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Abstract
We consider partial spreads Sr of r (> 0) lines in PG(4; 2); and obtain a complete

classi�cation, summarized in tables in appendix B. Under the action of GL(5; 2)
there are sixty-four distinct classes of partial spreads. The maximal partial spreads
account for eight of these classes, one class of size r = 5, three of size 7 and four
of size 9. Several of the non-maximal classes are not without interest, including
a regulus-free S8 whose stabilizer �= 23:F21; of order 168, acts 2-transitively upon
the eight lines. Various invariants (regulus type, signature, pro�le, symplectic type)
are employed to aid the allocation of a partial spread to its class. Even in cases of
inequivalent partial spreads having the same invariants, we provide at least one way
of distinguishing between them. Several examples are given of applications of the
classi�cation, involving �ats external to the Grassmannian G1;4;2 in PG(9; 2); and
also spreads of lines in PG(5; 2):
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1 Partial spreads in PG(4; 2) and their reguli

1.1 Introduction

We will be dealing with partial spreads S = Sr = f�1; ::: ; �rg of r (> 0) lines in PG(4; 2).
(For partial spreads in PG(n; q) for other values of (n; q); see [1], [27] and the web page
[26].) Because the �eld is GF(2) we will usually identify the 31 points of the projective
space PG(4; 2) = PV (5; 2); acted upon by PGL(5; 2); with the corresponding non-zero
vectors of the vector space V5 := V (5; 2); acted upon by GL(5; 2): We wish to classify all
partial spreads in PG(4; 2) under the action of GL(5; 2): We will be especially interested
in maximal partial spreads, that is in those which admit no extension to a larger partial
spread. Two partial spreads which belong to the same GL(5; 2) orbit will be termed
equivalent. Let us agree upon the following notation:
S = Sr = f�1; ::: ; �rg; a set of r (> 0) mutually skew lines in PG(4; 2);
 =  (Sr) = �1 [ ::: [ �r; the underlying point-set; so j j = 3r;
 c = the complement of the subset  � PG(4; 2);
L( ) = #finternal lines of  g;
L0( ) = #fexternal lines of  g (= L( c));
�( ) = orbit of  under the action of GL(5; 2);
�(S) = orbit (equivalence class) of S under the action of GL(5; 2);
G( ) = subgroup of GL(5; 2) which �xes  set-wise;
G(S) = subgroup of G( ) which permutes the elements �i of S;
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�v1; ::: ; vr�= vector subspace of V5 spanned by vectors v1; ::: ; vr 2 V5;
hv1; ::: ; vri = projective subspace of PG(4; 2) generated by points v1; ::: ; vr 2 PG(4; 2):
�ij = h�i; �ji ; the solid (hyperplane, PG(3; 2)) generated by �i and �j;
�ijk = (a) transversal of the triple of lines f�i; �j; �kg � Sr;
� = a regulus in a PG(3; 2); �opp = the opposite regulus;
�(�) = �ijk = the ambient PG(3; 2) of a regulus � = �ijk = f�i; �j; �kg;
Nr = the number of reguli contained in Sr;
H = a hyperbolic quadric H3 in a PG(3; 2);
P4 = a parabolic quadric (in PG(4; 2)):
Let us record here the following well-known facts concerning a hyperbolic quadric

H � �; where � denotes the ambient PG(3; 2) of H: The 6-set ��H consists of a pair
�; �0 of skew lines, and if � = fa; b; cg and �0 = fa0; b0; c0g then the nine points of the
quadric H may be displayed as a 3� 3 array

H =

0@ a+ a0 b+ b0 c+ c0

b+ c0 c+ a0 a+ b0

c+ b0 a+ c0 b+ a0

1A : (1.1)

Recall that H has six generators (L(H) = 6); one set of three generators constituting
the regulus � whose lines are given by the three rows of (1.1), and the remaining three
generators constituting the opposite regulus given by the three columns � = �opp of (1.1).
Moreover the underlying set of any regulus in a PG(3; 2) is a hyperbolic quadric.
A transversal of the triple f�i; �j; �kg � S is a line � which meets each of the three

lines �i; �j; �k; it will sometimes also be referred to as a transversal of S. For  =  (Sr);
with r � 3; it should be noted that there will always exist transversals which, along
with the r lines �i 2 Sr; will contribute to the number L( ) of internal lines. This is so
because each three members of S will possess (since we are in projective dimension 4)
at least one transversal, which latter (since we work over GF(2)) will lie completely in
 : (See lemma 1.3 below.) Given a line � = fp1; p2; p3g 2 S; suppose that the point pi
lies on mi � 1 transversals, and hence on mi of the L( ) lines of  (S): We record this
information as pro�le(�) = (m1;m2;m3): Of course mi � 1; usually we order the points
of � so that m1 � m2 � m3: A line � 2 S for which m1 = m2 = m3 will be said to be
balanced ; otherwise we say it is unbalanced, or also (m1;m2;m3)-unbalanced. The pro�le
of a partial spread Sr is obtained by combining together the r pro�les of its constituent
lines. For example a statement pro�le(S7) = (5; 6; 7)2(6; 6; 8)2(6; 7; 7)2(7; 7; 8) means that
two lines of S7 have pro�le (5; 6; 7); two have pro�le (6; 6; 8); two have pro�le (6; 7; 7) and
one line of S7 has pro�le (7; 7; 8): The slightly more re�ned version of the pro�le used in
tables B.2a and B.2b is explained in section B.3.2.
A partial spread Sr is transitive if G(Sr) is transitive on f�1; ::: ; �rg: If Sr is transitive

then each of its lines must have the same pro�le, and so the pro�le of Sr has to be of the
form (m1;m2;m3)

r; where the integers mi > 0 satisfy (m1 +m2 +m3)r = 3L: Amongst
the transitive partial spreads Sr are the cyclic ones, for which G(Sr) contains a cyclic
subgroup �= Zr which is transitive on f�1; ::: ; �rg:
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The signature of a point-set  will be as used in [7]: For example, signature( ) =
(15; 23; 4)(2112517)(2012214) conveys the information that the point-set  contains (j j =)
15 points, (L =) 23 lines and 4 planes; moreover each of 2 of the 15 points lies on just 1
of the 23 lines, each of 12 of the points lies on 5 of the lines, and 1 of the points lies on
7 of the lines; also 2 of the points lie on none of the 4 planes, 12 of the points lie on 2 of
the planes, and 1 of the points lies on all 4 of the planes.
We will �nd very useful the somewhat surprising fact that the sum L( ) + L0( )

depends only upon j j; and not upon the orbit �( ) of  :

Lemma 1.1 For any point-set  � PG(4; 2) let k = k( ) = j j � 15: Then

L( ) + L0( ) = 35 + k(k � 1)=2: (1.2)

In particular (1.2) holds in the cases  =  (Sr); k = 3r � 15; and then the values of
L( ) + L0( ) are as follows

r = 1 2 3 4 5 6 7 8 9
L+ L0 = 113 80 56 41 35 38 50 71 101

: (1.3)

Proof. Set n = 4 in the PG(n; 2) result [24, Theorem 1.1].
By part (ii) of the next lemma there was no need to include the value r = 10 in (1.3).

Lemma 1.2 (i) If  =  (Sr) then
P

x2 x = 0 and
P

x2 c x = 0:
(ii) Partial spreads of 10 lines do not exist in PG(4; 2):
(iii) For a partial spread of 9 lines the complementary 4-set  c is a (plane�line).

Proof. (i) This holds since
P

x2� x = 0 for each � 2 Sr; and since
P

x2PG(4;2) x = 0:

(ii) From
P

x2 c x = 0 it follows that  
c cannot be a single point.

(iii) This follows since
P

x2 c x = 0:

1.2 Reguli and reguli patterns

A partial spread Sr = f�1; ::: ; �rg of r (� 3) lines in PG(4; 2) will be termed regulus-free,
or also non-degenerate, whenever h�i; �j; �ki = PG(4; 2) holds for each triple of lines of
Sr: In the degenerate cases there is at least one triple such that h�i; �j; �ki = PG(3; 2);
that is such that f�i; �j; �kg is a regulus. Take note that if Sr contains a regulus � then
another partial spread S�r can be obtained by replacing � by �opp: In this connection it
should be borne in mind that although the subgroup O+(4; 2) of GL(4; 2) which preserves
a quadric H =  (�) =  (�opp) lying in a PG(3; 2) contains elements which interchange �
and �opp; it does not follow thereby that Sr and S�r are equivalent.

Lemma 1.3 For an Sr in PG(4; 2) the number Nr of reguli of Sr and the total number
L of internal lines of  (Sr) are related by

r +

�
r

3

�
+ 2Nr = L: (1.4)
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Proof. The r members of Sr give rise to
�
r
3

�
triples of lines. Each non-degenerate

triple has a unique transversal, while each triple which is a regulus has 3 transversals (the
members of the opposite regulus).

Given a partial spread Sr in PG(4; 2); let Rijk; for distinct i; j; k; carry the meaning
that the triple of lines f�i; �j; �kg � Sr is a regulus. It will turn out, see corollary 5.2,
that the only reguli patterns which can arise are those listed in the second column of the
following table 1.

Table 1 The possible reguli patterns
N Regulus Pattern Type Types for Sr�f�g
0 regulus-free O O
1 R123 I I (if r > 3); O
2 R123; R456 II II (if r > 6); I
2 R123; R345 L L (if r > 5); I, O
3 R123; R456; R678 IL L, II, I
3 R123; R145; R167 Y Y (if r > 7); L, O
3 R123; R145; R267 F F (if r > 7); II, L, I
3 R123; R345; R561 � � (if r > 6); L, I
4 R123; R345; R561; R789 I� �; IL, II
4 R123; R145; R167; R189 X Y, O
4 R123; R145; R267; R389 E F, II
4 R123; R124; R134; R234

�
4
3

� �
4
3

�
(if r > 4); I

10 Rijk; 1 � i < j < k � 5
�
5
3

� �
4
3

�
(r = 5)

For convenience we also record the pattern in abbreviated form, referred to as the
regulus type, see the third column of the table. Hopefully the symbol which we adopt for
the type immediately conveys the pattern. Thus in the case of type X, the four arms of
the symbol X represent the presence of four reguli, and the fact that the centre of the X
lies on all four arms indicates that one of the lines, �1 for the pattern in the table, belongs
to all four reguli. A partial spread S9 of type X will be referred to as an S9(X); a similar
interpretation applies to S5(O); S6(�); S7(II); .... . For � 2 Sr the possible reguli types
for Sr�1 = Sr�f�g are listed in the �nal column of the table. Since r � 9; see lemma
1.2, and since types I�; X, E require r = 9; these three types can not occur in the �nal
column.

