of the popular
web libraries and components. These components inclubochiKit, Kid, CherryPy,
SQLODbject ElementTreg FormEncode Nose and json-py.

The libraries utilized here are powerful and popular, yet TtboGears seems to
combine them in an awkward way. The modules have been modi €de. hacked) to
integrate with the TurboGears design. This is mainly why it las been labelled as an
\Awkward-Glue" framework by the python community [16].

4.1.3 Django

Django is a Full-Stack framework, with a wide community base and a tge num-
bers of developments. Django o ers a steady release scheddle to the fast paced
development on the project. It has all the features that TurlbGears (Sectiord.1.2
o ers, yet all the components have been speci cally built fothe Django project.
The project has recently been moving toward allowing the ality to integrate ex-
ternal libraries with the framework. They have started withallowing users to easily
incorporate SqlAlchemyinstead of their standard ORM.

4.1.4 Pylons

Pylons is built as a special con guration (grouping of packges) using the Python
Paste project. Paste allows the integration of various componestand libraries into

a framework. The standard setup includes many popular compents, however, also
allowing users to easily swap in other components. This haedn achieved through the
use ofPaste to couple the components, rather than the code modi cation @proach

that TurboGears utilized. It is therefore labelled as a \Deoupled-Glue" framework

[16]. Moreover, Pylons allows the use oFlup package which is a contains a fully
compliant HTTP 1.1 web server. As mentionedPylons allows for any available web
library to be utilized, the following set of components werehosen for this project:

SQLAIchemy
Powerful, exible and clean Object Relational Manager (ORN| that is DB-API

36

compliant. Allows to connect to various database enginesdluding PostgreSQL,
Oracle, MySq|l, Firebird, Sqglite, and other RDBMS engines.

Mako
Pythonic, lightweight and fast template system. Uses the Riion syntax in the
template language, which allows for a powerful and easy toaisystem.

Prototype
JavaScript framework, that has gained popularity, in the wis development com-
munity. Contains a very easy to use AJAX library, and supporfor class driven
applications.

Routes
URL Router that allows for the con gurable mapping between he applications
code base and URL templates.Routes is a re-implementation of the Rails
(Ruby) routes system.

Pylons is a very powerful framework that is cleanly designesuch that one may
hook in their code with ease. The sophisticate deploy methsds also one of its great
advantages, as it allows for all types of deploy methods.

Due to the exibility of Pylons through allowing the choice d any sub component,
it was chosen as the framework for this project. Although stica framework has a
higher learning curve to start, due to having to learn each dhe various components
separately while also learning how they integrate, it was @arent that the exibility
o ered by the decoupled nature of pylons would be helpful tontegrate the various
components of the project, such as the custom JSON parser agdery engine.

4.2 Query Interface

An Ext Rep structure is one that is a large tree structure withmany branches and
leafs (Chapter2). Moreover, the requirement to query the collection usingriteria

in any subtree complicates how the interface would be desph to allow for such
exibility. A query method was required that would also work well with the query

language (Sectior3.4.1).

37

DesignDB

Combinatorial Database seal'Ch [. Browse Results .) 'L. DB Search .)

Query Generator clear query | | Query Preview submit query

id {}

ER N =

L

indicators

combinatorial properties
automorphism group
resolutions

statistical properties {E’)

Figure 4.1: [Adding Canonical Variance] Step,l Locating CanonicalV ariance

DesignDB

Combinatorial Database Seal'Ch (Browse Results'} l’\ DB Search'j
Query Generator back | | Query Preview submit query
canonical variances {}

pairwise variances {b
optimality criteria

other ordeting criteria
canonical efficiency factors
functions of efficiency factors
robustness properties

Figure 4.2: [Adding Canonical Variance] Steppl StatisticalP roperties

DesignDB

Combinatorial Database Search

(Browse Results) (DB Search)

Query Generator

back

Query Preview

submit query

no distinct
ordered

value
)

{1

38

Figure 4.3: [Adding Canonical Variance] Step.1 CanonicalV ariances

DesignDB

Combinatorial Database Search

(Browse Results) (DB Search)

Query Generator

back

Query Preview

submit query

multiplicity
canonical variance {t’)

{}

Figure 4.4: [Adding Canonical Variance] Step4l CanonicalV ariances!

V alue

39

The solution adopted aiming to make query generation useldndly, was to imple-
ment a JavaScript based application to help generate quesie The mini application
grabs the query schema from the web server using an asyncloos JavaScript call
(AJAX). Parsing the result of this call, it proceeds by showng the top level subtrees
in click-able link form. Clicking on any \branch”, the next level subtrees are dis-
played. Following the tree in that manner to reach the leaf ndes, the user would be
able to enter the relational condition for a leaf node, and prceed to add that eld to
the query.

The rst step in generating a query (Figures4.1, 4.2, 4.3, 4.4) is to select the entries
at the top levels of the Ext Rep tree that lead to the desired kf node. Following
that the user enters the desired condition (Figuret.5), and clicks the Add button,
thus leading to the condition being added to the query. Clickg Add, immediately
takes the user back to the root of the Ext Rep query system andlaws the user to
preview the generated query (Figurel.6). In gures 4.1and 4.6it is visible that the
parameterst;r; k; L are available at the root. These parameters are not in the roo
of the Ext Rep tree, however, they were promoted to the root dhe tree due to their
frequent use.

Alongside the \Query Generator", the user sees the \Query Rwview", which shows
the user the JSON query that will be sent to the database. Moower, modifying the
parameters for a given leaf node for that query is as simple gsing through and
re-adding that leaf node's parameters.

Utilizing this approach results in displaying a brief amounof options at each tree
level, and clicking down to the deepest leaf in the Ext Rep teg would require 5 clicks.
This approach is less overwhelming to the user than displag all the possible query
parameters at once. On the other hand, the devised query meitth would only be
bene cial to users that are familiar with the Ext Rep structure. However, requiring
that the users be familiar with the Ext Rep structure, is not ablatant requirement,
since the Ext Rep structure was designed to be intuitive to t users, and logical in
its structure [14]. Figures4.1, 4.2, 4.3 4.4, 4.5, and 4.6 show an example utilization
to add the condition \0:22 < canonical variance< 0:34" to the query.

Another approach in searching the current database, is alable on the main
page of the web application (Figure4.7). The \Summary Table" contains links to

40

DesignDB

Combinatorial Database Search (ProvseResuie) (DB Search)

Query Generator cancel back | | Query Preview submit query

{}

o = canonical (S
- \E variance \E'

(ADD) REMOVE)

Add/Update Query

Figure 4.5: [Adding Canonical Variance] Step 2: De ne & Add @nonical Variance
to Query

DesignDB

Comblnatorlal Database Search l’\ Browse Results) l’\ DB Search)
Query Generator clear query | | Query Preview submit query
id {"statistical properties":{"canonical variances":

0.227],
t ["="y
v 0.34]]} }}}
b
r
k
L
indicators

combinatorial properties
automorphism group
resolutions

statistical properties

[= =3 JA|»

Figure 4.6: [Adding Canonical Variance] Viewing the Updaté Query Preview

41

J

HE S

—

DesignDB

| Browse Results | | DB Search |

Summary of Designs

count complete

k A
Il I
v] 1 m

Figure 4.7: Searching using the basic design parameters

the various design categories in the database. Users areeatly view the designs in
each category by clicking those links. Moreover, users wdube able to generate their
own category, based on a mini search, using thev; b;r;k; parameters of a set of
designs.

