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Chapter 1
Designs, groups and computing

Leonard H. Soicher

1.1 Introduction

In this chapter we present some applications of groups and computing to the discov-
ery, construction, classification and analysis of combinatorial designs. The focus is
on certain block designs and their statistical efficiency measures, and in particular
semi-Latin squares, which are certain 1-designs with additional block structure and
which generalise Latin squares.

The chapter starts with background material on block designs, statistical effi-
ciency measures for 1-designs, permutation groups, Latin squares and semi-Latin
squares. We then review statistical optimality results for semi-Latin squares. Next,
we introduce the recent theory of “uniform” semi-Latin squares, which generalise
complete sets of mutually orthogonal Latin squares, and are statistically “Schur-
optimal”. We then describe a recent construction which determines a semi-Latin
square SLS(G) from a transitive permutation group G, the square being uniform
precisely when G is 2-transitive. Moreover, we show how certain structural proper-
ties of SLS(G) are determined from the structure of G, and (due to Martin Liebeck),
how statistical efficiency measures of SLS(G) are determined from the degrees and
multiplicities of the irreducible constituents of the permutation character of G.

We then turn to computation, and discuss the DESIGN package [34] for GAP
[18], focussing on the function BlockDesigns, which can be used for a wide vari-
ety of block design classifications using groups, and the function BlockDesign-
Efficiency, for exact information on the efficiency measures of a given 1-design.
We then show how the BlockDesigns function can be applied to obtain classi-
fications of semi-Latin squares, and of uniform semi-Latin squares and their sub-
squares, which can then be analysed using the BlockDesignEfficiency func-
tion. We give an extended example of this, including the determination of the first
published efficient (6×6)/k semi-Latin squares, for k = 7,8,9. It is hoped that our
examples of the use of the DESIGN package will help the reader to use this pack-
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2 Leonard H. Soicher

age in their own investigations of designs. We conclude the chapter with some open
problems.

1.2 Background material

1.2.1 Block designs

A block design is an ordered pair (V,B), such that V is a finite non-empty set of
points, and B is a (disjoint from V ) finite multiset (or collection) of non-empty
subsets of V called blocks, such that every point is in at least one block.

In a multiset (of blocks say), order does not matter, but the number of times
an element occurs (its multiplicity) does indeed matter. We denote a multiset with
elements A1, . . . ,Ab (including any repeated elements) by [A1, . . . ,Ab]. For example,
the block design (V,B), with V = {1,2,3} and

B = [{1,2},{1,2,3},{1,2,3},{1,3},{2,3}],

has three points and five blocks.
Let t be a non-negative integer. A t-design, or more specifically a t-(v,k,λ ) de-

sign, is a block design (V,B) such that v = |V |, each block has the same size k,
and each t-subset of V is contained in the same positive number λ of blocks. It is
well-known that a t-design is also an s-design, for s = 0, . . . , t−1 (see, for example,
[23, Theorem 19.3]). For example, the block design (V,B), with V = {1, . . . ,7} and

B = [{1,2,3},{1,4,5},{1,6,7},{2,4,7},{2,5,6},{3,4,6},{3,5,7}],

is a 2-(7,3,1) design, and also a 1-(7,3,3) design and a 0-(7,3,7) design.
The dual of a block design is obtained by interchanging the roles of points and

blocks. More precisely, if ∆ = ({α1, . . . ,αv}, [A1, . . . ,Ab]) is a block design, then the
dual ∆ ∗ of ∆ is the block design ({1, . . . ,b}, [B1, . . . ,Bv]), with Bi = { j : αi ∈ A j}.
Note that if ∆ is a 1-(v,k,r) design then ∆ ∗ is a 1-(vr/k,r,k) design.

Two block designs ∆1 = (V1,B1) and ∆2 = (V2,B2) are isomorphic if there is
a bijection from V1 to V2 that maps B1 to B2. The set of all isomorphisms from a
block design ∆ to itself forms a group, the automorphism group Aut(∆) of ∆ .

Block designs are of interest to both pure mathematicians and statisticians. They
are used by statisticians for the design of comparative experiments: the points rep-
resent “treatments” to be compared, and the blocks represent homogeneous test-
ing material, so usually, only within-blocks information is used in the comparison
of treatment effects. Although statisticians sometimes allow points to be repeated
within a block, here we do not.
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1.2.2 Efficiency measures of 1-designs

We now discuss certain statistical efficiency measures of 1-designs. The basic idea
is that once you have decided that your experimental design needs to be in a certain
class C of 1-(v,k,r) designs, you want to choose a design in C able to give as
much information as possible; that is, the most “efficient” design in C with respect
to one or more of the efficiency measures defined below. The reader who wants to
learn more about statistical design theory and the theory of optimal designs should
consult the excellent survey article [6], which was written for combinatorialists.
Other useful references for these topics include [3, 4, 11, 29].

Let ∆ be a 1-(v,k,r) design, with v≥ 2. The concurrence matrix of ∆ is the v×v
matrix whose rows and columns are indexed by the points, and whose (α,β )-entry
is the number of blocks containing both points α and β . The scaled information
matrix of ∆ is

F(∆) := Iv− (rk)−1
Λ ,

where Iv is the v× v identity matrix and Λ is the concurrence matrix of ∆ . The
matrix F(∆) is real, symmetric and positive semi-definite, and is scaled so that its
(all real) eigenvalues lie in the interval [0,1]. Moreover, F(∆) has constant row-sum
0, so the all-1 vector is an eigenvector with corresponding eigenvalue 0. It can be
shown that the remaining eigenvalues are all non-zero if and only if ∆ is connected
(i.e. its point-block incidence graph is connected). Omitting the zero eigenvalue
corresponding to the all-1 vector, the eigenvalues

δ1 ≤ δ2 ≤ ·· · ≤ δv−1

of F(∆) are called the canonical efficiency factors of ∆ . Note that the canonical
efficiency factors of two isomorphic 1-designs are the same.

If ∆ is not connected, then we define A∆ = D∆ = E∆ := 0. Otherwise, we define
these efficiency measures by

A∆ := (v−1)/
v−1

∑
i=1

1/δi,

D∆ :=

(
v−1

∏
i=1

δi

)1/(v−1)

,

E∆ := δ1 = min{δ1, . . . ,δv−1}.

Note that A∆ (respectively D∆ ) is the harmonic mean (respectively geometric mean)
of the canonical efficiency factors of ∆ .

If k = v (so each block contains every point) then each canonical efficiency factor
of ∆ is equal to 1 and so are each of the efficiency measures above. If k < v, we
want to minimize the loss of “information” due to being forced to use “incomplete”
blocks, and want the above efficiency measures to be as close to 1 as possible.
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We now define optimality in a class of 1-designs with respect to a given efficiency
measure. The 1-(v,k,r) design ∆ is A-optimal in a class C of 1-(v,k,r) designs
containing ∆ if A∆ ≥ AΓ for each Γ ∈ C . D-optimal and E-optimal are defined
similarly. We say ∆ is Schur-optimal in a class C of 1-(v,k,r) designs containing ∆

if for each design Γ ∈ C , with canonical efficiency factors γ1 ≤ ·· · ≤ γv−1, we have

`

∑
i=1

δi ≥
`

∑
i=1

γi,

for ` = 1, . . . ,v−1. A Schur-optimal design need not exist within a given class C of
1-(v,k,r) designs, but when it does, that design is optimal in C with respect to a very
wide range of statistical optimality criteria, including being A-, D- and E-optimal
[19].