Remark 1.4 Certain other feasible types, for example typeW, with pattern R123; R345; R567;
R789; and type LV, with pattern R123; R345; R567; R589; do not appear in the table because,
see corollary 5.2, they are not possible for a partial spread in PG(4; 2): Incidentally it will
later emerge that there are just two classes of partial spread S9 of type I�; and it then
proves useful to refer to them as I�� and I��; see theorem 4.5. These two classes of S9
give rise to two classes of S8 of type IL, and these will be referred to as I�L and I�L, see
section 5.2.
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1.3 Maximal partial spreads and reguli types

1.3.1 Types
�
4
3

�
and

�
5
3

�
In PG(3; 2) there exists a projectively unique spread �5 of �ve lines, see [11]. Since any
S3 in PG(3; 2) is a regulus, the spread �5 is of type

�
5
3

�
: Moreover any S4 in PG(3; 2) is

also projectively unique, of the form �5�f�g; and so necessarily of type
�
4
3

�
: In PG(4; 2)

observe that
Rijk & Rijl =) Rikl & Rjkl; (1.5)

since if f�i; �j; �kg and f�i; �j; �lg are both reguli then the four lines �i; �j; �k; �l lie in
a common PG(3; 2) and constitute an S4 in the PG(3; 2):

Lemma 1.5 (i) A partial spread S5 in PG(4; 2) which is a spread in a PG(3; 2) subspace
� is a maximal partial spread in PG(4; 2):
(ii) If S4 in PG(4; 2) is of type

�
4
3

�
then S4 lies in some hyperplane �; and so is of the

form �5�f�g where �5 is a spread in �:
(iii) Suppose that Sr is a partial spread in PG(4; 2) which is an extension of an S4 of

type
�
4
3

�
: Then either

(a) Sr is of type
�
5
3

�
and is a spread �5 in a hyperplane, or

(b) r = 5; 6 or 7 and Sr is itself of type
�
4
3

�
:

(iv) Any S7 of type
�
4
3

�
is maximal.

Proof. (i) Any line in PG(4; 2) intersects �; and hence meets a line of S5; thus S5 can
not be extended to an S6:
(ii) This follows from (1.5) and surrounding remarks.
(iii) By (i) S4 = �5�f�g where �5 = f�1; �2; �3; �4; �g is a spread in a hyperplane

�: Extending S4 using � yields the possibility (a) in part (iii). If instead, possibility
(b), lines �5; �6; �7; ::: other than � are used to extend S4 these must meet � in distinct
points a5; a6; a7; ::: of �: But � only has 3 points, whence r � 7: We still need to show
that for possibility (b) no further reguli are present. Suppose, to the contrary, �rst of
all that f�i; �5; �6g is a regulus � for some i 2 f1; 2; 3; 4g: Now for some x 2 �i the line
� = join(a5; x) will belong to �opp and so meet �6 in some point b: But � � �; and so
b = a6: Hence � = join(a5; a6) = �; which is impossible since x can not lie on both lines of
the skew pair �i; �: Suppose secondly (for r = 7) that f�5; �6; �7g is a regulus �; and so
� = fa5; a6; a7g 2 �opp: Choosing � 2 �opp; � 6= �; the point p = � \ � lies on �j for some
j 2 f5; 6; 7g; but p 2 ��f�g and so p also lies on �i for some i 2 f1; 2; 3; 4g; contradicting
S7 being a partial spread. (Alternatively, f�5; �6; �7g being a regulus would yield N7 � 5;
contradicting the result N7 � 4 in (1.6d) below.)
(iv) Such an S7 is an extension of an S4 of type

�
4
3

�
; and so, see the proof of r � 7 in

(iii), can not extend to an S8:
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1.3.2 The possibilities for (L; L0; Nr)

Theorem 1.6 For a partial spread Sr in PG(4; 2); the only possibilities for L; L0; Nr and
regulus type are as given in table 2. In particular:

(a) N4 =2 f2; 3g; (b) N5 =2 f3; 5; 6; 7; 8; 9g; (c) N6 � 4;
(d) N7 � 4; (e) N8 � 3; but N8 6= 1; (f) N9 = 4: (1.6)

Table 2 Possibilities for L; L0; Nr

r L L0 Nr Types
3 6 50 1 I
4 52 0 O

4 16 25 4
�
4
3

�
10 31 1 I
8 33 0 O

5 35 0 10
�
5
3

�
; maximal

23 12 4
�
4
3

�
19 16 2 L
17 18 1 I
15 20 0 O

6 34 4 4
�
4
3

�
32 6 3 �

Table 2 (Cont.)
r L L0 Nr Types
6 30 8 2 L, II
28 10 1 I
26 12 0 O

7 50 0 4
�
4
3

�
; max.

48 2 3 F, Y, �
46 4 2 L, II
44 6 1 I
42 8 0 O

8 70 1 3 F, Y, IL, �
68 3 2 II, (not L)
64 7 0 O

9 101 0 4 E, I�, X; max.

Proof. Most of the entries in table 2 follow immediately from eqs. (1.3) and (1.4).
For example if r = 7 then (1.3) and (1.4) assert L+L0 = 50 and 42+ 2N7 = L; hence the
only possibilities for (L;L0; N7) are the �ve listed in the table. In particular, since L0 � 0;
we have L � 50 and so N7 � 4; as stated in (1.6d). Similarly N8 � 3; as stated in (1.6e).
If r = 9 then (1.3) and (1.4) assert L+L0 = 101 and 93+2N9 = L; but L0 = 0; by lemma
1.2, and so N9 = 4; as stated in (1.6f).
Concerning (1.6a,b), these follow from the results in section 1.3.1. In particular from

eq. (1.5) we see that N4 > 1 implies N4 = 4; similarly N5 > 2 implies N5 � 4 and N5 > 4
implies N5 = 10:
Concerning (1.6c), the possibility (L;L0; N6) = (36; 2; 5) for an S6 is ruled out, since

an extension to an S7 would then exist (because L0 > 0) and have N7 � 5; contradicting
(1.6d) N7 � 4: The only other possibility (L;L0; N6) = (38; 0; 6) for an S6 is also ruled
out: an S6 with N6 = 6 would, by (1.5), contain an S4 of type

�
4
3

�
and hence by lemma

1.5(iii) be also of type
�
4
3

�
; having N6 = 4 contradicting N6 = 6.

We have still to prove N8 6= 1: Suppose to the contrary that an S8 had (L;L0; N8) =
(66; 5; 1): Then  (S8)c would be a 7-set having �ve internal lines, which is not possible.
(A 7-set in PG(4; 2) with � 5 internal lines is necessarily a plane, having 7 internal lines.)
Concerning the �nal column of the table, we delay until corollary 5.2 the proof that

no other reguli types occur.
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Theorem 1.7 If Sr is a maximal partial spread of r lines in PG(4; 2) then one of the
following holds:

(a) r = 5; N5 = 10; (b) r = 7; N7 = 4; (c) r = 9; N9 = 4: (1.7)

Moreover each of the possibilities (a)-(c) is realized.

Proof. From table 2 the possibilities (1.7a,b,c) are the only ones for which L0 = 0:
Possibilities (a) and (b) are realized, see lemma 1.5i, iv (and also section 7.1 for more
details). Concerning possibility (c), see section 5.1 for its realizations.

1.3.3 The possible regulus types for an S9
Given a partial spread Sr = f�1; ::: ; �rg which contains Nr reguli, suppose that �i belongs
to precisely ni of these reguli. We refer to ni as the valency of the line �i: Observe that
these valencies satisfy �ri=1ni = 3Nr:

Lemma 1.8 For an S9 the valencies n1; ::: ; n9 satisfy

(i) �9i=1ni = 12; (ii) ni > 0: (1.8)

Proof. Since N9 = 4, result (i) follows. Concerning (ii), if a line �i 2 S9 were to have
ni = 0 then S8 = S9�f�ig would have 4 reguli, contradicting the fact, see eq. (1.6e), that
N8 � 3:
Let types LV and W be as described in remark 1.4.

Lemma 1.9 A S9 has regulus type X, LV, E, I� or W.

Proof. After a suitable re-labelling, only three possibilities are allowed by lemma 1.8,
namely

(a) n1 = 4; n2 = ::: = n9 = 1; (1.9)

(b) n1 = 3; n2 = 2; n3 = ::: = n9 = 1;

(c) n1 = n2 = n3 = 2; n4 = ::: = n9 = 1:

Bearing in mind the result (1.5), the only possible types for the four reguli of an S9 are
correspondingly

(a) X; (b)LV; (c) E, I�, W. (1.10)

(In fact types LV and W do not occur, see corollary 5.2.)

Corollary 1.10 Every S9 contains an S5 of type L. �
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1.4 Further considerations

1.4.1 Dual partial spreads

Nonzero elements of the vector space V �
n dual to Vn are identi�ed with the points of the

dual projective space PG(n � 1; 2)� = PV �
n : Recall that the annihilator U

O := ff 2
V �
n j f(u) = 0; for all u 2 Ug of any subset U � Vn is always a subspace of V �

n ; moreover
if dim � U �= k then dimUO = n � k: We use the same notation also for projective
subspaces. Thus if � is a plane in PG(4; 2) then �O is a line in PG(4; 2)�:
Quite generally the notion of a partial spread dualizes to yield the notion of a dual

partial spread. In the present case of PG(4; 2) a dual partial spread Pr of size r(> 1) is a set
f�1; ::: ; �rg of r planes in PG(4:2) such that h�i; �ji = PG(4; 2) for each i 6= j. By setting
��i = (�i)

O note that dual partial spreads Pr = f�1; ::: ; �rg in PG(4; 2) are in bijective
correspondence with partial spreads S�r = f��1; ::: ; ��rg in the dual space PG(4; 2)�: (The
condition h�i; �ji = PG(4; 2) is equivalent to the condition �i \ �j = ;:) Consequently
the classi�cation of partial spreads in PG(4; 2) obtained in this paper amounts also to a
classi�cation of dual partial spreads in PG(4; 2):
See section 2.3.2 below for an instance where duality considerations bear fruit.