4.3 Interface With Query Engine

Pylons allows for a multi-threaded web application. Howewve with multi-threaded
applications come some thread safety concerns. Subsequesquests may be han-
dled by di erent threads, and therefore relying on threadécal data cannot be done.
Nevertheless, this is the case with web development in geaker

Many databases have restrictions regarding this issue aslweConnections are
generally not allowed to be used by di erent application theads. However, using
PostgreSQL and SqglAlchemy integrated with Pylons allows fasimplicity when deal-
ing with the issues related to multi-threading, as they arelahandled implicitly.

The development of the Query Engine (Sectio.4) allowed for simple \black-
boxed" utilization. The session management feature, impigented in the Query En-
gine, allows for users to issue queries and return to browgithem, as long as they
keep their session with the web application.

Due to the Query Engine design, controllers would easily bédle to dispatch user
gueries to the model. Similarly, controllers would be quitk built to generate user
results, sending them to the view, thus maintaining the deapling promoted by the
MVC architecture paradigm (see Sectior.1).

42

4.4 Displaying Designs on the Web

The task of displaying combinatorial and statistical desigs on the web is a compli-
cated task. The task is similar in complexity to displaying e query interface to the
database on the web. The reason is that both tasks deal with ¢hlarge Ext Rep
structure.

Initial experiments of \prettifying" the designs using HTML constructs were
rather discouraging. One of these attempted approaches wasmaintain the nested
structure of the Ext Rep, however, enclosing each segmentarbounding box (similar
to the HTML eldset tag), with a label to denote its name. This approach quickly
transformed the new Ext Repv3 design to something hideous, huge and unreadable.

The initial \prettifying" attempt led me to take the route im plied in [14] and
implemented in R1] [29], to display designs as Ext Rep structures. The main driving
force behind this approach (and a major driving force behinthe move to Ext Rep
v3, see Chapter?) is maintaining a level of readability.

Displaying designs as Ext Re3 compliant structures has multiple advantages,
the most important after readability being that JSON happers to be valid syntax
for multiple programming languages (Sectior2.2). Allowing power users to copy the
sections they seek from the Ext Rep document directly from thweb page into an

interactive shell, or programming environment.

Chapter 5

System Deployment

A Unix based operating system was chosen to host this projedtie to the various
advantages Unix has over other operating systems. Moreoyéhis choice conforms
to the decision of utilizing only open source software for th project.

The project deployment was done such that implemented sofare would not
interfere with the rest of the system, allowing for a clean stallation. This chapter
discusses the various deployment techniques applied in mgopect.

5.1 Installing the package

Abiding by the lazy programmer paradigm 89, it was not desirable to issue large sets
of commands in order to install and con gure the di erent segnents of the system.
To avoid issuing many commands to install the system, Makeels were implemented
in every subdirectory of the project that required a Make le The Make le in the root
directory of the project is responsible for calling the otheMake les and installing
the full project.

Since the project deals with a long running process that intacts with users via
the web, a special system user was created under which the Bggtion would run.
The special user has very limited privileges and thus the kifrom foreign attacks to
the host machine is reduced. Therefore even in the unlikelyent of a security hole
in the implemented application, the security of the Unix useprivileges system, and
database privileges, would secure the host system.

Since my project is a Python project, the code has been desaghin a modular,
object oriented fashion. Moreover, the code has been packdg to t nicely with
Python SetupToolslibrary such that the code base would be easily accessible as
Python module.

The installation of the code as a Python package also allonsrfthe external use of
any of the sub-packages within the system, such as the JSONrpar. Python scripts

43

44

would be able to import the YAJL wrapper (Section2.3.3, and quickly streamline the
parsing of a JSON document. Similarly scripts may be writteron the host machine
to access the database, and do special or diagnostic queries

5.2 Interfacing to the Web

Since this project is WSGI conformant §], there are a variety ways to deploy the
application to be visible by the web users. Options start wit direct deployment

through any of the available mini WSGI servers, and range uptusing the Goliath

known as Apache2. Since deployment under Apache would be swolered the most
secure and exible server that may handle other web requestthis section discusses
deployment methods compatible with Apache. Please note thanod-Python has not

been discussed due to that project no longer being activelyamtained.

5.2.1 Web Server Gateway Interface

Web Server Gateway Interface WSGI) is a speci cation for application and web
servers to be able to communicate with web application8%]. This standard promotes
web application portability across a variety of web serversvithout the pitfalls of
the Common Gateway Interface CGIl) and it successor the Fast Common Gateway
Interface (FCGI). The WSGI speci cation is currently a Python standard and &
implemented for many webservers including Apache.

Mod WSGI is an Apache module that aims to be fully WSGI compliant and hece
allows serving of any WSGI application through Apache. Simcthe web application
runs through the Apache web server, it utilizes Apache's fking technique allowing
the application to be run under a con gured Unix user and grop. WSGI is currently
the preferred method of deployment due to the popularity ofite WSGI standard
within the Python community and its replacement of the mod-Python method of
deployment.

5.2.2 Simple Common Gateway Interface

Simple Common Gateway Interface RCGl) is a very light protocol, which commu-
nicates using netstrings. Netstrings are readable packetsat allow for a simple and

45

easy to debug protocol. SCGI was designed to overcome the dencies in FCGI.
SCGiI is available to apache using thiMod SCGI module.

Deploying a Python WSGI application with SCGI requires a WSGto-SCGI adap-
tor. Such an adaptor is available in theup library which can used via the paste
package, that was installed with Pylons.

5.2.3 Fast Common Gateway Interface

Fast Common Gateway Interface ECGI) is the initial protocol designed to overcome
the speed de ciencies of standard CGI. It is argued that FCG&ims to over solve the
problems with CGI with the inclusion of multi-threading and multi-processes in its
protocol. On many production systems, it is visible that one FCGI starts spawning
processes it places the machine it is running on in a very fiiég state and in most
circumstances in a DOS (Denial of Service) state which is uesirable. For production
use of FCGI many people choose to turn its super features o d¢imit them in order
to get a usable system and thus is not favoured in most web cormamties that are
able to avoid its use. To use FCGI, a WSGI-to-FCGI adaptor is\ailable in the up
package, and a moduleMlod FCGI) is available for Apache.

5.2.4 Apache JServ Protocol

Apache JServ Protocol AJP) is a binary protocol written primarily for the Jakarta
project. AJP may be used to interface to a Python WSGI applicdéon. The AJP
protocol aims to be as complicated as FCGI however withoutstbugs. The authors
are amongst the ones involved with SCGI. The main reason n&iags were not used
this time around is that this protocol contains more overhed then the Simple Com-
mon Gateway Protocol (SCGI) and would be quite slow using réable packets. To
interface a Python WSGI application with AJP, once again a caverter can be found
in the up package and can be setup withmod_proxy_ajp under Apache.

5.2.5 Reverse Proxy

There exists many standalone WSGI servers that can serve shproject, including the
standard Pylons Paste server, which claims to be the fastedéployment method for
Pylons. One may also look at using Apache simply as a proxy ftire web application.

46

Although this is a plausible option, it is not really a desirdle one, as it forces the
maintenance of this external process to allow Apache to commcate with it. To
utilize reverse proxying with ApacheMod Proxy and Mod Rewrite would be used.

5.2.6 Final Deployment

Due to the portability of the WSGI standard and the availabiity of the Mod WSGI
Apache module, WSGI and Mod WSGI were chosen as method of dgphent of my
web application.

5.3 Performance

The system was tested to see how it handled under stress anddo Three experiments
were setup to test the performance of the system. The follawg subsections describe
the conditions for the experiment and its results.