It is not difficult to see that if ∆ is a 2-(v,k,λ ) design, then the canonical effi-
ciency factors of ∆ are all equal (to v(k−1)/((v−1)k)), from which it follows that
∆ is Schur-optimal in the class of all 1-(v,k,λ (v−1)/(k−1)) designs. However, a
2-design may well not exist with the properties we are interested in.

The canonical efficiency factors of a 1-design ∆ not equal to 1, and their mul-
tiplicities, are the same as those of the dual block design ∆ ∗ of ∆ (see [6, Sec-
tion 3.1.1]). We thus obtain the following:

Theorem 1.1. A 1-(v,k,r) design ∆ is A-optimal (respectively D-optimal, E-optimal,
Schur optimal) in a class C of 1-(v,k,r) designs if and only if ∆ ∗ is A-optimal (re-
spectively D-optimal, E-optimal, Schur optimal) in the class consisting of the dual
block designs of the designs in C .

1.2.3 Permutation groups

We now review some basic definitions and results in the theory of permutation
groups and group actions. An excellent reference for permutation groups is [10].

A permutation group G on a set V of points is a subgroup of the group Sym(V )
of all permutations of V , with the group operation being composition. The image of
α ∈ V under g ∈ G is denoted αg (our permutations act on the right). The degree
of G is the size of V . The symmetric group of degree n, denoted Sn, is the group
Sym({1, . . . ,n}) of all permutations of {1, . . . ,n}.

An action of a group G on a set V is a function ψ : V ×G→ V , with (α,g)ψ
denoted αg, such that α1 = α and (αg)h = αgh, for all α ∈V and all g,h∈G. Given
an action of G on V , we say that G acts on V .

If G is a permutation group on V then G acts naturally on V , where αg := αg.
An action of G on V gives rise to a homomorphism φ : G→ Sym(V ) defined by
α(gφ) := αg for all α ∈V and g ∈ G.

Suppose G acts on V and α ∈ V . The G-orbit of α is αG := {αg : g ∈ G}. The
set {αG : α ∈ V} of all G-orbits is a partition of V . The stabilizer in G of α is
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Gα := {g ∈ G : αg = α}. This stabilizer Gα is a subgroup of G, and if G is finite
then |G|= |Gα ||αG|.

Let G act on a finite set V . Then G has actions on many sets. Here are some:

• G acts on the set of all t-tuples of distinct elements of V , where (α1, . . . ,αt)g :=
(αg

1 , . . . ,αg
t );

• G acts on the set of all subsets of V , where {α1, . . . ,αk}g := {αg
1 , . . . ,αg

k };
• G acts on the set of all finite multisets of subsets of V , where [A1, . . . ,Ab]g :=

[(A1)g, . . . ,(Ab)g];
• G acts on the set of all block designs with point set V , where (V,B)g := (V,Bg).

A permutation group G on a non-empty set V is transitive if for every α,β ∈ V
there is a g ∈ G with αg = β (i.e. there is just one G-orbit in the natural action
of G on V ). More generally, a permutation group G on a set V of size at least t is
t-transitive if for every pair (α1, . . . ,αt), (β1, . . . ,βt) of t-tuples of distinct elements
of V , there is a g ∈ G with (α1g, . . . ,αtg) = (β1, . . . ,βt). It is easy to see that if G is
a t-transitive permutation group on a finite set V of size v≥ t, and B is a subset of V
of size k≥ t, then the block design with point set V and block (multi)set the G-orbit
BG is a t-(v,k,λ ) design, with λ = |BG|

(k
t

)
/
(v

t

)
.

1.2.4 Latin squares

A Latin square of order n is an n×n array L, whose entries are elements of an n-set
Ω , the set of symbols for L, such that each symbol occurs exactly once in each row
and exactly once in each column of L. For example, a completed Sudoku puzzle is
a special kind of Latin square of order 9.

Two Latin squares L1 and L2 of order n, with respective symbol-sets Ω1 and Ω2,
are orthogonal if for every α1 ∈ Ω1 and α2 ∈ Ω2, there is an (i, j) such that α1
is the (i, j)-entry in L1 and α2 is the (i, j)-entry in L2. For example, here are two
orthogonal Latin squares of order 3:

1 2 3
3 1 2
2 3 1

4 5 6
5 6 4
6 4 5

Latin squares L1, . . . ,Lm of order n are said to be mutually orthogonal if they are
pairwise orthogonal, in which case {L1, . . . ,Lm} is called a set of mutually orthogo-
nal Latin squares or a set of MOLS.

Let n > 1. A set of MOLS of order n has size at most n− 1, and the existence
of a set of MOLS of order n having size n− 1 (called a complete set of MOLS) is
equivalent to the existence of a projective plane of order n. A complete set of MOLS
of order n exists when n is a prime power, but it is a famous problem as to whether
a complete set of MOLS of order n exists for some non-prime-power n.
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1.2.5 Semi-Latin squares

An (n×n)/k semi-Latin square is an n×n array S, whose entries are k-subsets of an
nk-set Ω , the set of symbols for S, such that each symbol is in exactly one entry in
each row and exactly one entry in each column of S. The entry in row i and column j
is called the (i, j)-entry of S and is denoted by S(i, j). To avoid trivialities, we assume
throughout that n > 1, k > 0. Note that an (n×n)/1 semi-Latin square is (essentially)
the same thing as a Latin square of order n. We consider two (n×n)/k semi-Latin
squares to be isomorphic if one can be obtained from the other by applying one
or more of: a row permutation, a column permutation, transposing, and renaming
symbols.

Semi-Latin squares have many applications, including the design of agricultural
experiments, consumer testing, and message authentication (see [1, 2, 5, 17, 26]).
Semi-Latin squares exist in profusion, and a good choice of semi-Latin square for a
given application can be very important.

Let s be a positive integer. An s-fold inflation of an (n×n)/k semi-Latin square
is obtained by replacing each symbol α in the semi-Latin square by s symbols
σα,1, . . . ,σα,s, such that σα,i = σβ , j if and only if α = β and i = j. The result is an
(n×n)/(ks) semi-Latin square. For example, here is a (3×3)/2 semi-Latin square
formed by a 2-fold inflation of a Latin square of order 3:

1 4 2 5 3 6
3 6 1 4 2 5
2 5 3 6 1 4

The superposition of an (n×n)/k semi-Latin square with an (n×n)/` semi-Latin
square (with disjoint symbol sets) is performed by superimposing the first square
upon the second, resulting in an (n× n)/(k + `) semi-Latin square. For example,
here is a (3× 3)/2 semi-Latin square which is the superposition of two (mutually
orthogonal) Latin squares of order 3:

1 4 2 5 3 6
3 5 1 6 2 4
2 6 3 4 1 5

(1.1)

An (n× n)/k semi-Latin square in which any two distinct symbols occur to-
gether in at most one block is called a SOMA(k,n) (SOMA is an acronym for
“simple orthogonal multi-array” [25]). For example, the semi-Latin square (1.1)
is a SOMA(2,3), and more generally, the superposition of k MOLS of order n is a
SOMA(k,n). However, a SOMA(k,n) need not be a superposition of MOLS, and
may exist even when there do not exist k MOLS of order n. However, it is easy to
see that if a SOMA(k,n) exists then k < n.