1.4.2 The Grassmannian G1;4;2 in PG(9; 2)

Along with the vector space V5 := V (5; 2); and its projective space PG(4; 2) = PV5; we
have the associated space V10 := ^2V5 of bivectors, and its projective space PG(9; 2) =
P(^2V5): Each A 2 GL(5; 2) gives rise to a corresponding element TA = ^2A of GL(V10)
whose e¤ect on the decomposable bivectors u ^ v 2 V10 is TA(u ^ v) = Au ^ Av;
A 2 GL(5; 2): Under the action T of GL(5; 2) the projective space PG(9; 2) is the union
Rk2 [Rk4 of two GL(5; 2)-orbits, consisting of those bivectors having rank 2 and rank
4, respectively. The Grassmann map � u; v �7!� u ^ v � sends the 2-spaces of V5
to those 1-spaces of ^2V5 which are spanned by decomposable bivectors. Projectively,
the lines of PG(4; 2) are mapped onto the points of the orbit Rk2; the latter, being the
Grassmannian G1;4;2 � PG(9; 2) of lines of PG(4; 2); having length 155: Consequently
jRk4 j = 1023 � 155 = 868: (Similarly the projective space PG(9; 2)� := P(^3V5) is the
union of two orbits of lengths 155 and 868; using the Grassmann map � u; v; w �7!�
u ^ v ^ w �; the 155 planes of PG(4; 2) are mapped onto the 155 points of the Grass-
mannian G2;4;2 � PG(9; 2)�:)
Let Cr = fm1; ::: ;mrg � PG(9; 2) denote the Grassmann image of a partial spread

Sr = f�1; ::: ; �rg in PG(4; 2): Observe that the study of partial spreads Sr in PG(4; 2)
is equivalent to the study of r-sets Cr = fm1; ::: ;mrg in PG(9; 2) which satisfy the two
conditions

(i) Cr � Rk2(= G1;4;2); (ii) mi +mj 2 Rk4; for each i 6= j: (1.11)
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2 Outline and outlook

2.1 Overview

In this paper we will obtain a classi�cation, summarized in tables B.2a and B.2b (see
appendix B) of all the partial spreads Sr of lines in PG(4; 2): The various GL(5; 2)-orbits
of the underlying point-sets  (Sr) which occur are classi�ed in table B.1: In these tables
roman numerals are used to indicate the value of r: Thus the six orbits for a  (S7) are
labelled VIIa, VIIb, ... , VIIf. Also the �ve equivalence classes of partial spreads S7 whose
point-sets lie on the orbit VIIe are labelled VIIe.1, VIIe.2, ... ,VIIe.5.
Up to the action of GL(5; 2) we will show that there are exactly 64 distinct classes of

partial spreads, the number sr of equivalence classes of partial spreads Sr of size r being

s1 = 1; s2 = 1; s3 = 2; s4 = 4; s5 = 10; s6 = 14; s7 = 19; s8 = 9; s9 = 4:

The chief interest no doubt lies with the maximal partial spreads. We will show that there
are precisely eight equivalence classes of maximal partial spreads, one of size 5, three of
size 7 and four of size 9:

Vj.1; VIIf.1, VIIf.2, VIIf.3; IXa.1, IXa.2, IXa.3, IXa.4. (2.1)

But certain of the non-maximal partial spreads are also worthy of attention, for ex-
ample the cyclic partial spreads and the regulus-free (type O) partial spreads. For r � 3
there are nine classes of cyclic partial spreads:

IIIa.1, b.1; IVa.1, d.1; Va.1, e.1, j.1; VIa.1; VIIa.1.

If Sr is cyclic, recall that the pro�le of Sr has to be of the form (m1;m2;m3)
r; with the

integers mi > 0 satisfying (m1+m2+m3)r = 3L: For example, the pro�le of a cyclic S5 is
seen to be (3; 3; 3)5; (2; 3; 4)5 or (7; 7; 7)5; according as S5 belongs to the class Va.1, Ve.1
or Vj.1.
For r � 3 there are twelve classes of regulus-free partial spreads:

IIIa.1; IVa.1, b.1; Va.1, ... , e.1; VIa.1, b.1; VIIa.1; VIIIa.1.

Partial spreads belonging to three of these classes, namely Va.1, VIb.1 and VIIIa.1, have
the maximality property of admitting no extension to a larger regulus-free partial spread.
Class Va.1 consists of spreads on parabolic quadrics P4; and its in�uence also spills over
to the classes Vb.1, Vc.1, Vd.1, see sections 3.4.1, 3.4.2; it has stabilizer group G(S5) �=
Sym(5): Class VIIIa.1 also has a large stabilizer group, with G(S8) �= 23: F21; of order
168; which acts transitively on S8: (The stabilizer groups for the other eight classes of S8
are all of order � 6:) This high symmetry is perhaps best seen using the construction in
section 6.1. For an interesting aspect of partial spreads of class VIIIa.1, see section 2.3.2
below.
The group Sym(6); isomorphic to both Sp(4; 2) and to O(5; 2); makes a (somewhat un-

expected!) appearance in our description of roughly half of the classes of partial spreads.
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So in Appendix A we summarize the relevant mathematics surrounding the group isomor-
phisms

(i) Sp(4; 2) �= Sym(6); (ii) O(5; 2) �= Sym(6): (2.2)

A partial spread Sr comes along with various invariants, and by computing one or
more of these we are in many cases able to assign Sr to its class. First of all there is
the orbit �( ) of the underlying point-set  (Sr): Indeed the orbit �( ) alone su¢ ces to
distinguish the classes of Sr for the cases r � 5: The orbit�( )may in turn be determined,
by reference to table B.1, by computing signature( ) and signature( c): Usually one needs
only to compute the easiest one of these, namely the signature of the smaller of the two
sets  ;  c: However, see section B.3.1(i), the signature of  c is needed to distinguish
between the orbits Va and Vc. Other invariants of a partial spread Sr include its regulus
type, the structure of its stabilizer group G(Sr) and its pro�le. All of these invariants
(including a re�ned version of the pro�le, see section B.3.2) are given in the tables in
appendix B.
However, for r > 5; a number of cases arise where two partial spreads Sr and S 0r

share the same pro�le, and also the other invariants of the last paragraph, but which are
inequivalent. In such cases it may at �rst (or even second!) glance be hard to distinguish
between Sr and S 0r: In the majority of such cases the distinction can be made by use
of symplectic considerations arising from the isomorphism (2.2i). See for example the
discussion of the classes VIc.1, VIc.2 and VId.1, VId.2 in section 7.3.1, which follows on
from the Sp(4; 2) treatment in section 7.1 of the three maximal partial spreads of size 7.
In a few cases, see classes VIe.1, e.2 in section 7.3.1 and classes VIIc.1, c.2 in section 7.2.2,
the distinction proves more intractable. But in all cases we provide at least one way of
making the distinction.

2.2 Plan of the proof

In outline, the main steps involved in the proof of our classi�cation are as follows. First
of all we deal with partial spreads Sr for r � 5: See section 3. Here the two classes IIIa.1
and Vh.1 should be particularly noted. If S3(O) 2 class IIIa.1 then, see section 3.2, it
determines a privileged even hyperplane equipped with a distinguished null polarity, and
it turns out that the resulting Sp(4; 2) considerations help in the understanding of many
of the classes considered later. The class Vh.1, consisting of partial spreads S5 of type
L and considered further in section 4.1, is of especial importance, since by corollary 1.10
every partial spread S9 contains an S5(L) 2 class Vh.1.
Secondly, using this last fact, in sections 4 and 5 we determine all partial spreads Sr

for r > 5 which are not of type O, I, II or
�
4
3

�
: Then, in section 6, we consider those partial

spreads S6; S7 and S8 which are of type O. Finally, in section 7, we classify the remaining
partial spreads, namely those Sr; r > 5; which are of type I, II or

�
4
3

�
, the latter including

the three classes of maximal partial spreads of size 7.
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2.2.1 Use of the computer

The proof that there are just the eight classes (2.1) of maximal partial spreads in PG(4; 2)
is computer-free. Our determination of all equivalence classes of non-maximal partial
spreads is also essentially computer-free. Nevertheless use of the computer has been of
great help to the project, especially in respect of the detailed information provided in
tables B.1, B.2a and B.2b, as we now describe.
First of all consider the entries in table B.1 under the headings signature( ) and

signature( c): On the one hand it is straightforward to compute these by hand, especially
for the smaller of the two sets  (Sr);  (Sr)c: See for example the computation immediately
before theorem 6.4 of the signature of a 13-set  (S6)c: However such computations are
rather tedious, and especially so for the larger of the sets  ;  c: So, for many of the
signatures, we have relied on computer-generated results using Magma. (For details of
Magma, see [2] and [3].)
Secondly, a similar remark applies to the entries in tables B.2a and B.2b under the

heading pro�le(Sr): many entries were computed by hand, but all were computed using
Magma. The latter was also used to analyze output from GRAPE, see below, especially
in connection with the regulus pattern of partial spreads.
Thirdly, in assigning the underlying point-sets of distinct classes of partial spreads,

such as VIIe.1, VIIe.2, ... ,VIIe.5, to the same GL(5; 2)-orbit, in this case VIIe, we make
use of the following fact: given  =  (Sr) and  0 =  (S 0r) then

signature( ) = signature( 0)
signature( c) = signature(( 0)c)

�
=) �( ) = �( 0):

For this fact we appeal to a certain more general result which may be read o¤ from [7,
Table 8.4.6], the derivation of which used the computer, see section B.3.1(ii). We also
borrowed from [7] information concerning the orders of the stabilizer groups of point-sets,
see column 4 of table B.1, although many of these were also obtained by hand, see for
example section 3.1.
Finally we mention the extremely useful contribution from GRAPE, see below, at a

half-way stage of the project. At this stage the determination of the eight classes (2.1)
of maximal partial spreads was almost complete, but we were somewhat daunted by the
task of describing all the non-maximal ones. The results from GRAPE pointed the way
to what was still to be done by hand, and provided invaluable checks on our assertions
concerning the stabilizer groups G(S); and that there are indeed precisely 56 classes of
non-maximal partial spreads.
GRAPE [25] is a GAP [6] package for computing with �nite graphs endowed with

group actions. The GRAPE package is designed primarily for constructing and analyzing
graphs related to groups, designs and �nite geometries. The GRAPE philosophy is that
a graph � always comes together with a known subgroup G of the automorphism group
of � (the group G usually comes from the construction of �). Then G is used to store �
e¢ ciently and to speed up computations with �.
In the present context, the graph � constructed by GRAPE is the graph whose vertices

are the lines of PG(4; 2); with two lines (vertices) joined by an edge if and only if they
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are skew. The associated group G of automorphisms is GL(5; 2) in its action on the
lines of PG(4; 2). Now the partial spreads in PG(4,2) are precisely the vertex-sets of the
complete subgraphs of �. We determined these complete subgraphs up to G-equivalence
using GRAPE (version 4.0), �rst determining the maximal complete subgraphs up to
G-equivalence. GAP (version 4.1) was then used to determine the stabilizer G(S) for
each partial spread S classi�ed. The complete classi�cation of partial spreads and the
determination of their stabilizers took about 10 minutes of CPU-time on a 350 MHz
Pentium II PC running Linux. This computation is detailed explicitly within the web
page [26]. (With the latest version of GRAPE (version 4.2), this computation can be
done more quickly.)

