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Abstract

We give a construction to obtain a t-design from a t-wise bal-
anced design. More precisely, given a positive integer k and a t-
(v, {k1, k2, . . . , ks}, λ) design D, with with all block-sizes ki occurring
in D and 1 ≤ t ≤ k ≤ k1 < k2 < · · · < ks, the construction produces a
t-(v, k, nλ) design D∗, with n = lcm(

(
k1−t
k−t

)
, . . . ,

(
ks−t
k−t

)
). We prove that

Aut(D) is a subgroup of Aut(D∗), with equality when both λ = 1 and
t < k. We employ our construction in another construction, which,
given a t-(v, k, λ) design with 1 ≤ t < k < v, and a point of this
design, yields a t-(v− 1, k− 1, (k− t)λ) design. Many of the t-designs
coming from our constructions appear to be new.

1 Introduction

For t a positive integer, a t-wise balanced design D is an ordered pair (X,B),
where X is a finite non-empty set (of points) and B is a finite non-empty
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multiset of subsets of X (called blocks), such that every t-subset of X is
contained in a constant number λ > 0 of blocks. If v = |X| and K is the
set of sizes of the blocks, then we call D a t-(v, K, λ) design. If all blocks
of D have the same size k (i.e. K = {k}), then D is called a t-design or a
t-(v, k, λ) design.

In this note we give a construction (the ∗-construction) to obtain a t-
design from a t-wise balanced design. More precisely, given a positive integer
k and a t-(v, {k1, k2, . . . , ks}, λ) design D, with with all block-sizes ki occur-
ring in D and 1 ≤ t ≤ k ≤ k1 < k2 < · · · < ks, the ∗-construction produces
a t-(v, k, nλ) design D∗, with n = lcm(

(
k1−t
k−t

)
, . . . ,

(
ks−t
k−t

)
). We prove that

Aut(D) is a subgroup of Aut(D∗), with equality when both λ = 1 and t < k.
We employ the ∗-construction in another construction (the #-construction),
which, given a t-(v, k, λ) design with 1 ≤ t < k < v, and a point of this
design, yields a t-(v − 1, k − 1, (k − t)λ) design. Many of the t-designs com-
ing from our constructions appear to be new, and although they usually
have repeated blocks, they often, via their constructions, have quite large
automorphism groups.

2 The ∗-construction

The input to the ∗-construction consists of positive integers t and k, and a
t-(v, {k1, k2, . . . , ks}, λ) design D, with all block-sizes ki occurring in D and
1 ≤ t ≤ k ≤ k1 < k2 < · · · < ks. Now for i = 1, 2, . . . , s define

ni =

(
ki − t

k − t

)
, n = lcm(n1, n2, . . . , ns), mi =

n

ni

. (1)

The output of the ∗-construction is a block design D∗, which we prove below
to be a t-(v, k, nλ) design.

The point-set of D∗ is that of D, and to construct the block-multiset B∗

of D∗ we proceed as follows:

• start by setting B∗ to be the empty multiset;

• for each i = 1, 2, . . . , s and for each block B ∈ B of size ki (including
repeats) do:

– insert mi copies of every k-subset of B into B∗.
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Clearly, D∗ depends on the choice of k as well as on D. Less obviously,
since the t-wise balanced design D may be t′-wise balanced for some t′ 6= t,
D∗ may depend on the choice of t. When we wish to make these dependencies
explicit, we shall use the notation D∗(t, k) instead of D∗.

Theorem 2.1 Let k be a positive integer and let D = (X,B) be a t-(v, {k1, k2, . . . , ks}, λ)
design, with all block-sizes ki occurring in D and 1 ≤ t ≤ k ≤ k1 < k2 <
· · · < ks. Then D∗ = D∗(t, k) = (X,B∗) is a t-(v, k, nλ) design, where
n = lcm(n1, n2, . . . , ns) and ni =

(
ki−t
k−t

)
.

Proof. Let T be any t-subset of X. Suppose that B is a block of B of
size ki containing T . Then the number of k-subsets of B which contain T is
ni =

(
ki−t
k−t

)
. Each of these k-subsets is added to B∗ exactly mi = n/ni times.

Hence B contributes exactly nimi = n blocks containing T to B∗. Now T is
contained in exactly λ blocks in B, and so in exactly nλ blocks in B∗.

We have defined n to be lcm(n1, n2, . . . , ns). We could have chosen n to
be any common multiple of {n1, n2, . . . , ns}, but, in order to keep nλ as small
as possible, we choose the least common multiple. We also remark that the
∗-construction works perfectly well when s = 1, that is, when D is a t-design.