The dual S∗ of an (n×n)/k semi-Latin square S is a block design with point set
{1, . . . ,n}2 and nk blocks, one for each symbol of S, with the block for a symbol α

consisting precisely of the ordered pairs (i, j) such that α ∈ S(i, j). Each block of
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S∗ is of the form [(1,1g), . . . ,(n,ng)] for some g ∈ Sn, and S∗ is a 1-(n2,n,k) design,
which may have repeated blocks. Up to the naming of its symbols, the semi-Latin
square S can be recovered from S∗, so S∗ really represents the class of semi-Latin
squares obtainable from S by renaming symbols. For example, let S be the semi-
Latin square (1.1). Then S∗ = (V,B), with V = {1,2,3}2 and

B =
[{(1,1),(2,2),(3,3)}, {(1,2),(2,3),(3,1)},
{(1,3),(2,1),(3,2)}, {(1,1),(2,3),(3,2)},
{(1,2),(2,1),(3,3)}, {(1,3),(2,2),(3,1)}].

1.3 Optimality results for semi-Latin squares

Let S be an (n×n)/k semi-Latin square. If we ignore the row and column structure
of S, we obtain its underlying block design ∆(S), whose points are the symbols of
S and whose blocks are the entries of S. Note that ∆(S) is a 1-(nk,k,n) design, and
that the dual S∗ of S is isomorphic as a block design to the dual of ∆(S). However,
S∗ has a structured point-set, unlike ∆(S)∗.

Following the analysis of Bailey [2], S is optimal with respect to a given statistical
optimality criterion if and only if ∆(S) is optimal with respect to that criterion in the
class of underlying block designs of (n×n)/k semi-Latin squares. For this reason,
we say that S has canonical efficiency factors, or a given efficiency measure, when
∆(S) has those canonical efficiency factors, or that efficiency measure.

Various optimality results for (n× n)/k semi-Latin squares are known. These
include:

• Cheng and Bailey [13] proved that a superposition of k MOLS of order n (with
pairwise disjoint symbol-sets) is A-, D- and E-optimal.

• Bailey [2] proved that for all s≥ 1, an s-fold inflation of a superposition of n−1
MOLS of order n is A-, D- and E-optimal.

• Bailey [2] classified the 3× 3 semi-Latin squares and determined the ones that
are A-, D- and E-optimal.

• Chigbu [14] determined the (4× 4)/4 semi-Latin squares that are A-, D- and
E-optimal.

• Using the computational methods described in this chapter, Soicher [37] classi-
fied the (4×4)/k semi-Latin squares for k = 5, . . . ,10, and determined those that
are A-, D- and E-optimal.

It is widely believed that when a SOMA(k,n) exists, then one that is optimal in
the class of all SOMA(k,n)s is in fact optimal in the class of all (n× n)/k semi-
Latin squares. There are not even two MOLS of order 6, but there are SOMA(2,6)s
and SOMA(3,6)s. These have been classified and the best with respect to various
measures of efficiency have been determined (see [5, 8, 25, 27, 31, 37]). There is no
SOMA(k,6) with k > 3. It is not known whether there are three MOLS of order 10,
but there are SOMA(3,10)s and SOMA(4,10)s (see [5, 30, 31]).
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1.4 Uniform semi-Latin squares

We now introduce the concept of uniform semi-Latin squares, and some results
about such squares from [36]. Uniform semi-Latin squares provide Schur-optimal
semi-Latin squares of many sizes for which no optimal semi-Latin square was pre-
viously known for any optimality criterion.

An (n× n)/k semi-Latin square S is uniform if every pair of entries of S, not in
the same row or column, intersect in a constant number µ = µ(S) of points. For
example, the semi-Latin square (1.1) is uniform, with µ = 1.

Note that if S is a uniform semi-Latin square then an s-fold inflation of S is also
uniform, and if S and T are both n× n uniform semi-Latin squares (with disjoint
symbol-sets) then the superposition of S and T is also uniform.

Lemma 1.1 ([36]). If S is a uniform (n×n)/k semi-Latin square then

µ(S) = k/(n−1),

and in particular, n−1 divides k.

Theorem 1.2 ([36]). An (n×n)/(n−1) semi-Latin square S is uniform if and only
if S is a superposition of n−1 MOLS of order n.

Uniform semi-Latin squares can be seen as generalising the concept of complete
sets of MOLS. Since the µ-fold inflation of a uniform semi-Latin square is uniform,
we see that the existence of a uniform (n×n)/((n−1)µ) semi-Latin square for all
integers µ > 0 is equivalent to the existence of a complete set of MOLS of order n,
and such a complete set exists when n is a prime power. Although there are not even
two MOLS of order 6, the following is proved in [36].

Theorem 1.3 ([36]). There exist uniform (6× 6)/(5µ) semi-Latin squares for all
integers µ > 1.

The statistical importance of uniform semi-Latin squares is due to the following:

Theorem 1.4 ([36]). Suppose that S is a uniform (n×n)/k semi-Latin square. Then
S is Schur-optimal; that is, ∆(S) is Schur-optimal in the class of underlying block
designs of (n×n)/k semi-Latin squares.

Proof. We give an outline of the proof. Details can be found in [36].

• The dual S∗ of S is a partially balanced incomplete-block design with respect to
the L2-type association scheme (see [3]), so we may easily determine the eigen-
values of the concurrence matrix of S∗ (see [39]), and hence the canonical effi-
ciency factors of S∗.

• These canonical efficiency factors are 1− 1/(n− 1), with multiplicity (n− 1)2,
and 1, with multiplicity 2(n−1).

• The dual T ∗ of any (n×n)/k semi-Latin square T has at most (n−1)2 canonical
efficiency factors not equal to 1.
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• It follows that S∗ is Schur optimal in the class of duals of (n× n)/k semi-Latin
squares, and so ∆(S) is Schur optimal in the class of underlying block designs of
(n×n)/k semi-Latin squares. ut

1.5 Semi-Latin squares from transitive permutation groups

In [36], a simple construction is given which produces a semi-Latin square SLS(G)
from a transitive permutation group G, and in this section we discuss how properties
of G determine properties of SLS(G).