5.3.1 Experimental Setup

The system was deployed to adiNTEL Pentium 4 Machine, machine running a
Debian avour of Linux (see Fig 5.19. The database was built usingPostgreSQL
8.3. The latest versions of the dependencies were installedclimding Pylons 2.6.2
SqlAlchemy 0.5 Apache 2.2.8 mod-wsgi 2.3and blockdesign 0.1.5

To complete the performance testing, the load/stress testy software Tsung [40]
was used. This software allows for recording sample userssess and replaying them
simulating hundreds of simultaneous user access. Tsung wstup on the client
machine (Fig5.1b) to record information about both the server and the client.The
response rates of the clients are measured, and the servemisnitored by an Erlang
monitor for CPU and memory consumptions. Any errors generatl by the server,
typically HTTP 500 (Internal Server Error) codes are recordd to show the breaking
point of the system.

5.3.2 Experiment Details

Three di erent experiments were run in order to test the pexdrmance of the system.
All of the experiments tested the system usage via the web erface, which is currently

CPU Model . Intel(R) Pentium(R) 4 CPU 2.40GHz
CPU MHz : 2400.185

CPU Cache : 8KB (L1), 512KB (L2)

Memory : 512MB * 2 (Running at 333Mhz)
Ethernet : 3Com 3c905C-TX/TX-M [Tornado]
Ethernet Size : 100 MB/s

Hard Disk : Western Digital WDC WD600JB-00CR
Operating System : Ubuntu 8.04.1 (Hardy)

Unix Kernel : 2.6.24-19-generic

(a) Server Specs

CPU Model . Intel(R) Pentium(R) M processor 1400MHz
CPU MHz : 600.000

CPU Cache : 64KB (L1), 1IMB (L2)

Memory : 512MB (Running at 133Mhz)

Ethernet : PRO/Wireless LAN 2100 3B Mini PCI adaptor
Ethernet Size : 10 MB/s

Hard Disk : Toshiba MK4025GA

Operating System : Ubuntu 8.04.1 (Hardy)

Unix Kernel : 2.6.24-19-generic

(b) Machine Running Clients Simulator

Figure 5.1: OS and Hardware Information for Performance Tes

a7

48

the only external access method to the system.

There are two main methods to query the system (see Secti@gn?). All the
simulated clients in each of the rst two experiments used anof these methods,
while the third experiment simulated a fairly random accesstrategy that aims to
simulate the daily usage of the system.

The Categorical Access Experimentlealt with access to the combinatorial designs
corpus via the summary table on the home page. Since the summpdable is search-
able via their summary reference id, Tsung was con gured tandomly pick an id to
search, simulating a user click on one of the links availabten the home page.

The second experiment $earch Form Experimen} dealt with using the search
form also available from the home page. Tsung was setup forighexperiment to
simulate users accessing the design corpus via the simplarsk form.

These rst two experiments are to test the major entry pointsto the system.
The entry points described in the experiments above are codered major because
they are available on the home page of my web application. Mawver, they are the
simplest methods of locating a particular design, and thef@e most users would be
interested in using them.

Lastly, Random Access Experimensimulates users querying and browsing the
database through all entry points, simulating a generic fulusage of the system.
The user sessions simulated by this experiment were of botkaus that are browsing
the System without any particular design in mind, and usershat are looking for a
particular design. All the web interface's pages are accessin this test, thus load
testing the entire web application.

Tsung allows for the con guration of thinking time in order to simulate real user
behaviour. Each of the test runs were one hour in length. Thelfowing sub-sections
discuss the results of each of the experiments.

5.3.3 Categorical Access Experiment

When looking at querying the database via the summary tablen average, the result
set was available to the user in 3.07 sec. The fastest beingureed at 1.20 sec and
the slowest at a delta of 25.70 sec. For this test, server caution was established on
average after 3.3 msec, with a lower bound of 1.2 msec and arpapbound of 0.11

49

sec. In summary the average session (total of connect and uegt) took 3.078 sec to
complete.

Internal server errors begin to appear when the number of useexceeded 1000
users per hour (1 users every 3.6 seconds). For the given ol run, querying and
browsing a subset from the returned result set resulted in dtoughput of 26.75 MB
from the server and 154.87 KB to the server. The server CPU uga ranged from
0.9% to 100%. Memory consumption for this test was 27.05 MB.

5.3.4 Search Form Experiment

Querying the database via the simple form, on average, thestdt set was available to
the user in 4.65 sec. The quickest completed at 1.94 sec and glowest at a delta of
16.1 sec. For this test, server connection was established average after 5.88 msec,
with a lower bound of 1.3 msec and an upper bound of 0.39 sec. dammary the
average request (total of connect and page) took 4.654 secctumplete.

Similar to the Categorical Access Experimentinternal server errors begin to ap-
pear when the number of users exceeded 1000 users per hourgdraievery 3.6 sec-
onds). For the given optimal run, querying and browsing a siget from the returned
result set resulted in a throughput of 27.66 MB from the serveand 497.98 KB to the
server. The server CPU usage ranged from 0.7% to 100%. Memoonsumption for
this test was 13.55 MB.

5.3.5 Random Access Experiment

This experiment focused on simulating the utilization of dlentry points to the system
via the web interface. On average the response was availalidethe user in 90.5
seconds. The fastest page returned at 0.226 sec after beiaguested and the slowest
at a delta of 254.7 sec. For this test the server connection svastablished on average
after 4.25 msec, with a lower bound of 1.3 msec and an upper Induof 36.7 sec. In
summary the average request (total of connection establisient and server response)
took 90.5 sec. The reason for this high number is that each edit had multiple
requests, simulating a real live user, and therefore manynsiltaneous users were
connected at the same time (which hit a maximum of 423 simulteeous connected
users). Moreover, the main summary page, which contains abie that is made up

50

of more than 3,000 rows, was included in this test. Since thmage takes some time
to download it had considerable stress on the network throbigut and the server.

Since this test fully utilizes and stresses the system, inteal server errors begin
to appear earlier than in the previous tests. The break poingxperienced in this test
seemed to hover around 710 users per hour (1 users every 5 sggp

The usage scenario simulated by this experiment resulted athroughput of 88.38
MB (773.78 Kbps) from the server and 4.59 MB (28.83 Kbps) to #server. The
server CPU usage ranged from 1% to 100%. The memory consuroptifor this test
was 195.99 MB.

5.3.6 Experimental Summary

The experiments show that the system can successfully haadietween 700-1000 users
per hour depending on their utilization of the system. Seain 6.2 displays the current
number of users my system is serving. Since this number is fass than 10 users per
hour, it is safe to say that the system can successfully haredthe current load and
substantially bigger loads. In the future, when more usersdgin using my system, a
more complex setup may be considered, which is described @ttson 7.4.

Chapter 6

System Interfaces and Usage

This project implements a fairly large system with many sulsystems that work to-
gether to serve the user. To aid in seeing the abstract intezston of the di erent
basic subsystems a system diagram is shown in FigugeL

The system implemented by this project is one that is awaitely the combinatorial
and statistical design users since it was never implementbdfore. Due to this reason,
the application was fairly well publicized onDesignTheory.org DesignDB.org and
WikiPedia with various links leading to the web server, which at the tire of this
writing is http://nassrat.cs.dal.ca/ddb2 . Section 6.2 displays the utilization of
the system for the months prior to the publishing of this docment.

6.1 Searching For a Design

A user of this combinatorial design database, Mr. Brian Mo@r from Johann Radon
Institute for Computational and Applied Mathematics (RICAM), has had a recent
problem that required a combinatorial design. The problemih colleagues and himself
were working on seems to have been quite complex, thus he haaspmed it into a
simpler form in his request for help. Mr. Moore formulated ls search as follows:

In our case, we are interested in a slightly di erent problen{l am not
sure if it has a name). For this, let me explain the problem: Waave 18
players playing a certain sport (let's say curling) playingon 3 di erent
allies (6 players per alley) at the SAME time. They play 17 gass and we
want that every combination of 2 players play exactly 5 timedogether.
That is, we want to build a scheduléet

Mr. Moore's description leads to designs with parameterg = 18;k = 6; =
5/t=2;r =17;b=51. This is because of the following mapping:

LExcerpt from an email conversation with Brian Moore.