Example 1 LetD be the 2-(11, {3, 5}, 1) design with point-set X = {1, 2, . . . , 9, T, E}
(here T = 10 and E = 11), and block-multiset B =

[167, 18E, 19T, 268, 279, 2TE, 369, 37E, 38T, 46T, 478, 49E, 56E, 57T, 589, 12345]

(see [1, p.187]).

(a) Suppose t = k = 2. Here k1 = 3, k2 = 5, and each ni = n = mi = 1. So
D∗(2, 2) is the 2-(11, 2, 1) design consisting of all the 2-subsets of X.

(b) The case t = 2, k = 3 is more interesting. Here k = k1 = 3, k2 = 5,
n1 = 1, n2 = 3, n = 3, m1 = 3, and m2 = 1. So D∗ = D∗(2, 3) is a 2-
(11, 3, 3) design, an (11, 55, 15, 3, 3)-BIBD. The block-multiset of D∗ consists
of three copies of each block of D of size 3, together with all the 3-subsets of
{1, 2, 3, 4, 5}.

The ∗-construction was found as a result of looking for 2-designs with
repeated blocks to help fill up Preece’s catalogue [4]. Many new examples
coming from this construction have since gone into the catalogue.
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3 The #-construction

Let T = (X,B) be a t-(v, k, λ) design with 1 ≤ t < k < v, and let x ∈ X. We
employ the ∗-construction in a new construction (the #-construction) which
produces a t-(v − 1, k − 1, (k − t)λ) design when given input T and x. The
#-construction proceeds as follows:

Let X ′ = X \ {x}, and let B′ be the multiset consisting of all B \ {x}
with B ∈ B (counting repeats). Denote the resulting block design (X ′,B′)
by T \ x, which is a t-(v − 1, {k − 1, k}, λ) design (whose isomorphism class
may depend on the choice of x). Next, apply the ∗-construction with input
t, k − 1 and T \ x to obtain (T \ x)∗(t, k − 1), a t-(v − 1, k − 1, (k − t)λ)
design. We denote this output of the #-construction by T #(t, x).

Example 2 Start with the large Witt design W , the unique (up to isomor-
phism) 5-(24, 8, 1) design; see [3, Chapter 8], where W is called the Mathieu
design M24. Now W is also a 4-(24, 8, 5) design, a 3-(24, 8, 21) design, and a
2-(24, 8, 77) design. Let x be a point of W (it matters not which one, since
the automorphism group M24 of W acts transitively (in fact 5-transitively)
on the point-set of W). Then W#(5, x) is a 5-(23, 7, 3) design, W#(4, x) is
a 4-(23, 7, 20) design, W#(3, x) is a 3-(23, 7, 105) design, and W#(2, x) is a
2-(23, 7, 462) design.

Example 3 Start with a projective plane P = (X,B) of order m ≥ 2, a
2-(m2 + m + 1, m + 1, 1) design. Now, given any x ∈ X, construct P#(2, x),
which is a 2-(m2 + m, m,m− 1) design.

4 Automorphism groups

The automorphism group of a t-wise balanced design D = (X,B), denoted
Aut(D), is the group consisting of all the permutations of X which leave
the block-multiset B invariant. We now investigate the relationship of the
automorphism groups of D and D∗(t, k). For a block B ∈ B, we let mult(B)
denote its multiplicity in B.

Theorem 4.1 Let k be a positive integer, let D = (X,B) be a t-(v, {k1, k2, . . . , ks}, λ)
design, with all block-sizes ki occurring in D and 1 ≤ t ≤ k ≤ k1 < k2 <
· · · < ks, and let D∗ = D∗(t, k) = (X,B∗) be the t-design obtained from the
∗-construction. Then
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(i) Aut(D) ⊆ Aut(D∗);
(ii) if λ = 1 and t < k, then Aut(D) = Aut(D∗).

Proof. (i) Let α ∈ Aut(D). Let B∗ be an arbitrary block in B∗, hence
there is a block B ∈ B which contains B∗ as a k-subset. Suppose that
α(B) = C for some block C ∈ B, and that α(B∗) = C∗. Then clearly C∗

is a k-subset of C, a block of B, hence C∗ ∈ B∗. Now we must show that
mult(C∗) = mult(B∗) (in B∗) to conclude that α ∈ Aut(D∗).

Fix i. Let B1, B2, . . . , Bd be the distinct blocks of B of size ki which
contain B∗, and let C1, C2, . . . , Ce be the distinct blocks of B of size ki which
contain C∗. Now, because α ∈ Aut(D), we must have d = e and for every j
with 1 ≤ j ≤ d there must exist a unique j′ with 1 ≤ j′ ≤ d for which α(Bj) =
Cj′ . Hence mult(Bj) = mult(Cj′) since α preserves block multiplicities.