Let G be a transitive permutation group on {1, . . . ,n}, with n > 1. For all
i, j ∈ {1, . . . ,n}, there are exactly |G|/n elements of G mapping i to j (the elements
mapping i to j are precisely those in the right coset Gig, where Gi is the stabilizer in
G of i and g is any element of G with ig = j). Thus G defines a semi-Latin square,
as follows. The (n× n)/k semi-Latin square SLS(G), with k := |G|/n, has symbol
set G itself, and the symbol g is in the (i, j)-entry of SLS(G) if and only if ig = j.
For example,

SLS(S3) =
1 (23) (12) (123) (13) (132)
(12) (132) 1 (13) (23) (123)
(13) (123) (23) (132) 1 (12)

.

Theorem 1.5 ([36]). Let G be a transitive permutation group on {1, . . . ,n}, with
n > 1, and let S := SLS(G). Then:

• Let H be a transitive subgroup of G of index m. Then S is a superposition of m
semi-Latin squares, each isomorphic to SLS(H) (this comes from the partition of
G into the right (or left) cosets of H). In particular, if H has order n then S is a
superposition of |G|/n isomorphic Latin squares.

• G contains a non-identity element with exactly f fixed points if and only if there
are two distinct symbols of S which occur together in exactly f entries of S.

• G is a Frobenius group (that is, a transitive permutation group in which no non-
identity element fixes more than one point) if and only if S is a superposition of
MOLS.

• ∆(S) is connected if and only if G has no normal subgroup N satisfying G1 ≤
N 6= G.

• The automorphism group of S (i.e. the group of all isomorphisms from S to S) has
structure

(G×G).((NSn(G)/G)×C2)

(in ATLAS [15] notation).
• G is 2-transitive if and only if S is uniform.

Proof. See [36] for the proofs of these assertions. We only repeat the (easy) proof
of the important last statement. Also see [38].
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Suppose G is 2-transitive. Then for every i, i′, j, j′ ∈ {1, . . . ,n} with i 6= i′ and
j 6= j′, there are precisely µ := |G|/(n(n− 1)) elements g ∈ G with ig = j and
i′g = j′. Thus, S(i, j) and S(i′, j′) intersect in exactly these µ elements, and so S is
uniform.

Conversely, suppose S is uniform. Then if i, i′, j, j′ ∈ {1, . . . ,n} with i 6= i′ and
j 6= j′, then S(i, j) and S(i′, j′) intersect in µ := k/(n−1) > 0 symbols (recall that
n > 1, k > 0), so there is an element of G mapping i to j and i′ to j′. Thus G is
2-transitive. ut

Using the Classification of Finite Simple Groups, all the finite 2-transitive per-
mutation groups have been classified, and tables of these groups are given in [10].
Each 2-transitive group G gives rise to a uniform semi-Latin square SLS(G), certain
properties of which can be deduced from properties of G. For example, considera-
tion of the groups PGL2(q) and PSL2(q), of degree q+1, where q is a prime power,
yields the following result.

Theorem 1.6 ([36]). Let q be a prime power. Then there exists a uniform, and hence
Schur-optimal, ((q + 1)× (q + 1))/(q(q− 1)) semi-Latin square S which is a su-
perposition of isomorphic Latin squares and in which every pair of distinct symbols
occur together in at most two entries. Moreover, if q is odd then S is also a su-
perposition of two isomorphic uniform ((q+1)× (q+1))/(q(q−1)/2) semi-Latin
squares.

1.5.1 The canonical efficiency factors of SLS(G)

Let G be a transitive permutation group on {1, . . . ,n}, with n > 1, and let Λ be the
concurrence matrix of the underlying block design of SLS(G). Then Λ is a |G| ×
|G| matrix whose rows and columns are indexed by the elements of G and whose
(g,h)-entry is the number of fixed points of g−1h, which is π(g−1h), where π is the
permutation character of G. Applying this observation, Martin Liebeck (at the Fifth
de Brún Workshop itself) discovered and proved the theorem below. The statement
of the theorem and its proof use basic representation theory of finite groups over the
complex numbers, such as can be found in [20].

Theorem 1.7 (M. Liebeck). Let G be a transitive permutation group of degree n > 1
with permutation character π . Then the canonical efficiency factors of (the under-
lying block design of) SLS(G) are

1−〈χ,π〉/χ(1),

repeated χ(1)2 times, where χ runs over the non-trivial complex irreducible char-
acters of G.

Proof. Suppose |G| = nk, and let GLnk(C) be the group of all invertible nk× nk
matrices over the complex numbers, whose rows and columns are indexed by the
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elements of G, and let ρ : G→ GLnk(C) be defined by ρ(x)g,h = 1 if gx = h and
ρ(x)g,h = 0 otherwise. In other words, ρ is the right-regular matrix representation
of G, with natural G-module V := Cnk.

Now let C0 = {1},C1, . . . ,Cd be the conjugacy classes of G, with respective repre-
sentatives c0, . . . ,cd , let χ0, . . . ,χd be the complex irreducible characters of G, with
χ0 the trivial character, and let

Ai := ∑
c∈Ci

ρ(c).

Then the matrices Ai commute pairwise, and V decomposes into a direct sum of
common eigenspaces V0, . . . ,Vd of A0, . . . ,Ad , with Vj being a G-submodule of V
isomorphic to the direct sum of χ j(1) copies of the irreducible G-module with char-
acter χ j. In particular Vj has dimension χ j(1)2, and Vj is an eigenspace for Ai with
corresponding eigenvalue

|Ci|χ j(ci)/χ j(1).

Note that V0 is spanned by the all-1 vector.
Now Ai is a (0,1)-matrix, with (g,h)-entry equal to 1 if and only if g−1h ∈ Ci,

and so

Λ =
d

∑
i=0

π(ci)Ai.

Thus, for j = 0, . . . ,d, Λ has eigenvalue

d

∑
i=0

π(ci)|Ci|χ j(ci)/χ j(1) = ∑
g∈G

χ j(g)π(g−1)/χ j(1) = |G|〈χ j,π〉/χ j(1),

repeated χ j(1)2 times, where 〈 , 〉 denotes the standard inner product of characters
(so 〈χ j,π〉 is the multiplicity of the irreducible character χ j as a constituent of the
permutation character π).

The scaled information matrix of the underlying block design ∆ of SLS(G) is

F(∆) := Ink− (nk)−1
Λ ,

and so the canonical efficiency factors of SLS(G) are

1−〈χ j,π〉/χ j(1),

repeated χ j(1)2 times, for j = 1, . . . ,d. ut

Thus, the canonical efficiency factors of SLS(G), and its A-, D- and E-efficiency
measures can be determined from the degrees and multiplicities of the irreducible
constituents of the permutation character of G. This has been done by Eamonn
O’Brien (using Magma [9]) for all transitive permutation groups of degree ≤ 23,
and by Soicher (using GAP) for the primitive permutation groups of non-prime-
power degree n≤ 500 and with order ≤ n(n−1).
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As an illustrative example, let G be the group A5 in its primitive permutation rep-
resentation of degree 10. The permutation character of G (in ATLAS notation [15])
decomposes as 1a + 4a + 5a, so the canonical efficiency factors of SLS(G) are 3/4
(with multiplicity 16), 4/5 (with multiplicity 25), and 1 (with multiplicity 18). If six
MOLS of order 10 exist, then their superposition S would have canonical efficiency
factors 5/6 (with multiplicity 54) and 1 (with multiplicity 5); see [2, Corollary 5.2].
The ratios of the A-, D- and E-efficiency measures of SLS(G) with those of S are
respectively approximately 0.9889, 0.9943 and 0.9, so in the (likely) absence of
six MOLS of order 10, SLS(G) provides a highly efficient (and possibly optimal)
(10×10)/6 semi-Latin square.