51

http://designtheory.org
http://designdb.org
http://en.wikipedia.org
http://nassrat.cs.dal.ca/ddb2

ExtRep v2

xml doc xml doc xml doc
Apache Web Server
: © mod_wsgi :
r
| |
ExtRep2to3 I | ddb_browser |
| |
-—- - - ‘—\\-.“_N..‘
ExtRgp v3
PPN Z f AN
jsan doc json doc json doc ddb_qge browser
AN i
Databasé\}‘ ’/ L]
ddb_create_db ddb_upload ddb_get '
«
\ | B
PostgreSQL

Figure 6.1: Design DB Overview Diagram

v number of players
k numbers of players per game

number of times each pair (for t=2) repeats within all blocks
r number of games played by each player

b number of di erent games in total

Moreover, Mr. Moore's problem contains an extra constrainthat the design
must be resolvable (simply de ned as partition-able)49]. The following subsections

describe how the system can be utilized to search for the desl design.

6.1.1 Utilizing the Summary Table

The summary table allows the users to access the designs tigh choosing a top level
category. The designs are categorised based on the basicapagterst; v; b;r; K; ;q; X
(Section 3.3.3. Explanation of these parameters is in the sytem in a tableot aid
users in understanding the meaning of the parameters. Sometliese parameters are

53

DesignDB ==l

(Browse Results) (DB Search)

Summary of Designs

count complete

17 68 5 7260
2| 18] 34| 17| 9| 8 21
18 34 17 9 21
18 34 0 21
o | 18| st | 17| 6 | 5 58
18 51 17 6 582"
18 51 6 582
2| 18| 102 17| 3| 2 186
18 102 17 186

W

10 nA k]

Figure 6.2: Finding a group of designs from the summary table

not applicable for all categories, which is indicated usinthe symbol \-" to replace
the value. Figure6.2displays a section of the summary table that contains the digm
categoryv = 18;k =6; =5;t=2;r =17;b=51. To locate this entry the user

would need to move the scrollbar on the left side of the lexigoaphically sorted table.

Clicking on the link displayed in the \Number of Designs" calmn for a given
category sends an appropriate query to the database serverreturn a cursor to the
given result set. Figure6.3displays the result of clicking on the category within which
the design (speci ed in the problem above) would be locatedAs mentioned before,
the link for the category is the one pointed to by the cursor ingure 6.2, indicating
that there is 582 results in that given class.

As can be seen in gures.3, the user has two main options, the rstis to download
the result set, in which case the results will be streamed td¢ user as a JSON Ext
Rep Document. The user has a second option, which is to browde result set.
In the browsing mode, the user may go forward or backward thogh the result set.
Moreover, the user may download a single design as a compli&xt Rep document.
Figure 6.4 displays the third result within this result set.

DesignDB

-

Query Results

[download result set)

{ Browse Results)

(DB Search

582 designs found

Figure 6.3: Query Result Summary Page - For the given search

DesignDB =R
J
14 4 Design 3 of 582 4 Pl (download) (Browse Results) (DB Search)
R,
{ 0
"type" "block design",
"id" 2509835,
"y" ¢ 18,
Heptt o B
thlockss =]
o, 1, 2, 3, 5, 91, 10, 1, 2, 4, 8, 161, [0, 1, 3, 7, 15, 16],
LD RS o e] D RN O] P] Do] S| T e T R TR O S
[¢, 2, 5, 10, 11, 1531, [0, 2, &, 14, 15, 18],
[LOFS S = A P] P [0 AT s] AT
[o, 3, 8, %, 13, 15], [0, 4, 5, 11, 14, 17],
[o, 4, 6, 8, 11, 16], [0, 4, 12, 13, 14, 15],
[0S N6 = T 2L [0 G0] 26, T
[0, 8, %, 10, 11, 131, [1, 2, 3, 4, &, 10], [1, 2, &, B, 10, 13],
[2o SR Dl 14 ST] e s s 5o s e A
s B (3 Jhbs b algfe {jale fle s bl lads k|
[i, 4, &, 9, 15, 171, [1, 4, 5, 10, 14, 16],
[l es el = 10 1D A 1] O [St Pl A A s P o |
[1; &, 7, 11, 13, 15], [1, 9, 10, 11, 12, 14],
s Ein chelme o IR (e f5h iy Ble abbe gleife i Bleelis dliis a5 alls
(2486 =%] d] 52 RGeS] 2 A = A
[2, 5, %, 10, 16, 171, [2, &, 7, 13, 16, 17], .
207, PR 130 14 L] 2] e D 3 5 =
- r A 5 A 4] 121 [2 Fil 4] 10N 12 161 - i}
= - i it

Figure 6.4: Third result forv=18;k = 6;

=5:t=2;r=17;b=51

54

55

Figure 6.5: Query Results fov =18;k =6; =5;t=2;r=17;b=51

6.1.2 Using the Brief Design Search

A second method of searching for the design database is thgbuthe mini search
attached to the top of the summary table. This search bar canébseen in gures4.7
and 6.2 Filling the applicable search boxes and clicking on \sedrt sends the query
to the database server. This feature allows for the creatioof classes \on the y", or
for quicker access than locating the appropriate class inghsummary table.

For the problem described above (Sectio6.1) the result summary after doing a
search forv =18;k =6; =5;t=2;r =17;b=51 is displayed in gure 6.5.

6.1.3 Using the Full Design Search

There is yet another method to search the database, as memtex in section4.2 This
method of searching is exible to allow querying the databasvia any of the Ext Rep
parameters. The advantage of this feature is to be able to gqdy nd the design
being targeted because the method allows for the resolvabég in the search. Figure
6.6 shows the query preview, while gures.7 displays the search results.

As can be seen from the search results (Figu6e7), no results were found in the
database for Mr. Brian Moore's problem. However, looking athe summary table

56

Figure 6.6: [Brian Moore's Search] Query Preview

Figure 6.7: Query Results fov =18;k = 6;

=5:t=2;r =17;b=51; Resolvable

57

Figure 6.8: Web Visit Stats for 2008

entry (Figure 6.2), the database may not have all the entries for this particar design
class due to the \?" (unknown) ag in the complete column. If M. Moore solves the
problem, his solution can be entered into the database for laér people to discover
and use.

6.2 Usage Counts

It was expected that my system was urgently needed by its stakholders (combina-
torial design users). For this reason the web application wamade public and was
publicized shortly after the system was deemed stable. Thigction displays the usage
statistics of the system in the months prior to the publishig of this document.

This system was made public in late April 2008. Figur®.8 shows the monthly
visit and page hit history for the web interface in 2008. As cabe seen in the gure,
the number of unique visits increased with time. The abruptricrease in the number of
visits in November correlates with placing links to the web @plication on the famous
website Wikipedia in the pages that discuss block designs.

58

To be able to analyse the stats further, the most recent stattiics for the full month
of January 2009 will be used. Figuré.9 displays detailed statistics for each day in
January 2009.

As can be seen, there seems to be a steady rate of visits per dath a consistent
slight decrease over the weekends. This is considered nokraa most users of the
database would utilize combinatorial designs in their wotkwhich usually occurs on
weekdays. The average page hits for each day of the week carsben in gure6.10

Most visitors did not spend a large amount of time on the weltsl. This could
mean two things, either that they did not enjoy the web appliation, or that they
were quickly able to utilize the system to either get what thg were looking for or
determine that the block design is not in the database. Newureless a 20% of the
vists lasted for over one hour. Figures.11 displays the durations for the month of
January 2009.