Now let fi be the number of blocks (counting multiplicities) of B of size
ki which contain B∗, and let gi be the number of blocks (counting multi-
plicities) of B of size ki which contain C∗. Then gi =

∑d
j′=1 mult(Cj′) =∑d

j=1 mult(Bj) = fi, and so, in B∗, we have mult(C∗) =
∑s

i=1 gimi =∑s
i=1 fimi = mult(B∗) (mi defined in (1)), as required. Hence α ∈ Aut(D∗).

(ii) We first note that, because λ = 1, then mult(B) = 1 for every block
B ∈ B. Secondly, if R∗ is an arbitrary block in B∗ then, again because λ = 1,
there is a unique block R ∈ B, with R∗ ⊆ R.

Now let γ ∈ Aut(D∗). We must show that, for every block B ∈ B, we have
γ(B) ∈ B. Then, from above, mult(γ(B)) = 1 = mult(B), so γ ∈ Aut(D).
This will show that Aut(D∗) ⊆ Aut(D); part (i) then gives the result.

Fix i. Let B be an arbitrary block of B of size ki, and let B∗ be an
arbitrary k-subset of B, and let γ(B∗) = C∗. Now, because γ ∈ Aut(D∗),
then C∗ ∈ B∗. So, from above, there is a unique block C ∈ B, with C∗ ⊆ C.
We will show that γ(B) = C.

First we show that γ(B) ⊆ C. Suppose that γ(B) 6⊆ C, then there is an
element x ∈ B\B∗ with γ(x) 6∈ C. Let D be a (k−1)-subset of B∗ ⊆ B, then
D∗ = {x} ∪D is a k-subset of B ∈ B, so D∗ ∈ B∗. Hence E∗ = γ(D∗) ∈ B∗,
and there is a block E ∈ B with E∗ ⊆ E. Now E 6= C because γ(x) ∈ E
but γ(x) 6∈ C. Hence E and C are distinct blocks of B. However, γ(D) ⊆ E,
and D ⊆ B∗ so γ(D) ⊆ γ(B∗) = C∗ ⊆ C. Now t < k so t ≤ k − 1 = |γ(D)|.
Now let T be any t-subset of γ(D), then the distinct blocks E and C both
contain T , a contradiction since λ = 1. Hence γ(B) ⊆ C.
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To show that C ⊆ γ(B) we show that γ−1(C) ⊆ B by noting that
γ−1(C∗) = B∗, and so the proof follows as above. Hence γ(B) = C and,
since i was arbitrary, the result is proved.

Example 4 We take D to be the 2-(11, {3, 5}, 1) design of Example 1. Then
|Aut(D)| = 120; indeed Aut(D) is isomorphic to Sym(5), and acts naturally
as this group on the subset {1, 2, 3, 4, 5} of the point-set (checked using GAP
[2] and its DESIGN package [5]).

(a) D∗(2, 2) is the complete 2-(11, 2, 1) design. Hence Aut(D) ⊆ Aut(D∗(2, 2)) =
Sym(11), illustrating Theorem 4.1(i), and also showing that if λ = 1 and
t = k then Aut(D) 6= Aut(D∗(t, k)) is possible (see Theorem 4.1(ii)).

(b) D∗ = D∗(2, 3) is a 2-(11, 3, 3) design with |Aut(D∗)| = 120 (double
checked with the DESIGN package). This illustrates Theorem 4.1(ii).

Example 5 This example shows that if λ > 1 then Aut(D) 6= Aut(D∗(t, k))
is possible, even when t < k. We apply the #-construction to the projective
plane P of order 4, to obtain a 2-(20, 4, 3) design P# = P#(2, x) = (X,B),
which has a point-transitive automorphism group of order 5760. Then, we
take x ∈ X and obtain a 2-(19, {3, 4}, 3) design D = P# \ x (using the
notation of Section 3). (The choice of x does not affect the isomorphism
class of D since P# is point-transitive). Finally, construct a 2-(19, 3, 6) design
D∗ = D∗(2, 3). It turns out that |Aut(D)| = 288, but |Aut(D∗)| = 576. The
construction of these designs and the determination of their automorphism
groups was done using the DESIGN package.

Example 6 The DESIGN package shows that, up to isomorphism, there are
exactly four 2-(11, {4, 5}, 2) designs (not counting the unique 2-(11, 5, 2) de-
sign). These designs D have automorphism groups of orders 6, 8, 12, and 120,
as do the corresponding D∗(2, 4), which are (believed to be new) 2-(11, 4, 6)
designs. Note that these examples show that the converse of Theorem 4.1(ii)
does not hold.
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