1.6 The DESIGN package

GAP [18] is an internationally developed, freely available, Open Source system for
Computational Group Theory and related areas in algebra and combinatorics. The
DESIGN package [34] is a refereed and officially accepted GAP package which
provides functionality for constructing, classifying, partitioning and analysing block
designs.

In this section we focus on the DESIGN package functions BlockDesigns,
used to classify block designs, and BlockDesignEfficiency, used to deter-
mine efficiency measures of 1-designs. There are many other functions in the DE-
SIGN package to construct and analyse block designs, including isomorphism test-
ing and automorphism group computation, and functions to determine information
about t-designs from their parameters. The best reference for all this, and for precise
details on the parameters for the functions discussed here, is the DESIGN package
documentation, which includes many examples. The details of the techniques used
in the DESIGN package can be found in its documented Open Source code.

1.6.1 The BlockDesigns function

The most important DESIGN package function is BlockDesigns, which can
construct and classify block designs satisfying a wide range of user-specified prop-
erties. The properties which must be specified are:

• the number v of points (the point set is then {1, . . . ,v}, although the points may
also be given names);

• the possible block sizes;
• for a given t, for each t-subset T of the points, the number of blocks containing

T (this number may depend on T ).

The properties which may optionally be additionally specified are:

• the maximum multiplicity of a block, for each possible block-size;
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• the total number b of blocks;
• the block-size distribution;
• a replication number r (that is, specifying that every point is in exactly r blocks);
• the possible sizes of intersections of pairs of blocks of given sizes;
• a subgroup G of Sv, to specify that G-orbits of block designs are isomorphism

classes (default: G = Sv, giving the usual notion of isomorphism);
• a subgroup H of G, such that H is required to be a subgroup of the automorphism

group of each returned design (default: H = {1}, but specifying a non-trivial H
can be a very powerful constraint; see [16, 21, 32, 33]);

• whether the user wants a single design with the specified properties (if one ex-
ists), a list of G-orbit representatives of all such designs (i.e. isomorphism class
representatives as determined by G; this is the default), or a list of distinct such
designs containing at least one representative from each G-orbit.

The BlockDesigns function works by transforming the design classification
problem into a problem of classifying cliques with a given vertex-weight sum in a
certain graph whose vertices are “weighted” with non-zero vectors of non-negative
integers. Each vertex of this graph represents a possible H-orbit of blocks, each
with the same specified multiplicity, with two distinct vertices not joined by an edge
only when the totality of the blocks they represent cannot be a submultiset of the
blocks of a required design. Such a non-edge may be a result of user-specified prop-
erties of the required designs, or may be determined by applying block intersection
polynomials [12, 33]. The graph problem is then handled by the GRAPE [35] func-
tion CompleteSubgraphsOfGivenSize, which uses a complicated backtrack
search. The reader may wish to consult the reference [21], which gives detailed in-
formation on techniques used to classify block designs.

We now give some straightforward examples of the use of the BlockDesigns
function. A more complicated example will follow in Section 1.7. Note that first we
load the DESIGN package, which also loads the GRAPE package for graphs and
groups, which is heavily used by the DESIGN package.

gap> LoadPackage("design");
--------------------------------------------------------------
Loading GRAPE 4.5 (GRaph Algorithms using PErmutation groups)
by Leonard H. Soicher (http://www.maths.qmul.ac.uk/˜leonard/).
Homepage: http://www.maths.qmul.ac.uk/˜leonard/grape/
--------------------------------------------------------------
--------------------------------------------------------------
Loading DESIGN 1.6 (The Design Package for GAP)
by Leonard H. Soicher (http://www.maths.qmul.ac.uk/˜leonard/).
Homepage: http://www.designtheory.org/software/gap_design/
--------------------------------------------------------------
true

We now classify the 2-(7,3,1) designs.

gap> designs:=BlockDesigns(rec( v:=7, blockSizes:=[3],
> tSubsetStructure:=rec(t:=2, lambdas:=[1] ) ) );
[ rec( autGroup := Group([ (1,2)(5,7), (1,2,3)(5,7,6),

(1,2,3)(4,7,5), (1,5,3)(2,4,7) ]),
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blockNumbers := [ 7 ], blockSizes := [ 3 ],
blocks := [ [ 1, 2, 3 ], [ 1, 4, 5 ], [ 1, 6, 7 ],

[ 2, 4, 7 ], [ 2, 5, 6 ], [ 3, 4, 6 ], [ 3, 5, 7 ] ],
isBinary := true, isBlockDesign := true, isSimple := true,
r := 3, tSubsetStructure := rec( lambdas := [ 1 ], t := 2 ),
v := 7 ) ]

There is, as is very well known, just one such design up to isomorphism. Note
that GAP has printed the value assigned to the variable designs. This output is
a list containing exactly one block design, in DESIGN package format, stored as a
GAP record with properties stored as record components. This output could have
been suppressed by ending the assignment statement with “;;” instead of “;”.

We next classify (but do not display) the 1-(7,3,3) designs having no repeated
block and invariant under the group generated by (1,2)(3,4).

gap> onedesigns:=BlockDesigns(rec( v:=7, blockSizes:=[3],
> blockMaxMultiplicities:=[1],
> requiredAutSubgroup:=Group((1,2)(3,4)),
> tSubsetStructure:=rec(t:=1, lambdas:=[3] ) ) );;
gap> List(onedesigns,AllTDesignLambdas);
[ [ 7, 3 ], [ 7, 3 ], [ 7, 3 ], [ 7, 3 ], [ 7, 3 ],

[ 7, 3, 1 ] ]
gap> List(onedesigns,d->Size(AutomorphismGroup(d)));
[ 48, 4, 6, 4, 8, 168 ]

For a more serious calculation, used in [24], we classify the blockdesigns having
11 points, such that each block has size 4 or 5, and every pair of distinct points is
contained in exactly two blocks. This calculation takes about 220 seconds of CPU-
time on a 3.1 GHz PC running Linux.

gap> designs:=BlockDesigns(rec(v:=11, blockSizes:=[4,5],
> tSubsetStructure:=rec(t:=2, lambdas:=[2] ) ) );;
gap> List(designs,BlockSizes);
[ [ 5 ], [ 4, 5 ], [ 4, 5 ], [ 4, 5 ], [ 4, 5 ] ]
gap> List(designs,BlockNumbers);
[ [ 11 ], [ 10, 5 ], [ 10, 5 ], [ 10, 5 ], [ 10, 5 ] ]
gap> List(designs,d->Size(AutomorphismGroup(d)));
[ 660, 6, 8, 12, 120 ]

More generally, BlockDesigns can construct subdesigns of a given block de-
sign, such that the subdesigns each have the same user-specified properties. Here,
a subdesign of ∆ means a block design with the same point set as ∆ and whose
block multiset is a submultiset of the blocks of ∆ . In this case, the default G de-
termining isomorphism is Aut(∆). For example, given a block design ∆ having v
points and each of whose blocks has size k, we classify the “parallel classes” of ∆

by classifying the subdesigns of ∆ that are 1-(v,k,1) designs (up to the action of
Aut(∆)).