2.3 Outlook

We claim that the classi�cation in this paper is currently the only complete classi�cation
of partial spreads in a projective space PG(4,q). Moreover we are of the strong belief that
any future complete classi�cation in PG(4; q) for any value of q > 2 will only be achieved
with much use of the computer and with much less theoretical understanding than in the
present q = 2 case.
Naturally we hope that our classi�cation will prove to be of interest and use to other

researchers in the �eld. In support of this, we sketch, in the rest of this section, three
instances where the classi�cation has already proved to be of considerable use.

2.3.1 Flats in PG(9; 2) external to the Grassmannian G1;4;2

In this section the terms internal and external refer to the Grassmannian Rk2 = G1;4;2 �
PG(9; 2); see section 1.4.2. The internal �ats of G1;4;2 are well understood, the maximal
ones being of two kinds, Greek planes and Latin solids, see [10, Section 24.2]. However it
is much more di¢ cult to determine all GL(5; 2)-orbits of external �ats. But in fact this
formidable classi�cation problem has recently been completely solved, see [15], [16], [17]
� aided in no small way by the results of the classi�cation in the present work.
For k = 0; 1; 2; 3; 4; the external k-�ats in PG(9; 2) are proved in [17] to fall respectively

into 1; 2; 3; 2; 2 distinct GL(5; 2)-orbits:

k = 0 : Rk4; k = 1 : orb(1�); orb(1�);

k = 2 : orb(2�); orb(2�); orb(2
);

k = 3 : orb(3�); orb(3�); k = 4 : orb(4+); orb(4�): (2.3)

Furthermore no external k-�ats exist for k > 4: One way to see this last is to use the fact,
see [13], [14], that G1;4;2 is a hypersurface in PG(9; 2) of degree 5; and then to apply the
theorem in [19]. It was demonstrated in [17] that of the ten orbits (2.3) no less than seven
can be simply constructed out of partial spreads in PG(4; 2); by means of the following
even hyperplane construction.
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The even hyperplane construction of external �ats. As in section 1.4.2, let
Cr = fm1; ::: ;mrg � PG(9; 2) denote the Grassmann image of a partial spread Sr =
f�1; ::: ; �rg in PG(4; 2): In searching for external �ats the property (1.11)(ii) suggests
that we consider the projective space E(Cr) de�ned to be that generated by the

�
r
2

�
points

mi + mj: In cases where the mi are linearly independent then E(Cr) is the unique hy-
perplane inside the (r � 1)-�at hCri which is disjoint from the r points mi 2 Cr; since
the latter points are internal, take note that no hyperplane of hCri other than E(Cr) is a
candidate to be an external �at.

Theorem 2.1 (See [17, Theorems 2.5, 2.10, 2.11].) If Sr; r � 2; is a partial spread in
PG(4; 2); then E(Cr) is an external �at if and only if one of the following holds:

(o) r = 2; E(C2) is an external point;
(i) r = 3 and one of the following holds:
(a) S3 2 class IIIa.1, in which case E(C3) 2 orb(1�);
(b) S3 2 class IIIb.1, in which case E(C3) 2 orb(1�);

(ii) r = 4 and one of the following holds:
(a) S4 2 class IVb.1, in which case E(C4) 2 orb(2�);
(b) S4 2 class IVc.1, in which case E(C4) 2 orb(2�);

(iii) r = 5 and one of the following holds:
(a) S5 2 class Ve.1, in which case E(C5) 2 orb(3�);
(b) S5 2 class Vg.1, in which case E(C5) 2 orb(3�):

2.3.2 Conclaves of planes in PG(4; 2) and certain planes in PG(9; 2) external
to G1;4;2

By theorem 2.1, of the ten orbits (2.3) of �ats, external to G1;4;2; only the three orbits
orb(2
); orb(4+) and orb(4�) can not be obtained using the foregoing even hyperplane
construction. Concerning the external planes belonging to orb(2
) their stabilizer group is
known, [17, Theorem 4.1], to have the structure 23: F21: Now we also have G(S8) �= 23: F21
in the case of a partial spread S8 of class VIIIa.1. So we naturally enquire: can we
construct external planes of orb(2
) out of partial spreads of class VIIIa.1? The answer
is in the a¢ rmative, as we now sketch.
First we need the notion of a conclave of planes in PG(4; 2):

De�nition 2.2 An 8-set P8 = f�1; ::: ; �8g of planes in PG(4; 2) is termed a conclave if
the

�
8
2

�
= 28 intersections �i \ �j; i 6= j; are distinct points. (See [23] for a more general

de�nition, of a conclave f�1; ::: ; �Ng of PG(m; q)�s.)

Lemma 2.3 Let P8 = f�1; ::: ; �8g be a dual partial spread in PG(4; 2) which is in bi-
jective correspondence � via ��i = (�i)

O; see section 1.4.1 � with a partial spread
S�8 = f��1; ::: ; ��8g in the dual space PG(4; 2)�: Suppose S�8 is of class VIIIa.1; then P8
is a conclave.
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Proof. To each of the solids ��ij = h��i ; ��ji of PG(4; 2)� corresponds a point vij :=
(��ij)

O = �i \ �j of PG(4; 2): But because S�8 is regulus-free, the
�
8
2

�
= 28 solids ��ij are

distinct. Hence so are the 28 points vij; that is P8 is a conclave.

Theorem 2.4 (See [18, Theorem 3.6].) Let P8 = f�1; ::: ; �8g be a conclave of planes
in PG(4; 2); and let its Grassmann image be the 8-set K8 = fp1; ::: ; p8g of points on the
Grassmannian G2;4;2 � PG(9; 2)�: Then the annihilator P := (K8)O is an external plane
in PG(9; 2) which belongs to orb(2
):

Consult [18] for more details of the bijective correspondences S�8 $ P8; and P8 $ P
between the three kinds of geometric objects just considered, and of their shared symmetry
group GS�8 = GP8 = GP :

Remark 2.5 In the terminology of [5] a regulus-free partial spread Sr in PG(4; 2) is a
(n; q) = (4; 2) instance of a generalized r-arc. In the terminology of [12] a conclave of
planes P8 in PG(4; 2) is a (n; q) = (4; 2) instance of a 2-dimensional dual hyperoval.
Concerning this last, we prefer to keep to the term conclave of planes; at least it met with
the approval of J.H. Conway during the talk of one of us (R.S., see [22]) at the First
Pythagorean Conference, Spetses, Greece 1996.

2.3.3 An invariant for a spread of lines in PG(5; 2)

The problem of �nding all spreads of lines in PG(5; 2) will probably only ever be solved
with the aid of computers. In particular, given two spreads S; S 0 in PG(5; 2); it is usually
a highly nontrivial task to decide whether or not they are equivalent (belonging to the
same GL(6; 2)-orbit). It is therefore of some interest that the present classi�cation of
partial spreads in PG(4; 2) provides us with an invariant for spreads of lines in PG(5; 2),
as we now describe.

Lemma 2.6 Let S be a spread of lines in PG(5; 2); and let � be any hyperplane of
PG(5; 2): Then precisely 5 of the 21 lines of S lie inside �:

Proof. The 32 points of �c account for 16 lines of S which meet � in a point. The
remaining 31 � 16 = 15 points of � must therefore support the remaining 21 � 16 = 5
lines of S:
Each line-spread S in PG(5; 2) thus determines a partial spread S5 in each PG(4; 2) of

PG(5; 2): Suppose that of these 63 partial spreads S5; one for each hyperplane of PG(5; 2);
precisely Nx belong to class Vx.1, x = a, b, ... , j, in table B.1.

De�nition 2.7 The sequence (Na; Nb; ::: ; Nj) is the invariant sequence of the spread S:

Clearly spreads S; S 0 in PG(5; 2) which have di¤erent invariant sequences will be
inequivalent.
As an example of an invariant sequence, consider the spread S = S7[S 07[S 007 in PG(5; 2)

de�ned as follows. In the shorthand notation described at the start of the next section,
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let f1; 2; 3; 4; 5; 6; 7g be a hyperbasis (= basis + unit point) for V (6; 2): So 123456 = 7,
etc. The 63 points of PG(5; 2) are then the 7 points i, the 21 points ij, and the 35 points
ijk, where i < j < k: Let A in GL(6; 2) be the element of order 7 which e¤ects the cyclic
permutation (1234567); and let S7;S 07;S 007 be the A-cyclic partial spreads which contain
the respective lines f12; 14; 24g; f1; 235; 467g; f127; 136; 145g: Then S7 accounts for the
21 points ij, S 07 accounts for the 7 points i and for 14 of the points ijk, and S 007 accounts
for the remaining 21 points ijk:

Claim 2.8 The spread S = S7 [S 07 [S 007 in PG(5; 2) has (7; 0; 0; 28; 28; 0; 0; 0; 0; 0) for its
invariant sequence.

The computation of the invariant sequence was fairly painless, but only because one
could take advantage of the Z7 (in fact Z7 o Z3) symmetry.