The main entry point url to the webserver in the month of Januay is the design
database web application. Although the webroot had many merhits, it seems that
this was the result of users roaming around the website aftetilizing the design
database. Figure6.12 displays the di erent hits for the top urls on the webserver.
Note that the urls starting with \ddb2" point to the Design DB .

The design database has users from all over the world. The maty of the users
seem to be located in the United States and Great Britain. Hasver, there seems to
be a signi cant number of users from other countries as welkigure 6.13displays the
locations by country ofIP addresses that accessed the Design DB.

There seems to be a wide variety of operating systems and webwser clients that
accessed the Design DB. However, the majority of the usersrevautilizing Microsoft
Windows and Microsoft Internet Explorer. The number of hitsgiven an operating
system and web browser software for January can be seen in rga 6.15aand 6.15b
respectively.

Figure 6.9: Web Visit Stats for January 2009

59

Figure 6.10: Web Visit Aggregate for Weekdays in January 200

Figure 6.11: Web Visit Durations for January 2009

Figure 6.12: Top Urls for January 2009

60

Figure 6.13: User Countries - January 2009

Figure 6.14: Top Referrals for January 2009

(a) Top Operating Systems

(b) Top Web Browser Software

Figure 6.15: User Software - January 2009

61

Chapter 7

Conclusion and Future Considerations

7.1 Ext Rep Extensions

The External Representationsv3 is not the end of this protocol. An attempt was
made to cater for all the needs that were missing from2; However, there appears
that more will be required from such a protocol. It was only dér the deployment
and usage of the Ext Repv2 [21] when it was apparent that there were issues that
required attention. Similarly, issues would arise after tb use of the newly developed
protocol v3.

A query language was proposed in the described system, hoamut is not fully
compatible with the Ext Rep protocol as it changes the strueire of the document.
In the future, research will be made, to either modify the exrnal representation
to cater for querying the database, or try to devise a methodfasing the currently
designed protocol as a query language.

7.2 RDBMS Alternatives

In this project, a Relational Database System was used to Hothe combinatorial
designs, with a nice wrapper to give it an Object Oriented fée However, further
research should be considered with a di erent type of a datalse engine.

HDF5 and its Python wrapper PyTables have been considered here but have
been found inappropriate for the current requirements andesign. WhenPyTables
progresses to be in a fully compatible state withIDF5 this options should be revisited
for consideration.

Moreover, consideration should be given to Object Orientedatabases such as
Python's infamousZODB. Similarly, one should also considegchevg Durus, Metakit
and BuZhug

Nevertheless, a document database should also be considermely Couch DB.

62

63

Couch DB is a JSON database that uses map reduc2/[to lter through the docu-
ments and return the relevant document set. This strategy tebeen found fast and
useful in the search technology by Googl@T]. The classi cation and grouping of
designs may require some extra consideration to integratetivCouch DB but it may
lead to a much simpler system and can be looked at as a futurebsproject.

7.3 Interface Personalization

Without users my system would be useless, and therefore oneishaim to cater for
the users of the system. Although this is the rst and only daabase of combinatorial
and statistical designs on the web, users may not use this djgation if it is not easy
to use.

To understand better how the users are using the system, fimtr research will
need to take place. Examples of technologies that may aid iuch research are
tracking tools that would report back how long users have baedwelling on certain
pages and their idling times. Similarly looking at the exit pints from the system
may help identify pages with an unintuitive user interface 1) that may have led to
user frustration with the system.

Indeed when the number of users grows, professional ethreygners may be re-
quired to identify the bottlenecks of the user interface andvhat can be changed to
facilitate the user experience.

It is obvious that to query using any parameter in the Ext Rep$ not fast. A user
may need to perform up to 5 clicks to add a single condition tdhe query. In the near
future the query interface will be revisited, and research iWtake place to make the
interface more intuitive and simple.

Interface personalization is another area of interest. Rearch into this area would
lead to improving the Web 2.0 look and feel of the system.

7.4 High Performance

The design database is expected to grow in the number of desigand users. Since
performance degrades with the number of users, the systemyrize rendered useless
with extreme tra c. Therefore prior to reaching the breaking capacity, consideration

64

must be made for high performance and availability setupsush as having multiple
databases and web servers, for both load balancing and fafls measures.

7.5 Software Upgrade

As this document is being published, the state of the open swme tools that were
used in this project have been advancing. In October 2008 tinew version of Python
2.6 was released. This new version has a few extra featuresrokython 2.5 and has
deprecated a few of the older functionalities. Similarly Hgns 0.9.7 is coming close to
being released. These two speci c pieces of software aretpErthe core of the design
database system, thus updating to these new versions will tiee next priority.

In general, open source tools have fast release cycles whitakes this task an
ongoing one. However, this is not a disadvantage, on the coaty, it is a great
advantage of using open source software.

7.6 RESTful API

The current system is lacking an application programming terface (API) such that
programmers can e ectively utilize combinatorial designsAn example of such a user
is Brian Moore (Section6.1). Mr. Moore asked if there was an easy way for pro-
grammers to interact with the system. Since mathematicianend computer scientists
nd combinatorial designs useful, such an interface wouldllaw them to quickly and
easily access the system. A design for such an interface isrently in a (beta)
stage, and will be part of the focus for the next phase of thisrpject.

7.7 Accepting Contributions

The success of this project lies in the fact that it is currety the only database of
combinatorial designs on the web. Thus my system acts as thele online combina-
torial design repository. For this reason it is essential tt an automated system is
deployed that will accept new designs. Such a system has to tarefully designed
to check if the design is pairwise non-isomorphic to all dggis in the database. Fol-
lowing that the design would be accepted and integrated intthe system. Although

65

many of the building blocks for this feature are available,tiis a considerably sized
task to complete and will also be a major focus for future phas of this project.

7.8 Conclusions

My project made three large contributions to the eld of cominatorial and statistical
designs. The new Ext Rew3 was created and is expected to be more popular than its
XML predecessor. A categorized database of pairwise noo#isorphic designs from
the set of designs gathered bpesignTheory.orgwas created. Finally an interface was
produced and deployed on the web as a gateway to the systemtsubat the users
may interact with the system and search for combinatorial dagns.

Prior to this project such a database did not exist, therefa forcing many users
to recreate e orts and regenerate designs. The initiationfdhis project is an aim to
create a central repository of combinatorial and statistial designs accessible at all
times to all users.

Moreover, this project had contributions in the eld of computer science in the
integration of the subsystems and the evaluation and use ofeeding edge technolo-
gies. Therefore, it may be used as an example for other pragatilizing open source
software, or ones aimed at designing databases to host matiedical objects. Simi-
larly projects that are considering implementing a data reggsentation may nd this
project valuable.

As with all systems, and especially software engineerindie process is an iterative
one. Although much has been done to make such a system ouriahd be usable by
its users, the users will always request new features and pier interfaces. Hopefully
this project will have many phases in the future with many cotmibutors such that it
remains the largest single repository for combinatorial dgns on the web.

Bibliography

[1] O5migration - sglalchemy [online, cited 2008 June 17]vailable from World Wide
Web: http://www.sglalchemy.org/trac/wiki/O5Migration . Migrating from
SA 0.4 to 0.5.

[2] 14.14 ctypes { a foreign function library for python. [ohne, cited 2008 Septem-
ber 21]. Available from World Wide Web: http://docs.python.org/lib/
module-ctypes.html .