A DESIGN package function closely related to BlockDesigns is the function
PartitionsIntoBlockDesigns, which classifies the partitions of (the block
multiset of) a given block design ∆ , such that the subdesigns of ∆ whose block
multisets are the parts of this partition each have the same user-specified properties.
For example, given a block design ∆ having v points and each of whose blocks
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has size k, we classify the “resolutions” of ∆ by classifying the partitions of ∆ into
1-(v,k,1) subdesigns (up to the action of Aut(∆)).

1.6.2 The BlockDesignEfficiency function

To test conjectures and rank designs we have classified, we need to be able to com-
pare efficiency measures exactly. We can do this using algebraic computation in
GAP, as described in [37], and this functionality is included in the most recent re-
lease [34] of the DESIGN package.

If delta is a 1-(v,k,r) design (in DESIGN package format) with v > 1, and
eps is a positive rational number, then, in DESIGN 1.6, the function call

BlockDesignEfficiency(delta,eps)

returns a GAP record eff (say) having the following components. The component
eff.A contains the rational number which is the A-efficiency measure of delta,
eff.Dpowered contains the rational number which is the D-efficiency measure
of delta raised to the power v− 1, and eff.Einterval is a list [a,b] of non-
negative rational numbers such that if E is the E-efficiency measure of delta then
a ≤ E ≤ b, b− a ≤ eps, and if E is rational then a = E = b. In addition, the com-
ponent eff.CEFpolynomial contains the monic polynomial over the rationals
whose zeros (counting multiplicities) are the canonical efficiency factors of the de-
sign delta.

For example, we calculate the block design efficiency record for one of the
1-(7,3,3) designs classified above.

gap> eps:=10ˆ(-8);;
gap> delta:=onedesigns[1];
rec( allTDesignLambdas := [ 7, 3 ],

autGroup := Group([ (1,2), (6,7), (4,5)(6,7),
(3,4,5)(6,7), (1,6,2,7)(4,5) ]),

blockNumbers := [ 7 ], blockSizes := [ 3 ],
blocks := [ [ 1, 2, 3 ], [ 1, 2, 4 ], [ 1, 2, 5 ],

[ 3, 4, 5 ], [ 3, 6, 7 ], [ 4, 6, 7 ], [ 5, 6, 7 ] ],
isBinary := true, isBlockDesign := true,
isSimple := true, r := 3,
tSubsetStructure := rec( lambdas := [ 3 ], t := 1 ),
v := 7 )

gap> eff:=BlockDesignEfficiency(delta,eps);;
gap> eff.A;
21/31
gap> eff.Dpowered;
343/2187
gap> eff.Einterval;
[ 1/3, 1/3 ]
gap> Factors(eff.CEFpolynomial);
[ x_1-1, x_1-1, x_1-7/9, x_1-7/9, x_1-7/9, x_1-1/3 ]
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1.7 Classifying semi-Latin squares

We now describe how to classify semi-Latin squares via their duals. Our approach,
which is somewhat similar to that of Bailey and Chigbu [7], is implemented in the
DESIGN package function SemiLatinSquareDuals, but can be applied with
more flexibility using the function BlockDesigns.

The group Wn below will be used to define isomorphism of semi-Latin squares,
via their duals. We define

Wn := 〈Sn×Sn,τ | τ2 = 1,τ(a,b)τ = (b,a) for all a,b ∈ Sn〉.

Thus Wn is isomorphic to the wreath product Sn oC2. If g ∈Wn then g = (a,b) or
g = (a,b)τ , for some a,b ∈ Sn, and Wn acts on V := {1, . . . ,n}2 as follows. For
(i, j) ∈V and a,b ∈ Sn:

(i, j)(a,b) := (ia, jb);

(i, j)(a,b)τ := ( jb, ia).

Now let S be an (n× n)/k semi-Latin square, let S∗ = (V,B) be the dual of
S, and let g ∈Wn. Define (S∗)g := (V,Bg) = (V, [Bg : B ∈B]). Then (S∗)g is the
dual of a semi-Latin square T isomorphic to S. Indeed, if g = (a,b) then T can
be obtained from S by permuting its rows by a and its columns by b, and if g =
(a,b)τ then T is obtained from S by permuting its rows by a, its columns by b,
and then transposing. Conversely, suppose S and T are isomorphic (n×n)/k semi-
Latin squares, with respective duals S∗ and T ∗. Then T can be obtained from S by
applying some row permutation a, some column permutation b, followed possibly
by transposing and/or renaming symbols. Then (S∗)(a,b) = T ∗ if transposing does
not take place, and otherwise (S∗)(a,b)τ = T ∗. We thus have an action of Wn on the
set of duals of (n× n)/k semi-Latin squares, and the duals of two (n× n)/k semi-
Latin squares X and Y are in the same Wn-orbit if and only if X and Y are isomorphic
(as semi-Latin squares); see also [37].

The following GAP function, to be used later, returns a homomorphism from the
imprimitive wreath product Sn oC2 with block system {{1, . . . ,n},{n + 1, . . . ,2n}}
onto the group Wn as a permutation group in its action on V := {1, . . . ,n}2 as de-
scribed above. However, the domain of a permutation group in GAP must be a set
of positive integers, so the image of the homomorphism is made to be a permutation
group on the set {1, . . . ,n2}, with i representing the i-th element of V in lexico-
graphic order.

gap> L2ActionHomomorphism := function(n)
> local action,tau,W;
> if not IsPosInt(n) then
> Error("usage: L2ActionHomomorphism( <PosInt> )");
> fi;
> action := function(x,g)
> # the function which determines the image of
> # x (in {1,...,nˆ2}) under g.
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> local i,j,ii,jj;
> i:=QuoInt(x-1,n)+1;
> j:=x-(i-1)*n+n;
> ii:=iˆg;
> jj:=jˆg;
> if ii<=n then
> return n*(ii-1)+(jj-n);
> else
> return n*(jj-1)+(ii-n);
> fi;
> end;
> tau:=Product(List([1..n],i->(i,i+n)));
> W:=Group(Concatenation(
> GeneratorsOfGroup(SymmetricGroup([1..n])),[tau]));
> # so W = Sn wr C2 in its imprimitive action on [1..2*n].
> return ActionHomomorphism(
> W, # group
> [1..nˆ2], # domain of action
> action); # action of group on domain
> end;;