3 Small partial spreads: r � 5
Shorthand notation. Having made a choice B = fe1; ::: ; e5g of basis for V5 it will often
prove convenient to use i; ij; ::: as shorthand for ei; ei+ej; ::: . We also set u = e1+ :::+
e5 = 12345; and use 4u as shorthand for e4+u = 1235; etc. From time to time we make use
of the hyperbasis B� = B[fug; see section A.2.1 of the Appendix. Concerning generators
for the stabilizer G(Sr) of a partial spread Sr, that element A 2 GL(5; 2) whose action on
the basis B is, for example A : 1 7! 134; 2 7! 23; 3 7! 3; 4 7! 34; 5 7! 125; is written
A : (1; 2; 3; 4; 5) 7! (134; 23; 3; 34; 125); or, more often, simply A = (134; 23; 3; 34; 125):

3.1 Introduction

We have considered earlier those (projectively unique) partial spreads which lie in some
hyperplane � � PG(4; 2), namely partial spreads S3 of type I (reguli), S4 of type

�
4
3

�
and

S5 of type
�
5
3

�
: These three orbits are listed as IIIb.1, IVd.1 and Vj.1 in table B.2a. Now

associated with the hyperplane � is a group N �= (Z2)
4 of involutions, where N�fIg

consists of those 15 transvections (projectively, elations) fJ(a) : a 2 �g which �x �
pointwise. Here J(a)x = x if x 2 �; and J(a)x = x + a if x 2 �c: In each of the three
cases, S = S3; S4 and S5; under consideration clearly the stabilizer groups G( ) and G(S)
will contain N as a normal subgroup.
In the case of  5 =  (S5) = �; we have G( 5) = N o GL(4; 2) and G(S5) = N o K;

where K �= �L(2; 4); of order jGL(4; 2)j � 56 = 360, is the stabilizer within GL(4; 2) of
a spread in PG(3; 2): So jG(S5)j = 16 � 360 = 5760: In the case of  4 =  (S4) = ���
the stabilizer within GL(4; 2) of the line � � PG(3; 2) is �= (Z2)4 o (GL(2; 2)�GL(2; 2));
of order 16 � 6 � 6 = 576: Since  4 contains eight S4 s the stabilizer within GL(4; 2)
of a particular S4 has order 576 � 8 = 72: Hence jG( 4)j = jN j � 576 = 9216 and
jG(S4)j = jN j � 72 = 1152; as recorded in tables B.1 and B.2a. In the case of  3 =
 (S3) = H; the stabilizer within GL(4; 2) of the quadric H � PG(3; 2) is O+(4; 2) �=

17



(GL(2; 2) � GL(2; 2)) o Z2; of order 72: Hence jG( 3)j = jN j � 72 = 1152 and, since H
contains two S3 s, jG(S3)j = 1152� 2 = 576; again as recorded in tables B.1 and B.2a.
At this point we may as well consider a partial spread S5 of the form S4 [ f�g where

S4 is of type
�
4
3

�
; with  4 =  (S4) = ���; and where the line � meets � in a point p. So,

see lemma 1.5, S5 is necessarily of type
�
4
3

�
: It is projectively unique. For if S 05 = S4[f�0g

then there exists T 2 G(S4) sending p0 = � \ �0 to p; and there exists J(a) 2 N sending
T�0 to �; whence J(a)T sends S 05 to S5: Moreover, for a given S4 of type

�
4
3

�
there are

3 � 8 = 24 choices for �: So the orders of G( 5) and G(S5) are jG( 4)j � 24 = 384 and
jG(S4)j � 24 = 48; as recorded in the entries Vi in tables B.1 and B.2a. The structure of
G(S5) is seen to be

G(S5) = G0 � hJ(p)i �= Sym(4)� Z2; (3.1)

with G0 e¤ecting all 4! permutations of the lines of S4.
Consider also a partial spread S4 of type I, and so of the form S3 [ f�g where S3 is of

type I; with  (S3) = H � �; and where the line � meets � in a point p. Since G(S3) is
transitive on the points p 2 ��H; a corresponding argument to the previous one shows
that a partial spread S4 of type I is projectively unique. Moreover, for a given regulus S3
there are 6� 8 = 48 choices for �: So the orders of G( 4) and G(S4) are jG( 3)j� 48 = 24
and jG(S3)j � 48 = 12; as recorded in the entries IVc in tables B.1 and B.2a. See eq.
(3.28) for the structure Sym(3)� Z2 of G(S4):
We now proceed to consider all the remaining partial spreads of sizes 3; 4 or 5: One

of these is a projectively unique partial spread S5 of type L, and because it turns out to
play a particularly important role in our determination of all partial spreads, we will also
consider it later, in greater detail, in section 4.1.

3.2 The projectively unique S3(O) and its extensions to an S4
Without loss of generality any partial spread S3 which is not a regulus can be taken to
be S3 = S3(O) = f�1; �2; �3g where, in shorthand notation with respect to the basis
B = fe1; ::: ; e5g;

�1 = f1; 2; 12g; �2 = f3; 4; 34g; �3 = f5; u; 5ug: (3.2)

Selecting a particular choice of S3 = S3(O) equips PG(4; 2) with a surprising amount of
structure. First of all there is the unique transversal � = f12; 34; 5ug of the lines �1; �2; �3:
Secondly S3 determines the hyperbasis B� =  (S3)�� = B[fug for V5; and so, see section
A.2.1, it follows that S3 also determines a privileged hyperplane, the even hyperplane �
of B�; which comes along with a distinguished null polarity. The 10 + 5 = 15 points of �
are those, fijg and fiug; which are of even weight in a(ny) basis B = B��fpg; p 2 B�;
and the scalar product x:y is such that ij:ik = ij:iu = iu:ju = 1; and ij:kl = ij:ku = 0;
whenever i; j; k; l are distinct, see (A.7). Observe that S3 also selects one line, namely
� = �(12 34 5u) (= �s23); see after eq. (A.8)), out of the �fteen self-polar lines (A.8i) of �:
Next S3 determines that involution J = J(S3) 2 GL(5; 2) which, for i = 1; 2; 3;

interchanges the two points of �i not on �: Thus, for S3 as in (3.2), we have, in shorthand
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notation, J = (12)(34)(5u) � meaning that J is that element of GL(5; 2) with e¤ect
J : e1 � e2; e3 � e4; e5 � u: Consequently S3 also determines that plane � which is the
�xed-point-set �x(J) of J; and which is seen to be

�x(J) = � = � [ �; where � = f135; 145; 235; 245g: (3.3)

So S3 also determines the 4-set � = �x(J)��:
(We might also mention the three solids (hyperplanes) �12; �13; �23 which are deter-

mined by S3; where �ij = h�i; �ji; and the associated three 3-dimensional hyperbolic
quadrics H12;H13;H23; where Hij = �ij�(�i [ �j); and note the alternative de�nition
� = (�12 [ �13 [ �23)

c of the 4-set �: Moreover if �ij has equation fij = 0; where
fij 2 V �

5 (= the dual of V5); then we �nd that � is that solid whose equation is f = 0;
where f = f12 + f13 + f23: )
In lemma 3.1 below we describe the stabilizer group G(S3) of S3 = S3(O): Since any

A 2 G(S3) must preserve the various structures �;B�; �; �; ... described above, it is not
di¢ cult to arrive at these details of G(S3) by elementary means. Nevertheless it is of some
interest to see how to obtain G(S3) from the material in section A.1.2 of the Appendix.
For note that A 2 G(S3) if and only if A preserves both B� and the particular self-
polar line � = �(s23) � � which is labelled by the syntheme s23 = f12; 34; 5ug in the
array (A.2). Let us identify Sym(6) with Sym(B�) = Sym(f1; 2; 3; 4; 5; ug): Using lemma
A.2(ii) it follows that

G(S3) = stab(s23) = �(stabf2; 3g); where

stabf2; 3g = Sym(f1; 4; 5; ug)� h(23)i �= Sym(4)� Z2; (3.4)

and where � = ��1 is that outer involutory automorphism of Sym(6) which is described in
section A.1.2. The elements of G(S3) can now be obtained from elements of Sym(f1; 4; 5; ug)�
h(23)i upon using the property (A.6) of �: if sab = fij; kl; mng; then �(ab) = (ij)(kl)(mn):
Thus, for example, the central involution (23) 2 stabf2; 3g yields the central involution
�(23) = (12)(34)(5u) = J 2 G(S3): As another example, since s14 = f13; 24; 5ug and
s15 = f12; 45; 3ug; see (A.2), we have

�(154) = �(14)�(15) = (13)(24)(5u) (12)(45)(3u) = (14u)(235);

and so arrive at the element A3 2 G(S3) in the lemma.

Lemma 3.1 If S3 is of type O, with involution J = J(S3); then

G(S3) = G0(S3)� hJi; where G0(S3) �= Sym(4); (3.5)

with G0 e¤ecting all 4! permutations of the four points of �: Explicitly, for S3 as in (3.2),
the subgroup G00 C G0; isomorphic to Alt(4); contains the four Z3 subgroups hAii; i =
1; 2; 3; 4; where, in shorthand notation, the Ai e¤ect the following permutations of the six
elements 1 = e1; ::: ; 5 = e5; u:

A1 : (135)(24u); A2 : (145)(23u); A3 : (235)(14u); A4 : (245)(13u): (3.6)
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Also the four-group inside G00 is fI; (12)(34); (12)(5u); (34)(5u)g: Each Ai lies in class
3B of GL(5; 2) and is of cycle type 31011 in its action upon PG(4; 2); (see [4, p.70] and
[9, Table 4]), and the unique �xed points of the four Ai are precisely the four points
135(= 24u); 145(= 23u); 235(= 14u) and 245(= 13u) of the set �: The six involutions
2 G0�G00 may be represented by K = (13)(24); and the six elements of order 4 by (1324):
�

Remark 3.2 The stabilizer group G(S3) contains two subgroups isomorphic to Sym(4);
namely G0(S3) and G0(S3)0; where G0(S3) = G00[KG00 is as in the theorem and G0(S3)0 =
G00 [ JKG00: The subgroup G0(S3)0 will occur later, see the lead-in to theorem 7.1.

Consider now an extension S4 = S3(O) [ f�4g; and note from table 2 that there are
L0 = 52 choices for �4. Of these 52 lines, 16 lie in the even hyperplane � and 36 intersect
� in a point, each of the 12 points of ��� contributing 3 lines of the 36.
Under the action of G(S3) the 16 lines of � which are skew to � form two orbits 
 and


0; each of length 8, with representatives

�4 = f13; 25; 4ug; �04 = f13; 15; 35g; (3.7)

the lines of 
 being self-polar and those of 
0 being nonpolar, see eq. (A.8). Each of
the partial spreads S4 = S3 [ f�4g and S 04 = S3 [ f�04g is of type O. However they are
inequivalent because they have distinct pro�les (see section 1.1):

pro�le(S4) = (2; 2; 2)4; pro�le(S 04) = (1; 2; 3)3(2; 2; 2); (3.8)

each line of S4 being balanced, while in the case of S 04 only �04 is balanced. The resulting
two classes of partial spreads S4 of type O are listed, respectively, as IVa.1 and IVb.1 in
table B.2a. They will be considered further below in section 3.3.
Of the remaining 36 lines the three which meet � in the point 13 are:

�004 = f13; 124; 234g; �0004 = f13; 125; 235g; ��4 = f13; 145; 345g: (3.9)

Now S 004 = S3 [ f�004g is of type I, since f�1; �2; �004g is a regulus, while S 0004 = S3 [ f�0004 g is
seen to be of type O. There is no need to consider S3 [ f��4g because ��4 lies on the same
G(S3)-orbit 
000 as �0004 ; the element K = (5u) of G(S3) e¤ecting the interchange ��4 � �0004 :
Since G(S3) is transitive on the 12-set ��� it follows that the 36 choices for �4 which
meet � in a point form two orbits 
00 and 
000; of lengths 12 and 24; with representatives
�004 and �

000
4 :

Lemma 3.3 Up to equivalence, there exist precisely four partial spreads S4 of size 4.
Three of these arise as extensions of an S3(O); represented by the partial spreads S3 [
f�4g; S3 [f�04g and S3 [f�004g just considered; they are of the respective types O, O and I,
listed as IVa.1, b.1 and c.1 in table B.2a. (For more details concerning classes IVa.1 and
IVb.1, see section 3.3; for class IVc.1, see end of section 3.1 and the beginning of section
3.5.) The fourth is of type

�
4
3

�
; as considered in section 1.3.1, and listed as IVd.1.
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Proof. By our lead-in to the lemma the only other possibility for an extension of an
S3(O) would have S 0004 = S3 [ f�0004 g as representative. But in fact S 0004 is equivalent to S 04;
with �3 being the sole balanced line of S 0004 : To see this, start out from Sy3 = f�1; �2; �0004 g
and note that �3 is a nonpolar line in the even hyperplane �yof Sy3:
Any other kind of S4 must be an extension of a regulus, since the latter, of type

I, is the only class of S3 other than one of type O already considered. Recalling from
theorem 1.6(a) that N4 =2 f2; 3g; an extension S4 of a regulus is either a partial spread in
a hyperplane, of type

�
4
3

�
; or else it is of type I. But, see end of section 3.1, there is only

the one class, IVc.1, of S4(I) s.