[3] Collection of Designs. Available from World Wide Webhttp://designdb.org/
extrep/json-files/

[4] Javascript Object Notation (JSON). Available from World Wide Web: http://
www.JSON.org

[5] KISS principle [online, cited 1 January 2009]. Availakel from World Wide Web:
http://en.wikipedia.org/wiki/KISS _principle

[6] Model-View-Controller [online, cited 2009 February 9 Available from World
Wide Web: http://en.wikipedia.org/wiki/Model-view-controller#
Pattern_description

[7] Relax ng schema language for xml. Available from World We Web: http://
relaxng.org .

[8] Speci cations - wsgi wiki [online, cited 2008 Decembet.1Available from World
Wide Web: http://wsgi.org/wsgi/Specifications

[9] Practical graph isomorphism.Congressus Numerantium30:45{87, 1981. Avail-
able from World Wide Web: http://cs.anu.edu.au/ ~bdm/papers/pgi.pdf .

[10] Dion Almaer. Ajaxian JSON vs. XML: the debate [online, ited 2009
April 4]. Available from World Wide Web: http://ajaxian.com/archives/
json-vs-xml-the-debate

[11] Francesc Alted and Ivan Vilata. PyTables - hierarchidadatasets in python.
Available from World Wide Web: http://www.pytables.org

[12] Paul M. Aoki. Implementation of extended indexes in pogres. SIGIR Forum,
25(1):2{9, 1991.

[13] R. A. Bailey and Peter J. Cameron. What is a design? how stild we classify
them? Des. Codes Cryptography44(1-3):223{238, 2007.

66

67

[14] R. A. Bailey, Peter J. Cameron, Peter Dobcsnyi, John P. bfgan, and Leonard H.
Soicher. Designs on the webDiscrete Mathematics 306(23):3014{3027, 12/6
2006.

[15] Ivan Vilata Balaguer and Hatem Nassrat. Re: VLArray ingle a table.
Available from World Wide Web: http://article.gmane.org/gmane.comp.
python.pytables.user/811

[16] lan Bicking. Full Stack vs. Glue [online]. February 20D [cited 2008 De-
cember 1]. Available from World Wide Web: http://blog.ianbicking.org/
full-stack-vs-glue.html

[17] Georg Brandl, Peterson Benjamin, Cannon Brett, WinterCollin, and Loewis
Martin. Repository - directory - projects: sandbox/trunk/2to3. Available from
World Wide Web: http://svn.python.org/view/sandbox/trunk/2to3/

[18] Peter J. Cameron, editor Encyclopaedia of DesignTheory2006. Available from
World Wide Web: http://designtheory.org/library/encyc/

[19] Peter J. Cameron. Designs. In W. T. Gowers, editoRrinceton Companion to
Mathematics Princeton University Press, March 2008. ISBN: 0-691-118%9®.

[20] Peter J. Cameron, Peter Dobcsanyi, John P. Morgan, antdeonard H. Soicher.
Dtrs protocol version 2.0, 2004. Available from World Wide Whb: http://
designtheory.org/library/extrep/

[21] PJ Cameron, P. Dobcsanyi, JP Morgan, and LH SoicherThe External Repre-
sentation of Block Designs December 2003. Available from World Wide Web:
http://designtheory.org/library/extrep/ext-rep.pdf

[22] Charles J. Colbourn and Paul C. van Oorschot. Applicaths of combinatorial
designs in computer scienceACM Comput. Surv, 21(2):223{250, 1989.

[23] Charles J. Coldourn and Je rey H. Dinitz. The CRC Handbook of Combinatorial
Designs CRC press edition, 1996.

[24] Rick Copeland.Essential SQLAIchemy O'Reilly, 2008.

[25] Douglas Crockford. RFC4627: Javascript Object Notain, 2006. Available from
World Wide Web: http://www.ietf.org/rfc/rfc4627.txt

[26] Kevin Dangoor. Webpae about turbogears [online, cit#D07 October 15]. Avail-
able from World Wide Web: http://turbogears.org/about/

[27] Je rey Dean and Sanjay Ghemawat. Google research pudtion: MapReduce.
In OSDI'04: Sixth Symposium on Operating System Design and llamentation,
San Francisco, CA, December 2004. Available from World Widé/eb: http://
labs.google.com/papers/mapreduce.html

68

[28] Chris DiBona, Sam Ockman, and Mark Stone, editorsOpen Sources: Voices
from the Open Source RevolutionO'Reilly & Associates, Inc., Sebastopol, CA,
USA, 1999.

[29] P. Dobcsanyi and Hatem A. Nassrat. The External Representation of Block
Designs v3 . 2008. Available from World Wide Web: http://designdb.org/
extrep/ext-rep.pdf

[30] Peter Dobcsanyi. PYDESIGN version 0.5, November 2004vailable from World
Wide Web: http://designtheory.org/software/pydesign/

[31] Peter Dobcsanyi. blockdesign v0.1.5, June 2008. Available from World Wide
Web: http://www.sagemath.org/doc/reference/sage/combinat /designs/
block_design.html

[32] Philip Eby. Pep: 333, python web server gateway inter€éa v1.0. http://www.
python.org/dev/peps/pep-0333/

[33] Brian Everitt and Torsten Hothorn. A Handbook of Statistical Analy-
ses Using R Chapman & Hall/lCRC, Boca Raton, FL, 2006. Avail-
able from World Wide Web: http://cran.r-project.org/src/contrib/
Descriptions/HSAUR.html . ISBN 1-584-88539-4.

[34] David Flanagan and Yukihiro Matsumoto. The Ruby Programming Language
O'Reilly, 2008.

[35] Mike Folk and Elena Pourmal. Hdf software process. INOBUGS, volume
NOBUGS 2004, December 2004. Available from World Wide Welbxttp://www.
hdfgroup.uiuc.edu/papers/papers/Software_Engineerin g_at HDF1.pdf.

[36] Arun Gupta. Language-neutral data format: XML and JSONonline, cited 2009
April 4]. Available from World Wide Web: http://blogs.sun.com/arungupta/
entry/language_neutral_data_format_xml

[37] Thomas Heller. The ctypes package. Available from WarWide Web: http://
python.net/crew/theller/ctypes/

[38] A. Konovalov. Computer algebra system gap\CHIP" Magazine, (9), 2001.
Supplementary article for the GAP 4.2 distribution on the CDappendix to the
magazine.

[39] Philipp Lenssen. Why good programmers are lazy and dumbAugust
2005. Available from World Wide Web: http://blogoscoped.com/archive/
2005-08-24-n14.html .

[40] Zhen Liu, Nicolas Niclausse, and Gesar Jalpa-Villamva. Trac model and
performance evaluation of web serverferform. Eval., 46(2-3):77{100, 2001.

69

[41] Lloyd. Yet Another JSON Library, 2008. Available from Wrld Wide Web:
http://lloydforge.org/projects/yaijl/

[42] Hatem Nassrat. Design Database version 2, 2009. Avaik from World Wide
Web: http://hg.nassrat.ca/ddb2/

[43] Wakaha Ogata, Kaoru Kurosawa, Douglas R. Stinson, andafime Saido. New
combinatorial designs and their applications to authent@tion codes and secret
sharing schemes. Discrete Mathematics 279(1-3):383 { 405, 2004. Available
from World Wide Web: http://www.sciencedirect.com/science/article/
B6V00-49M6T2B-4/2/41d82f427f342ce9a7a08ff3a61f281f. In Honour of Zhu
Lie.

[44] Travis Oliphant. Guide to NumPy http://numpy.scipy.org/numpybook.pdf

[45] Kenneth H. Rosen and John G. MichaelsGraph Invariants and Isomorphism
CRC Press, 2000.