We now define a Wn-invariant block design Un,m = (V,Bn,m), which contains the
dual of every (n×n)/k semi-Latin square as a subdesign, as long as this dual has no
block of multiplicity greater than m. As before, V := {1, . . . ,n}2. The block multiset
Bn,m consists of all the subsets of V of the form

{(1,1g), . . . ,(n,ng)},

such that g ∈ Sn, and with each such block having multiplicity m. (Note that Un,m
is the dual of a certain (n× n)/(m(n− 1)!) semi-Latin square.) The GAP func-
tion defined below returns this “universal semi-Latin square dual” Un,m in DESIGN
package format.

gap> UniversalSemiLatinSquareDual := function(n,m)
> local g,i,block,blocks,U;
> if n<=1 or m<=0 then
> Error("<n> must be > 1 and <m> must be > 0");
> fi;
> blocks:=[];
> for g in SymmetricGroup([1..n]) do
> block:=[];
> for i in [1..n] do
> Add(block,(i-1)*n+iˆg);
> od;
> for i in [1..m] do
> Add(blocks,block);
> od;
> od;
> U:=BlockDesign(nˆ2,blocks);
> U.pointNames:=Immutable(Cartesian([1..n],[1..n]));
> return U;
> end;;
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Observe that a block design ∆ = (V,B) is the dual of an (n× n)/k semi-Latin
square if and only if ∆ is a 1-(n2,n,k) design as well as a subdesign of Un,k (i.e. ∆

and Un,k have the same point set and B is a submultiset of Bn,k). We thus obtain the
following:

Theorem 1.8 ([37]). The isomorphism classes of the (n× n)/k semi-Latin squares
are in one-to-one correspondence with the Wn-orbits of 1-(n2,n,k) subdesigns of
Un,k. Representatives of these orbits give the duals of isomorphism class represen-
tatives of the (n×n)/k semi-Latin squares.

This theorem can be adapted to be able to apply the function BlockDesigns
in the DESIGN package to construct and classify semi-Latin squares whose duals
satisfy certain Wn-invariant properties, and/or whose duals are invariant under a user-
specified subgroup of Wn. In particular:

Theorem 1.9 ([37]). The isomorphism classes of the SOMA(k,n)s are in one-to-
one correspondence with the Wn-orbits of the 1-(n2,n,k) subdesigns of Un,1 having
the property that each pair of distinct blocks meet in at most one point. Represen-
tatives of these orbits give the duals of isomorphism class representatives of the
SOMA(k,n)s.

As an application, we find that, up to isomorphism, there are just 2799 SOMA(2,6)s,
and just 4 SOMA(3,6)s (see [31]).

Theorem 1.10 ([37]). Suppose n−1 divides k and let µ := k/(n−1). The isomor-
phism classes of the uniform (n×n)/k semi-Latin squares are in one-to-one corre-
spondence with the Wn-orbits of the subdesigns of Un,µ with the property that any
two points having no co-ordinate in common occur together in exactly µ blocks.
Representatives of these orbits give the duals of isomorphism class representatives
of the uniform (n×n)/k semi-Latin squares.

As an application, we find that, up to isomorphism, there are just 10 uniform
(5×5)/8 semi-Latin squares, and just 277 uniform (5×5)/12 semi-Latin squares.

A further, more complicated application is given below. We use the function
BlockDesigns to classify, up to isomorphism, the uniform (6×6)/10 semi-Latin
squares with the property that any two symbols occur together in at most two en-
tries (equivalently, any two blocks in the dual of such a square meet in at most two
points). It turns out that there are exactly 98 such semi-Latin squares, and we com-
pute a list L of their duals. We then determine the sizes of the automorphism groups
of the elements of L. (The automorphism group of the dual S∗ of an (n×n)/k semi-
Latin square S is defined to be the subgroup of Wn that preserves the block multiset
of S∗. This is the intersection of Wn with the standard automorphism group of S∗
regarded as a block design with no structure on the point set.) The total time taken
for this calculation is about seven minutes on a 3.1 GHz PC running Linux.

gap> n:=6;;
gap> hom:=L2ActionHomomorphism(n);;
gap> W:=Image(hom);;
gap> mu:=2;;
gap> U:=UniversalSemiLatinSquareDual(n,mu);;
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gap> rel1:=Set(Orbit(W,[1,2],OnSets));;
gap> rel2:=Difference(Combinations([1..nˆ2],2),rel1);;
gap> L:=BlockDesigns(rec(v:=nˆ2,
> blockDesign:=U, # we are looking at subdesigns of U
> blockSizes:=[n],
> tSubsetStructure:=rec(t:=2, partition:=[rel1,rel2],
> lambdas:=[0,mu]),
> blockIntersectionNumbers:=[[[0,1,2]]],
> isoGroup:=W) );;
gap> A:=List(L,x->Intersection(W,AutomorphismGroup(x)));;
gap> autsizes:=List(A,Size);;
gap> Collected(autsizes);
[ [ 4, 24 ], [ 8, 33 ], [ 12, 4 ], [ 16, 14 ], [ 24, 11 ],

[ 32, 2 ], [ 48, 2 ], [ 80, 1 ], [ 96, 2 ], [ 144, 1 ],
[ 192, 2 ], [ 576, 1 ], [ 14400, 1 ] ]

A further calculation, taking just one second, shows that no design in L is resolv-
able; equivalently, no semi-Latin square whose dual is in L is the superposition of
Latin squares.

gap> R:=List(L,design->PartitionsIntoBlockDesigns(rec(v:=nˆ2,
> blockDesign:=design,
> blockSizes:=[n],
> tSubsetStructure:=rec(t:=1, lambdas:=[1]),
> isoLevel:=0) ) );;
gap> Collected(List(R,Length));
[ [ 0, 98 ] ]

1.8 Efficient semi-Latin squares as subsquares of uniform
semi-Latin squares

For n a prime power, Bailey [2] gives a construction which produces efficient (al-
though not necessarily optimal [37]) (n× n)/k semi-Latin squares for all k > 1.
Efficient (but not known to be optimal) (6×6)/k semi-Latin squares are known for
k = 2,3,4,5,6; see [5, 8, 31, 37]. Any uniform (6×6)/10 semi-Latin square, such
as SLS(PSL2(5)), is Schur-optimal, and so is A-, D- and E-optimal. This leaves
open the problem of finding efficient (6× 6)/k semi-Latin squares, for k = 7,8,9.
To do this, we look at “subsquares” of a uniform (6×6)/10 semi-Latin square.

We say that an n× n semi-Latin square S is a subsquare of an n× n semi-Latin
square T if S = T or T is the superposition of S and another n×n semi-Latin square.
Another way of looking at subsquares is via duals. We have S a subsquare of T if
and only if the symbol set of S is subset of the symbol set of T and the dual S∗ of
S is a 1-(n2,n,r) subdesign of T ∗, for some r > 0. In [37], subsquares of uniform
semi-Latin squares are investigated, and the following result is proved.