3.3 The two classes of partial spread S4(O)
3.3.1 The cyclic partial spread S4(O)

In section 3.2 we proved that there exists a unique class IVa.1 of partial spreads S4 of
type O and pro�le (2; 2; 2)4, represented by S4 = f�1; �2; �3; �4g:

�1 = f1; 2; 12g; �2 = f3; 4; 34g; �3 = f5; u; 5ug; �4 = f13; 25; 4ug: (3.10)

That each line of S4 is balanced, contributing (2; 2; 2) to pro�le(S4); comes about because
each of the twelve points of  (S4) lies on just one of the four transversals of S4: It follows
that these four transversals themselves constitute a S4 of type O and pro�le (2; 2; 2)4: The
12-set  thus has the structure of a double-four of lines (the terminology here being that
used in [23]), and may conveniently be represented in a 4� 4 array

 =

0BB@
� 2 1 12
4 � 3 34
u 5 � 5u
4u 25 13 �

1CCA : (3.11)

Here the lines of the original partial spread S4 are given by the four rows, and the transver-
sals �234; �134; �124; �123 of S4, forming, let us say, the opposite partial spread Sopp4 ; are given
by the four columns.
Given any double-four  � PG(4; 2);

 =

0BB@
� x12 x13 x14
x21 � x23 x24
x31 x32 � x34
x41 x42 x43 �

1CCA ; (3.12)

then its twelve points xij; i 6= j; satisfy various relations. First of all we have the de�ning
properties �j 6=ixij = 0; and �i6=jxij = 0: From these it quickly follows that xij + xji =
xkl + xlk holds for any permutation ijkl of 1234; and also that xij + xjk + xki does not
depend on the choice of 3-set fi; j; kg � f1; 2; 3; 4g: If xij + xjk + xki = 0 then  lies in
a hyperplane and the rows, also columns, of  form an S4 of type

�
4
3

�
. (In this case of
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a degenerate double-four,  can be expressed as a double-four in more than one way.)
However we are interested in a non-degenerate double-four, such as (3.11), where the xij
generate PG(4; 2); in which case the rows of  are an S4(O); as are the columns. So a non-
degenerate double-four  comes along with a privileged point given by n = xij +xjk+xki
for any 3-set fi; j; kg � f1; 2; 3; 4g: The signi�cance of the point n is explained in the next
lemma.

Lemma 3.4 If  is a non-degenerate double-four in PG(4; 2) then it extends to a unique
parabolic quadric P4: In detail, if  is as in (3.12), and if the points y1; y2; y3 are de�ned
by yi = xi4 + x4i = xjk + xkj; for any permutation ijk of 123; then P4 =  [ �; where
� = fy1; y2; y3g: Moreover, for any 3-set fi; j; kg � f1; 2; 3; 4g; the nucleus n of P4 is
given by n = xij + xjk + xki:

Proof. Recall from section A.3.2 that if S5 is a spread on a parabolic quadric P4 then
S4 = S5�f�g has pro�le (2; 2; 2)4 and, by lemma A.9, type O, and so is of class IVa.1.
So, by projective uniqueness, any S4 2 class IVa.1 can be viewed in this way, as an S4
on a P4; with double-four  4 =  (S4) of the form P4��: It is easy to see that distinct
parabolic quadrics can not share the same 12-set  4; that is the extension P4 of  4 is
unique. Taking  4 to be as in (A.13), a straightforward check con�rms the validity of the
recipe in the lemma for �nding the nucleus n and the missing line �:

Example 3.5 If  is the non-degenerate double-four given in (3.14) below, then P4 =
 [ �; where � = f245; 5u; 135g and n = u:

If we view S4 2 class IVa.1 as an S4 on a P4; with double-four  4 =  (S4) as in (A.13),
then from lemma A.8 we deduce that

G( 4) �= Sym(4)� Z2; G(S4) �= Sym(4); (3.13)

and that S4 is cyclic. (Here Z2 = hJi where in terms of (3.12) J is xij � xji:)
The cyclic symmetry of a partial spread S4 belonging to the class IVa.1 is made

manifest if we employ the canonical form

 =

0BB@
� 1 125 25
35 � 2 235
345 45 � 3
4 415 15 �

1CCA (3.14)

for the double-four  (S4) as an alternative to that in (3.11). Let S4 = f�1; �2; �3; �4g
be given by the rows and Sopp4 = f�1; �2; �3; �4g by the columns of the array (3.14).
Observe that A = (2; 3; 4; 1; 5) achieves the 4-cycle (�1�2�3�4) and so A 2 G(S4): It is
also easy to use (3.14) to �ll in further details of the isomorphisms (3.13). For note that
B = (2; 345; 25; 145; 24) keeps �4 �xed and achieves the 3-cycle (�1�2�3); so B 2 G(S4):
Hence G(S4) contains the subgroup hA;Bi �= Sym(4) which e¤ects all permutations of
the four lines �i 2 S4: (Similarly hA;Bi � G(Sopp4 ); with A; B e¤ecting the permutations
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(�1�2�3�4); (�1�2�3):) But the subgroup G0 < G(S4) which stabilizes each �i 2 S4 is
trivial, since any T 2 G0 will also �x each �j 2 Sopp4 ; hence �xes each point pij = �i \ �j;
whence T = I: Hence G(S4) = hA;Bi �= Sym(4): Since the class of partial spreads S4
of type O and pro�le (2; 2; 2)4 is unique, it must be the case that Sopp4 is equivalent to
S4: But the 12-set  4 =  (S4) supports just the two partial spreads S4 and Sopp4 ; and
so jG( 4)j = 2jG(S4)j: In fact the equivalence of Sopp4 with S4 may be realized by the
involution J = (35; 45; 15; 25; 5); which in terms of (3.12) is xij � xji: Now J not only
achieves the interchanges �i � �i but also commutes with A and B: Hence G( 4) =
G(S4)� hJi: Summarizing:

G( 4) = hA;B; Ji �= Sym(4)� Z2; G(S4) = hA;Bi �= Sym(4): (3.15)

3.3.2 The non-cyclic partial spread S4(O)

Recalling eqs. (3.7) and (3.8), the partial spread S4 = f�1; �2; �3; �4g:

�1 = f1; 2; 12g; �2 = f3; 4; 34g; �3 = f5; u; 5ug; �4 = f13; 15; 35g; (3.16)

representing the class IVb.1, is of type O and pro�le (1; 2; 3)3(2; 2; 2): Any T 2 G(S4)
must permute amongst themselves the three unbalanced lines �1; �2; �3 and must keep
�xed (set-wise) the sole balanced line �4: (So S4 is a non-cyclic partial spread.) More
can be said: T must permute amongst themselves the three points 1; 3; 5; since only these
points lie on two transversals, and similarly for the three points 2; 4; u which lie on no
transversals. It quickly follows that

G(S4) = G( 4) = hA;Bi �= Sym(3); (3.17)

where A and B in GL(5; 2) e¤ect the permutations (135)(24u) and (13)(24)(5)(u) of the
hyperbasis B�:

3.4 The �ve classes of S5 of type O
Any regulus-free partial spread S5 must arise as an extension of a regulus-free S4: Recall
that an S4(O) is either cyclic, of class IVa.1, or non-cyclic, of class IVb.1. First of all let us
consider a partial spread S5 = S4[f�5g where S4 is of class IVa.1. Then S5 is regulus-free
for eighteen choices of the line �5; and under the action of G(S4) �= Sym(4) these 18 form
four orbits 
a;
b;
c and 
d; of lengths 1; 3; 6 and 8: For let S4 = f�1; �2; �3; �4g be as
given by the rows of (3.14):

�1 = f1; 125; 25g; �2 = f2; 235; 35g; �3 = f3; 345; 45g; �4 = f4; 415; 15g: (3.18)

Then, see (3.15); G(S4) = hA;Bi �= Sym(4); where A = (2; 3; 4; 1; 5) and B = (2; 345;
25; 145; 24); and representatives of the four orbits 
a;
b;
c;
d are seen to be

�a = f5u; 245; 135g; �b = f5u; 5; ug; �c = f5u; 12; 34g; �d = f12; 1u; 2ug: (3.19)
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Below we describe some distinguishing features of the four S5(O) which arise from the
four choices (3.19), and in particular see that they are inequivalent. In table B.2a they
are assigned classes Va.1, Vb.1, Vc.1 and Vd.1, since the four supporting point-sets  r =
 (Sr) belong to distinct orbits, listed Va, Vb, Vc and Vd in table B.1:

3.4.1 The parabolic S5(O)

The singleton orbit 
a is occupied by that unique line �a such that  (S4) [ �a is the
unique parabolic quadric P4 which extends the double-four  (S4); see lemma 3.4 and
example 3.5. The partial spread S5 = S4 [ f�ag is thus a spread S5 on the quadric P4;
see appendix §A.3.2. It has pro�le (3; 3; 3)5; see lemma A.7. So, in the present case of an
S5 of class Va.1, we have

classVa.1: G( 5) �= O(5; 2) �= Sym(6); G(S5) �= Sym(5): (3.20)

(See lemma A.8(i) for the isomorphism of G(S5) with Sym(5); and lemma A.9 for the
fact that S5 is regulus-free.) Here G(S5) e¤ects all 5! permutations of the �ve lines; in
particular S5 is a cyclic partial spread.
It should be noted that if S5 is spread on a parabolic quadric P4 then S5 has the

maximality property of admitting no extension to a larger regulus-free partial spread in
PG(4; 2). Indeed, see lemma A.10(i), all 20 extensions S5[f�g are of type I, and moreover
are all of class VIc.2.