[46] Leo Simons. Our choices for python web applications Jore, cited 2008 March
17]. Available from World Wide Web: http://Isimons.wordpress.com/2007/
12/11/our-choices-for-python-web-applications/

[47] Steve Spez. on lisp [online, cited 2007 December 12]akable from World Wide
Web: http://blog.reddit.com/2005/12/on-lisp.html

[48] William Stein. Sage: Open Source Mathematical Software (Version 2.10.2he
Sage Group, 2008. Available from World Wide Webhttp://www.sagemath.
org.

[49] Gerald Jay Sussman and Jr. Guy Lewis Steele. Scheme: Aweipreter for
extended lambda calculus. Technical Report Al Lab Memo AIMB49, MIT Al
Lab, December 1975. Available from World Wide Webhttp://repository.
readscheme.org/ftp/papers/ai-lab-pubs/AIM-349.pdf

[50] G. van Rossum and J. de Boer. Linking a stub generator (ato a prototyping
language (python). Proceedings of the Spring 1991 EurOpen Conference, Troms,
Norway, pages 20{24, 1991.

[51] Guido van Rossum and Fred L Drake. pickle { python objecerialization [online,
cited 2008 October 13]. Available from World Wide Webhttp://docs.python.
org/lib/module-pickle.html

[52] Stephen Wolfram. A New Kind of Science Wolfram Media, 2002. Available
from World Wide Web: http://www.wolframscience.com

[53] Kris Zyp. XML vs JSON [online, cited 2009 April 4]. Avaiable from World Wide
Web: http://www.authenteo.com/page/XML_vs_JSON.

Appendix A

Ext Rep v3 Schema

#

The External Representation of Block Designs
#

an EBNF based schema

#

<list_of designs> = {

<header> ,
<designs>
h
<header> =

external_representation_version : "3.0"
design_type . (block _design | latin_square | mixed)
number_of designs : ($integer | unknown))

?(, <invariants>)

?(, pairwise_nonisomorphic : ($boolean | unknown))

?(, complete_upto_isomorphism : ($boolean | unknown))
?(, number_of isomorphism_classes : ($integer | unknown))
?(, precision . S$integer)

?(, <info>)

<invariants> = invariants : {
relations which hold over the list of designs
conjunction implicitly assumed
?(relations : |

[<rel_arg>, <rel_op>, <rel_arg>]

70

*(, [<rel_arg>, <rel_op>, <rel_arg>])

]

optional invariant description as needed

?(invariant_description : $string)

<rel_arg> = <design_parameter> | <scalar> ;

<design_parameter> =t | v | b | ... | resolvable | ... ;

<re|_0p> = n—n | ||!=|| | ||<|| | ||<:|| | ||>|| | ||>:ll .

<designs> = designs : [<design> *(, <design>)] ;

<design> = <block_design> | <latin_square> ;

<block_design> = {

type . block_design ,
id : ($string | S$integer) ,
Y% . $integer ,

?2(b . $integer ,)

?(precision : S$integer ,)
<blocks>

?(, <point_labels>)

?(, <indicators>)

?(, <combinatorial_properties>)

?(, <block design_automorphism_group>)
?(, <resolutions>)

?(, <statistical_properties>)

?(, <alternative_representations>)

?(, <info>)

71

72

<blocks> = blocks : [<block> *(, <block>)];

<block> = [S$integer *(, $integer) J;

<point_labels> = point_labels : [

($integer *(, S$integer))
| ($string *(, $string))

<latin_square> = { latin_square : <to be defined later> };

<indicators> = indicators : { <indicator> *(, <indicator>) 1
<indicator> =
repeated_blocks . $boolean
| resolvable : $boolean
| affine_resolvable : ($boolean | { mu . S$integer })
| equireplicate : ($boolean | { r . S$integer })
| constant_blocksize : ($boolean | { k . $integer })
| t design . ($boolean | { maximum_t . Sinteger })
| connected : ($boolean | { no_components : S$integer })
| pairwise_balanced : ($boolean | { lambda . S$integer })
| variance_balanced : $boolean

| efficiency_balanced : $boolean
| cyclic : $boolean
| one_rotational : $boolean

<combinatorial_properties> =
combinatorial_properties : {
<point_concurrences> ,

<block_concurrences> ,

<t_design_properties> ,
<alpha_resolvable> |,

<t_wise_balanced>

<point_concurrences> = point_concurrences : |

<function_on_ksubsets_of indices> *(, <function_on_ks

<block _concurrences> = block _concurrences : |

<function_on_ksubsets_of indices> *(, <function_on_ks

<t_design_properties> = t_design_properties : {
t _design_properties_member *(, t _design_properties_me

<t_design_properties_member> =

parameters : {

t . $integer
% . $integer ,
b . Sinteger
r . $integer
k . $integer ,
lambda : $integer
}
| square : $boolean
| projective_plane . $boolean
| affine_plane : $boolean
| steiner_system : ($boolean | { t: $integer })
|

steiner_triple_system : $boolean

<alpha_resolvable> = { <index_flag> *(, <index_flag>) };

73

ubsets_of indices>)

ubsets_of indices>)

mber)

<index_flag> = "$integer" : ($boolean | unknown) ;

74

<t _wise_balanced> = { <t index_flag> *(, <t_index flag>) }
<t_index_flag> = "$integer" : ($boolean | unknown | { lambda . $integer }) ;
<resolutions> = resolutions : {

pairwise_nonisomorphic : ($boolean | unknown) ,

all_classes_represented : ($boolean | unknown) ,

value . [<resolution> *(, <resolution>)]

<resolution> = {
function_on_indices: <function_on_indices>

?(, <resolution_automorphism_group>)

<resolution_automorphism_group> = resolution_automorp hism_group : {

<permutation_group>
?(, <resolution_automorphism_group_properties>)

<resolution_automorphism_group_properties> =

resolution_automorphism_group_properties : <to be defin

<block_design_automorphism_group> = automorphism_grou p: {
<permutation_group>,

<block_design_automorphism_group_properties>

<permutation_group> = permutation_group : {
degree : $integer ,

order : Sinteger ,

ed later> ;

75

domain : points ,
<generators>

?(, <permutation_group_properties>)

<permutation_group_properties> = permutation_group_pr operties : {

<permutation_group_properties_member> *(, <permutatio n_group_properties_member>)

<permutation_group_properties_member> =
primitive . $boolean

generously_transitive : $boolean

|

| multiplicity_free . $boolean

| stratifiable : $boolean

| no_orbits . $integer
| degree_transitivity : $integer

| rank . $integer
|

<cycle_type_representatives>

<block_design_automorphism_group_properties> =
automorphism_group_properties: {
block_primitive . ($boolean | not_applicable) ,

degree_block_transitivity : ($integer | not_applicable) ,

no_block_orbits : ($integer | not_applicable)

%

<cycle_type_representatives> = cycle_type_representat ives : [
<cycle_type_representative> *(, <cycle_type_represent ative>)

<cycle_type_representative> = {
permutation . <permutation>,

cycle_type : [$integer *(, $integer)],

no_having_cycle_type : Sinteger

<generators> = generators : [? (<permutation> *(, <permuta

<permutation> = [$integer *(, $integer) I;

<alternative_representations> = alternative_represent ations :

<incidence_matrix>

<incidence_matrix> = incidence_matrix: {

shape : points_by blocks ,

<matrix>
<matrix> =
Nno_rows . Sinteger

no_columns : $integer ,
?(title . $string ,)
matrix o [<row> *(, <row>)]

<row> = [<number> *(, <number>)];