Theorem 1.11 ([37]). Let n ≥ 3 and let S be an (n× n)/k subsquare of a uniform
(n×n)/t semi-Latin square T , such that t− k < n−1. Then

ES = 1− t/(k(n−1)) = 1−µ(T )/k.
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Now let k ∈ {7,8,9}. By Theorem 1.11, each (6× 6)/k subsquare of a uniform
(6× 6)/10 semi-Latin square has E-efficiency measure 1− 2/k. We obtain an ef-
ficient (6× 6)/k semi-Latin square Yk by taking the most A-efficient subsquare of
that size of a certain uniform (6×6)/10 semi-Latin square Y10. The square Y10 was
chosen as follows. The list L above of the duals of the 98 uniform (6×6)/10 semi-
Latin squares with the property that any two distinct symbols occur together in at
most two blocks includes the dual of SLS(PSL2(5)), whose automorphism group
has size 14400. However, SLS(PSL2(5)) has no (6× 6)/9 subsquare (equivalently
it has no Latin square of order 6 as a subsquare). The next largest automorphism
group size amongst the 98 dual squares in L is 576, and the one square whose dual
in L has an automorphism group of size 576 is chosen as Y10, which does indeed
have (6×6)/k subsquares, for k = 7,8,9. We have chosen a square whose dual has
a large automorphism group to facilitate the classification of subsquares.

gap> f:=First([1..Length(L)],i->Size(A[i])=576);;
gap> Y10star:=L[f];;
gap> autY10star:=A[f];;
gap> StructureDescription(autY10star);
"((A4 x A4) : C2) : C2"

We give the square Y10 columnwise below:

1 2 3 4 5 6 7 8 9 10
11 12 21 22 31 32 41 42 51 52
13 19 23 25 35 37 47 49 53 59
14 16 27 29 33 40 44 46 57 60
15 18 28 30 34 39 43 45 55 58
17 20 24 26 36 38 48 50 54 56

11 12 13 14 15 16 17 18 19 20
1 2 23 24 33 34 43 44 53 54
3 9 21 27 38 39 45 48 51 57
5 8 22 30 32 36 47 50 55 59
6 7 26 29 31 35 42 49 56 60
4 10 25 28 37 40 41 46 52 58

21 22 23 24 25 26 27 28 29 30
3 4 13 14 35 36 45 46 55 56
1 5 11 17 31 40 43 50 58 60
2 7 15 19 37 39 42 48 52 54
8 10 16 20 33 38 41 47 51 53
6 9 12 18 32 34 44 49 57 59



1 Designs, groups and computing 21

31 32 33 34 35 36 37 38 39 40
5 6 15 16 25 26 47 48 57 58
4 7 18 20 22 29 41 44 54 55
1 10 12 17 23 28 45 49 51 56
2 9 11 13 24 27 46 50 52 59
3 8 14 19 21 30 42 43 53 60

41 42 43 44 45 46 47 48 49 50
7 8 17 18 27 28 37 38 59 60
6 10 14 15 24 30 32 33 52 56
4 9 11 20 21 26 34 35 53 58
1 3 12 19 22 25 36 40 54 57
2 5 13 16 23 29 31 39 51 55

51 52 53 54 55 56 57 58 59 60
9 10 19 20 29 30 39 40 49 50
2 8 12 16 26 28 34 36 42 46
3 6 13 18 24 25 31 38 41 43
4 5 14 17 21 23 32 37 44 48
1 7 11 15 22 27 33 35 45 47

We now classify the (6× 6)/7 subsquares of Y10 by classifying the 1-(36,6,7)
subdesigns of Y ∗10, up to the action of the automorphism group of Y ∗10, as follows.

gap> k:=7;;
gap> subdesigns:=BlockDesigns(rec(v:=nˆ2,
> blockDesign:=Y10star,
> blockSizes:=[n],
> tSubsetStructure:=rec(t:=1, lambdas:=[k]),
> isoGroup:=autY10star) );;
gap> Length(subdesigns);
150

The determination of these 150 subdesigns takes about seven minutes on a
3.1 GHz PC running Linux.

We next determine the design(s) in the list subdesigns with the highest A-
efficiency measure. There is just one such subdesign, and it also has the highest
D-efficiency measure of those in the list. These calculations take about 16 seconds.

gap> eff:=List(subdesigns,BlockDesignEfficiency);;
gap> maxA:=Maximum(List(eff,x->x.A));
18972014997910099125/22524377910796536046
gap> pos:=Filtered([1..Length(eff)],j->eff[j].A=maxA);
[ 65 ]
gap> ForAll([1..Length(eff)],
> j->eff[pos[1]].Dpowered>=eff[j].Dpowered);
true

Let Y7 be the subsquare of Y10 whose dual Y ∗7 is the design in the list sub-
designs with the highest A-efficiency measure. Then Y7 is the (6× 6)/7 semi-
Latin square obtained from Y10 by removing the (6× 6)/3 semi-Latin square in-
duced on the symbols
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{4,8,9,13,15,17,22,25,26,32,33,39,43,46,49,51,54,60}.

The A-efficiency measure of Y7 is

22224360426123258975/25776723339009695896≈ 0.8622.

Similar calculations find a (6× 6)/8 subsquare of Y10 with the highest A-
efficiency measure. It also has the highest D-efficiency measure. This subsquare
Y8 can be obtained from Y10 by removing the SOMA(2,6) induced on the symbols

{2,6,17,19,21,29,33,36,41,45,58,59}.

The A-efficiency measure of Y8 is 3643863/4141988≈ 0.8797.
Up to isomorphism, we find there is just one (6×6)/9 subsquare of Y10. We may

take this to be the semi-Latin square Y9 obtained from Y10 by removing the Latin
square induced on the symbols

{8,11,25,39,44,56}.

The A-efficiency measure of Y9 is 2968/3323≈ 0.8932.

1.9 Some open problems

We conclude this chapter with some open problems.
When n is a prime power or n = 6, we know precisely the values of µ for which

there exists a uniform (n× n)/(µ(n− 1)) semi-Latin square, but we do not know
exactly which values of µ have this property for any other n > 1. The first unsettled
case is n = 10. It is a celebrated computational result that there is no projective plane
of order 10 [22, 28], so there do not exist nine MOLS of order 10, and so a uniform
(10× 10)/9 semi-Latin square does not exist. On the other hand, SLS(PSL2(9))
and inflations of this square yield uniform (10× 10)/(9µ) semi-Latin squares for
µ = 4,8,12,16, . . .. Our first question is: do there exist uniform (10× 10)/18 or
(10×10)/27 semi-Latin squares?

We have classified certain types of uniform (6× 6)/10 semi-Latin squares, and
found none which is a superposition of Latin squares. Our second question is: does
there exist a uniform (6× 6)/10 semi-Latin square which is a superposition of ten
Latin squares?

Finally, are there general constructions for optimal (say E-optimal) (n× n)/k
semi-Latin squares for when there do not exist k MOLS of order n and there is
no uniform (n× n)/k semi-Latin square? For example, is every (n× n)/(k− 1)
subsquare of a uniform (n×n)/k semi-Latin square E-optimal?
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