<statistical_properties> = statistical_properties: {
precision: $integer
?(, <canonical_variances>)
?(, <pairwise_variances>)
?(, <optimality_criteria>)
?(, <other_ordering_criteria>)
?(, <canonical_efficiency_factors>)
?(, <functions_of_efficiency_factors>)

?(, <robustness_properties>)

tion>)) ;

{

76

77

<robustness_properties> = robustness_properties: {

?(<robustness_properties_member> *(, <robustness _prop erties_member>))

<robustness_properties_member> =

robust_connected_plots . <robust_connected_value>
| robust_connected_blocks . <robust_connected_value>
| robust_efficiencies_plots : <robust_efficiencies_val ue>
| robust_efficiencies_blocks : <robust_efficiencies_va lue>

<robust_efficiencies_value> = {
precision: $integer ,
robustness_efficiency values: |

<robustness_efficiency values> * (, <robustness_effici ency_values>)

<robustness_efficiency_values> = {

number_lost . S$integer

loss_measure . (average | worst) ,
?(, phi_0 . <robustness_efficiency_values_value>)
?(, phi_l . <robustness_efficiency values_value>)

?(, maximum_pairwise_variances : <robustness_efficienc y_values_value>)
?(, E_1 . <robustness_efficiency_values_value>)

<robustness_efficiency values_value> = {
self_efficiency : <number>
?(, absolute_efficiency : (<number> | unknown))

?(, calculated_efficiency : (<number> | unknown))

78

<robust_connected_value> = {

number_lost : $integer ,

is_max : (true | unknown)
%
<functions_of_efficiency_ factors> = functions_of _effi ciency_factors: {
geometric_mean : <number> |,
minimum : <number> ,
harmonic_mean : <number>
%
<canonical_efficiency_factors> = canonical_efficiency _factors: {
no_distinct: $integer | unknown | not_applicable ,
ordered: true | unknown ,
value: [
{ multiplicity . ($integer | not_applicable) ,
canonical_efficiency_factor : (<number> | blank) }
*(, { multiplicity : ($integer | not_applicable) ,
canonical_efficiency_factor : (<number> | blank) })
]
%

<other_ordering_criteria> = other_ordering_criteria : {

?(<other_ordering_criteria_member> *(, <other_orderin g_criteria_member>))

<other_ordering_criteria_member> =

trace_of square_of C . <ordering_criteria_valuel>
| max_min_ratio_canonical_variances : <ordering_criter ia_valuel>
| max_min_ratio_pairwise_variances : <ordering_criteri a_valuel>
| no_distinct_canonical_variances : <ordering_criteria _value2>
|

no_distinct_pairwise_variances . <ordering_criteria_ value2>

79

<ordering_criteria_valuel> = {
value . (<number> | not_applicable)
?(, absolute_comparison : (<number> | unknown))

?(, calculated_comparison : (<number> | unknown))

<ordering_criteria_value2> = {
value . ($integer | unknown | not_applicable)
?(, absolute_comparison : (<number> | unknown))

?(, calculated_comparison : (<number> | unknown))

<optimality_criteria> = optimality_criteria: {
?(<optimality_criteria_member> *(, <optimality_criter ia_member>))

<optimality_criteria_member> =

phi_0 . <optimality_criteria_value>
| phi_l . <optimality_criteria_value>
| phi_2 . <optimality_criteria_value>
| maximum_pairwise_variances : <optimality criteria_va lue>
| E_criteria . { <E_value> *(, <E_value>) }

<optimality_criteria_value> = {
value . (<number> | not_applicable)
?(, absolute_efficiency : (<number> | unknown))

?(, calculated_efficiency : (<number> | unknown))

<E_value> = "Sinteger” : {
value : (<number> | not_applicable)

?(, absolute_efficiency : (<number> | unknown))

?(, calculated_efficiency : (<number> | unknown))

<pairwise_variances> =
function with domain_base=points and k=2

pairwise_variances: <function_on_ksubsets_of indices >

<canonical_variances> = canonical_variances: {
no_distinct : ($integer | unknown | not_applicable) ,
ordered : (true | unknown) , # do we need this?
value: [
{ multiplicity . ($integer | not_applicable) ,
canonical_variance : (<number> | blank | not_applicable) }
*(, { multiplicity . ($integer | not_applicable) ,
canonical_variance : (<number> | blank | not_applicable) }

<function_on_ksubsets_of indices> = {

domain_base . (points | blocks) ,
n . $integer
k . Sinteger ,
ordered : (true | unknown) ,

?(image_cardinality : S$integer ,)

?(precision . $integer ,)
2(title : $string ,)
maps : [?(<map> *(, <map>))]

<function_on_indices> = {

domain . (points | blocks) ,
n . $integer
ordered : (true | unknown) ,

?(image_cardinality : $integer ,)

80

?(precision . Sinteger ,)
?(title . $string ,)
maps [?(<map> *(, <map>)) |

%
<map> = {

(<preimage> | <preimage_cardinality> | blank) ,

image : (<number> | not_applicable)
2

<preimage> = preimage : [
$integer *(, $integer)
Removed: word ksubset, substituting with a seq of lists
| [$integer *(, $integer) 1 *(, [$integer *(, $integer) 1)
| entire_domain

<preimage_cardinality> = preimage_cardinality : $intege r;

<info> = info : {
software : [$string *(, $string)]
?(, reference : [?($string *(, $string)) 1)
?(, note o[?($string *(, $string)) 1)

scalars
<scalar> = <number> | $boolean | $null | unknown
<number> = $integer | $float | <rational> ;

<rational> = { Q : [$integer, S$integer] } ;

81

Appendix B

Design DB Entity Relational Diagram

Figure B.1: Root Node of A Design

82

Figure B.2: Design Automorphism Group

83

Figure B.3: Design Resolutions

84

Figure B.4: Design Combinatorial Properties

85

Figure B.5: Design Statistical Properties

86

Figure B.6: Full Design DB ERD

87

	Abstract
	Introduction
	Combinatorial Block Designs
	Project Phases: Motivation, Contributions, and Outline
	External Representation of Block Designs
	Searching for Block Designs
	System Interface

	Outline
	Implementation Programming Language

	External Representation Version 3
	Shortcomings of Version 2
	Solutions and Variations in Version 3
	From XML to JSON
	Structural Manipulation
	Functionality Enhancement

	Implementing Ext Rep v3
	Schema Language
	Conversion from v2
	Ext Rep v3 Parser

	Database of Combinatorial Designs
	Database Engine
	Hierarchical DBMS
	Relational DBMS
	Choosing between HDF5 and PostgreSQL
	Prevalent DBMS

	Designing the DB
	Database Population
	Storage
	Isomorphic Rejection
	Design Classification

	Query Engine
	Query Protocol
	DB User Management

	Web Interface
	Python Web Frameworks
	Quixote
	TurboGears
	Django
	Pylons

	Query Interface
	Interface With Query Engine
	Displaying Designs on the Web

	System Deployment
	Installing the package
	Interfacing to the Web
	Web Server Gateway Interface
	Simple Common Gateway Interface
	Fast Common Gateway Interface
	Apache JServ Protocol
	Reverse Proxy
	Final Deployment

	Performance
	Experimental Setup
	Experiment Details
	Categorical Access Experiment
	Search Form Experiment
	Random Access Experiment
	Experimental Summary

	System Interfaces and Usage
	Searching For a Design
	Utilizing the Summary Table
	Using the Brief Design Search
	Using the Full Design Search

	Usage Counts

	Conclusion and Future Considerations
	Ext Rep Extensions
	RDBMS Alternatives
	Interface Personalization
	High Performance
	Software Upgrade
	RESTful API
	Accepting Contributions
	Conclusions

	Bibliography
	Ext Rep v3 Schema