3.4.2 The classes Vb.1, Vc.1, Vd.1, Ve.1 of partial spreads S5(O)

If now S5 = S4 [ f�bg then we see that S5 has pro�le (3; 3; 3)4(1; 3; 5); with �5 = �b
contributing the (1; 3; 5): This distinguishing feature of �5 goes along with the fact that
S5�f�ig is non-cyclic, of class IVb.1, for i = 1; 2; 3; 4 and is cyclic, of class IVa.1, only for
i = 5: It follows that G(S5) is a subgroup of G(S4); and has order jG(S4)j=j
bj = 8: But if
A = (2; 3; 4; 1; 5); see after (3.14), then A is not only in G(S4) but also �xes �b: Similarly
K = (25; 15; 45; 35; 5) is in G(S4); since it e¤ects the permutation (�1)(�3)(�2�4); and it
also �xes �b: Hence

class Vb.1: G(S5) = hA;Ki �= D8: (3.21)

Now the 15-set  5 =  (S5) supports just two partial spreads S5; namely S5 = S4[f�bg and
S�5 = S

opp
4 [ f�bg: Moreover the involution J = (35; 45; 15; 25; 5); see before (3.15), �xes

�b and so e¤ects the interchange S5 � S�5 . Consequently G( 5) = G(S5)�hJi �= D8�Z2:
We next consider S5 = S4[f�5g with �5 = �c; and we �nd that S5 has the same pro�le

(3; 3; 3)5 as an S5 of class Va.1. Nevertheless the classes Va.1 and Vc.1 are distinct, since
S5�f�ig is non-cyclic for i 2 f1; 3g and cyclic for i 2 f2; 4; 5g: Thus G(S5) is not transitive
on S5; since any T 2 G(S5) must necessarily respect the 3 + 2 partition f�2; �4; �5g [
f�1; �3g of S5: By looking at S5�f�1g; which has �3 as sole balanced line, our attention
is drawn to C = (125; 15; 45; 34; 5); which e¤ects the permutation (�1)(�3)(�2�4�5); and
to K = (25; 15; 45; 35; 5); which e¤ects the permutation (�1)(�3)(�5)(�2�4): Thus G(S5)
contains a subgroup hC;Ki �= Sym(3) which achieves all permutations of f�2; �4; �5g
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and which separately stabilizes both �1 and �3: But G(S5) also contains the involution
L = (45; 35; 25; 15; 5g which e¤ects the permutation (�1�3)(�2)(�4)(�5); leading to:

class Vc.1: G(S5) = hC;Ki � hLi �= Sym(3)� Z2: (3.22)

In the present case the 15-set  5 supports precisely four partial spreads S5, all equiv-
alent, the further three arising by replacing S5�f�ig; i 2 f2; 4; 5g; by (S5�f�ig)opp:
Consequently jG( 5)j = 4� jG(S5)j = 48:
For S5 = S4 [ f�5g with �5 = �d we �nd that S5 has pro�le (2; 3; 4)3(3; 3; 3)2; with

�4 and �5 being the two balanced lines. Nevertheless �4 and �5 do not enter S5 on an
equal footing, since S5�f�ig is cyclic only for i = 5: It follows, cf. the discussion of
class Vb.1, that jG(S5)j = jG(S4)j=j
dj = 3; whence G(S5) �= Z3: But recall that B =
(2; 345; 25; 145; 24) e¤ects the permutation (�1�2�3)(�4); and note that B also stabilizes
�5 = �d: Hence

class Vd.1: G(S5) = hBi �= Z3: (3.23)

In the present case the 15-set  5 supports just two partial spreads S5; namely S5 =
S4 [ f�dg and S�5 = Sopp4 [ f�dg: Moreover the involution K 0 = (345; 2; 145; 25; 24) not
only �xes �d but also e¤ects the interchanges �1 � �1; �2 � �3; �3 � �2 and �4 � �4;
and hence S5 � S�5 : Consequently G( 5) = hB;K 0i �= Sym(3):

Remark 3.6 From the spread S5 = S4[f�ag on the parabolic quadric P4; partial spreads
belonging to the four classes Va.1, Vb.1, Vc.1, and Vd.1 have arisen above as (S5�f�ag)[
f�g; with � belonging respectively to the G(S4)-orbits 
a;
b;
c and 
d: Observe that these
last orbits are subsets of the O(5; 2)-orbits �1;�2;�3 and �4; respectively, in lemma A.6.
Of the 33 external lines � of  (S4) we have used the (1+3+6+8 =)18 choices which give
rise to a regulus-free S5: The remaining 33 � 18 = 15 choices comprise: 3 further lines
of �3 (non-nuclear tangents, one at each point of �a); which give rise to an S5 of type L,
and 12 further lines of �4 (the remaining lines external to P4), which give rise to an S5
of type I, of class Vf.1.

Any regulus-free partial spread S5 = f�1; ::: ; �5g which is not of the classes Va.1, Vb.1,
Vc.1, Vd.1 so far considered must be such that S5�f�ig is of class IVb.1 for each �i 2 S5:
At least one such class exists, for consider the partial spread S5 where �1; �2; �3; �4; �5 are

f1u; 2; 345g; f2u; 3; 451g; f3u; 4; 512g; f4u; 5; 123g; f5u; 1; 234g: (3.24)

Then S5 is cyclic, since if A 2 GL(5; 2) is de�ned by A : 1 7! 2 7! 3 7! 4 7! 5 7! 1; then
A e¤ects the permutation (�1�2�3�4�5): Hence, see after (3.20), S5 is regulus-free. Under
the action of hAi �= Z5 the ten transversals �ijk fall into two orbits 
 and 
0, each of length
5, with 
 represented by �123 = f2; 451; 3ug and 
0 represented by �124 = f1u; 451; 123g:
Also the �fteen points of  5 fall into three orbits, each of length 5, with representatives
1u; 2 and 345: Since the points 1u; 2; 345 lie on 2, 1, 3 transversals, respectively, it
follows that S5 has pro�le (3; 2; 4)5; moreover we see that  5 has the distinctive signature
(15; 15; 0)(525354)(150): Hence S5 belongs to a di¤erent class, Ve.1, from the four already
discovered.
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Now any T 2 G(S5) must permute amongst themselves those points which lie on only
one transversal, namely the points 1; 2; 3; 4; 5. It then quickly follows from (3.24) that
G(S5) is precisely hAi:

classVe.1: G(S5) = hAi �= Z5: (3.25)

Note that the 15-set  5 supports just one other partial spread, namely the partial spread

S 05 = f�345; �451; �512; �123; �234g = f�1; �2; �3; �4; �5g (3.26)

which consists of the �ve transversals belonging to the orbit 
: Since the involution
K : 1 7! 1; 2� 5; 3� 4 achieves the interchanges �1 � �2; �2 � �1; �3 � �5; �4 � �4;
�5 � �3 we see that G(S 05) = G(S5) and G( 5) �= hA;Ki �= D10:
Finally, to show that there are no further classes of S5(O); consider a partial spread

S5 = S4 [f�5g where S4 is of class IVb.1. Of the eighteen choices of the line �5 for which
S5 is regulus-free, we �nd that twelve yield an S5 which contains a cyclic S4(O); in which
case S5 is of class Vb.1, Vc.1 or Vd.1. The remaining six choices are seen to form a single
orbit under the action of G(S4) �= Sym(3): So there is just one class of S5(O) with the
property that S5�f�ig is of class IVb.1 for each �i 2 S5; namely the class Ve.1 described
above.

Lemma 3.7 There are precisely �ve equivalence classes of regulus-free partial spreads S5;
namely Va.1, Vb.1, Vc.1, Vd.1 and Ve.1, with stabilizer groups isomorphic to Sym(5);
D8; Sym(3)� Z2; Z3 and Z5; respectively. �

3.5 The remaining partial spreads of size 5

Any S5 which is not of type O will either be of type
�
5
3

�
or will arise as an extension

of an S4(I). Recall from section 3.1 that there is just one equivalence class IVc.1 of
partial spreads S4 of type I. Let us take as representative of this class the partial spread
S4 = S4(I) = S3(I) [ f�4g given by

�1 = f5; 4; 45g; �2 = f3; 2; 23g; �3 = f35; 24; 1ug; �4 = f34; 1; 134g: (3.27)

For this choice, the ambient hyperplane of the regulus S3(I) is � = h2; 3; 4; 5i and �4 meets
� in the point p = 34: We now wish to show that the stabilizer of this partial spread of
type I is

G4 = G(S4) = hC;Di � hJi �= Sym(3)� Z2; (3.28)

with J = (134; 2; 3; 4; 5); C = (1; 1u; 24; 23; 2) and D = (1; 5; 4; 3; 2);
To this end let �1 = �423; �2 = �413 and �3 = �412 denote the three transversals

of S4 which meet �4: In terms of the hyperbolic quadric H =  (S3); �1; �2; �3 are the
three bisecants from p to H: If for j 6= i the bisecant �j meets �i in the point pij then
�i = fpi1; pi2; pi3g where hp; piii is one of the three tangents from p to H: (For S4(I) as
in (3.27) we have �1 = f34; 23; 24g; �2 = f34; 45; 35g and �3 = f34; 4; 3g; and the three
tangent points are p11 = 5; p22 = 2 and p33 = 1u:) Now any T 2 G(S4) must of course
permute amongst themselves the three lines �1; �2; �3 of S3(I); preserve the line �4 of
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valency 0 and �x the point p = 34 where �4 meets �: But T must also permute amongst
themselves the three bisecants �1; �2 and �3; and also the three tangent points p11; p22
and p33: It follows that there exists a homomorphism � : T 7! �(T ) from G(S4) to Sym(3)
such that Tpij = p�(T )i �(T )j: Now hC;Di is a subgroup of G(S4) which is isomorphic to
Sym(3); since C and D; of orders 3 and 2, �x �4 and e¤ect the permutations (�1�2�3)
and (�1�2)(�3) of the lines of S3: So � is surjective. If K is in the kernel ker� of this
homomorphism then K �xes each point of H and hence of �; whence K 2 N ; where
N = fJ(a) : a 2 �g [ fIg is as in section 3.1. But since K must also preserve �4; it
follows that ker� = hJ(p)i �= Z2: Since J(p) = J(34) = (134; 2; 3; 4; 5) commutes with C
and D; we have completed the proof of (3.28).
Incidentally we also see that  4 =  (S4) has stabilizer G( 4) = G4 � hLi �= Sym(3)�

(Z2)
2; where L = (1; 2; 4; 3; 5) �xes �4 and maps S3(I) to S3(I)opp:
External to  4 are 31 lines, which fall into �ve G4-orbits 
; 
0;
00; 
000 and 
iv; of

lengths 12; 6; 6; 6 and 1; with respective representatives

�5 = f245; 12; 145g; �05 = f25; 15; 12g; �005 = f25; 13; 4ug;
�0005 = f25; 124; 145g; �iv5 = f25; 234; 345g: (3.29)

Note that �iv5 lies in the hyperplane �123; and so the extension S4(I)[f�iv5 g is of type
�
4
3

�
:

Next, the extension S4(I) [ f�0005 g is seen to be of type L, with f�3; �4; �0005 g as the other
regulus. The remaining extensions

S5 = S4(I) [ f�5g; S 05 = S4(I) [ f�05g; S 005 = S4(I) [ f�005g (3.30)

are all seen to be of type I. Consequently, since S4(I) is projectively unique, we deduce
(i) there is a projectively unique S5(

�
4
3

�
);

(ii) there is a projectively unique S5(L):
Concerning (i), it is of the form S5 = S4(

�
4
3

�
) [ f�4g and was encountered earlier,

in section 3.1; the structure G(S5) �= Sym(4) � Z2 is easily obtained from our present
concerns, with J in (3.28) being J(p) in (3.1). Concerning (ii), S5(L), it is listed as Vh.1
in table B.2a. It will be considered in more detail in section 4.1, see lemma 4.1.
Now �123 = S3(I)[f�; �0g; where � = f25; 234; 345g = �iv5 and �

0 = f34; 245; 235g; and
the points where �4; �5; �05 and �

00
5 meet �123 are a4 = 34; a5 = 245; a

0
5 = 25 and a

00
5 = 25;

respectively. Note that the two points a4; a5 both lie on �0 while for a4; a05 and for a4; a
00
5

one point a4 lies on �0 and the other point a05 = a005 lies on �: Hence S5 is not equivalent to
S 05 nor to S 005 : On the other hand S 05 and S 005 are equivalent. For if T 2 GL(5; 2); of order
4, is de�ned by T : (1; 2; 3; 4; 5) 7! (13; 3; 2; 5; 4); then T �xes each of �1; �2; �3 and sends
�4 to �005 and �

0
5 to �4:

That S5 and S 05 are inequivalent follows also from the fact that the pro�le (2; 3; 4)2(3; 3; 5)
(3; 4; 4)2 of S5 is distinct from that (1; 3; 5) (2; 2; 5)(3; 4; 4)3 of S 05: In fact even the signa-
tures of  (S5) and  (S 05) are distinct, and in table B.2a the partial spreads S5 and S 05
are listed under the entries Vf.1 and Vg.1, respectively, with the stabilizer group being
of order 2 in each case. To see this last, note that the stabilizer group G(S5) must pre-
serve the pair of lines f�4; �5g of valency 0, and G(S 05) must preserve the pair of lines
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f�4; �05g: Now �5 is on a G4-orbit of length 12 = jG4j, and so the subgroup of G(S5) which
preserves �5 is trivial. But K : (1; 2; 3; 4; 5) 7! (145; 35; 24; 5; 4) e¤ects the permutation
(�1)(�2�3)(�4�5); whence G(S5) = hKi �= Z2: On the other hand �05 is on a G4-orbit of
length 6, and so the subgroup of G(S 05) which preserves �5 has order jG4j=6 = 2; indeed
this subgroup is hDi. But in this case no element of G(S 05) interchanges �4 and �05; so
G(S 05) = hDi �= Z2:

Lemma 3.8 There are just two classes of partial spreads S5 which are of type I. One
class, listed as Vf.1 in table B.2a, is represented by S4(I) [ f�5g in (3.30) and the other
class, listed as Vg.1, is represented by S4(I)[f�05g in (3.30). In each case G(S5) �= Z2. �

3.6 Summary

Theorem 3.9 There are precisely ten equivalence classes of partial spreads in PG(4; 2)
of size 5. Five of these, Va.1, Vb.1, Vc.1, Vd.1, and Ve.1, are regulus-free. Two, Vf.1
and Vg.1, are of type I, and there is just one class in the case of types L,

�
4
3

�
and

�
5
3

�
: �

4 Further preliminary results

Prior to our discussion of maximal partial spreads of orders nine (in section 5.1) and
seven (in section 7.1), it will be helpful to list some facts surrounding non-maximal partial
spreads of the kinds S5(L) and S6(�): First we show afresh that there is a projectively
unique partial spread S5 of type L, listed as Vh.1 in table B.2a, but this time determine
its stabilizer group. We then proceed, in sections 4.2 - 5.2, to classify, up to equivalence,
all those partial spreads which properly contain an S5 of type L, that is all those partial
spreads Sr; r > 5; which are not of type O, I, II or

�
4
3

�
: In particular, on account of lemma

1.9, we classify all S9 s.

4.1 The projectively unique S5(L)
Given any S5 = f�1; ::: ; �5g of type L, we may, after a suitable re-labelling, suppose that
the two reguli are � = �123 = f�1; �2; �3g and �0 = �145 = f�1; �4; �5g: Let the plane of
intersection of the two solids � = �123 and �0 = �145 be denoted by �; and letH= H123 � �
and H0 = H145 � �0 denote the 3-dimensional hyperbolic quadrics associated with the
reguli � and �0: Now in a PG(3; 2) a plane intersects a hyperbolic quadric either in a conic
(= 3-arc) or in two intersecting lines. Since the intersections � \ H and � \ H0 contain
�1 they are thus necessarily of the form �1 [ � and �1 [ �0 where the line � 2 �opp and
the line �0 2 (�0)opp meet in a privileged point p of �1: (The four lines of � other than
�1; � and �0 belong to none of the reguli �; �opp; �0; (�0)opp:) Let us choose a basis such
that � = h3; 4; 5i and �1 = h4; 5i = f5; 4; 45g; with privileged point p = 5: So, without
loss of generality, we may display S5 = S5(L) in the form

�1 = f5; 4; 45g; �2 = f3; x; x3g; �3 = f35; x4; x345g;
�4 = f34; y; y34g; �5 = f345; y4; y35g; (4.1)
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for some y 2 ��� and x 2 �0��; the two hyperbolic quadrics H = H123 and H0= H145

being given by the arrays

H =

0@ 5 4 45
3 x x3
35 x4 x345

1A ; H0 =

0@ 5 4 45
34 y y34
345 y4 y35

1A : (4.2)

Here the two reguli �; �0 are given by the rows, and the two opposite reguli �opp; (�0)opp

by the columns, of these two arrays.

Lemma 4.1 (i) With respect to a suitable choice of basis any S5 = S5(L) = f�1; ::: ; �5g;
with regulus pattern R123; R145; may be cast in the form

�1 = f5; 4; 45g; �2 = f3; 2; 23g; �3 = f35; 24; 1ug;
�4 = f34; 1; 134g; �5 = f345; 14; 135g: (4.3)

(ii) The stabilizer G5 = G(S5) of this partial spread of type L is

G5 = hA;Ki �= D8; (4.4)

with A = (1u; 134; 34; 45; 5) of order 4 and K = (2; 1; 34; 4; 5) of order 2.

Proof. (i) In (4.1) x; y; e3; e4; e5 are necessarily independent and so (4.3) follows from
the choice e1 = y; e2 = x:
(ii) Observe that KAK = A�1 = A3; and so hA;Ki �= D8: Also note that A and K

e¤ect permutations �A and �K of the �ve lines of S5 given by

�A = (�1)(�2�4�3�5); �K = (�1)(�2�4)(�3�5); (4.5)

whence hA;Ki lies inside G5: Now if T 2 G5 then T necessarily stabilizes the line �1
(the only line of S5 of valency 2), �xes the privileged point 5 2 �1 and either e¤ects
permutations of f�2; �3g and of f�4; �5g separately, or else swaps f�2; �3g with f�4; �5g.
On noting that h�A; �Ki �= D8 it follows that a suitable S 2 hA;Ki exists such that
T � = ST stabilizes each of the �ve lines and also �xes 5: It quickly follows that T � = I;
whence T 2 hA;Ki; and so G5 = hA;Ki:
If from S5 = S5(L) we remove the line �1 of valency 2 the resulting S4(O) = S5�f�1g

is of class IVa.1. So  4 =  (S4) is a double-four and is of the form  4 = P4�f�g; where
the parabolic quadric P4; the line � � P4 and the nucleus n of P4 are uniquely determined,
see lemma 3.4. Now, cf. remark 3.6, �1 is a non-nuclear tangent to P4 which meets � in
a point p (the privileged point of S5(L)): Since n; � and �1 are coplanar it follows that
every line through n meets  5 =  (S5) in a point. This distinguished point n 2 ( 5)c
accounts for the 10 in the signature (16; 16; 0)(106294)(160) of ( 5)c; see the orbit Vh in
table B.1. (For S5(L) as in (4.3), �1 = f5; 4; 45g; p = 5 and, using lemma 3.4, n = 3u;
� = f5; 12; 125g:) Along with p and n the point n0 = p + n is also �xed by G5; and the
lines through n0 which lie in ( 5)c form a single G5-orbit of length 4. (For S5(L) as in
(4.3), n0 = 124 and the G5-orbit is the orbit 
00 at the start of the next section.)
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4.2 The three extensions of an S5(L) to an S6
Let S5 = S5(L) be as in lemma 4.1, and, from table 2, note that  (S5) has L0 = 16
external lines. Under the action of G5 these 16 lines are seen to fall into three orbits 
; 
0
and 
00; of lengths 8; 4 and 4; with respective representatives

�6 = f25; 13; 4ug; �06 = f25; 15; 12g; �006 = f235; 2u; 124g: (4.6)

Consider the resulting three extensions of S5 = S5(L) to an S6:

S6 = S5 [ f�6g; S 06 = S5 [ f�06g; S 006 = S5 [ f�006g;

and denote by G6; G 06 and G 006 their stabilizers. We see that S 006 is of type �; with regulus
pattern R123; R145; R365; and so is inequivalent to both S6 and S 06 which are of type L.
But S6 and S 06 are also inequivalent. For if T 2 GL(5; 2) were to map S6 on to S 06 then T
would lie in G(S5); since T must map lines of nonzero valency to lines of nonzero valency,
whence T�6 = �06; in contradiction to �6; �

0
6 belonging to di¤erent G(S5)-orbits. Hence,

up to equivalence, S5 = S5(L) has precisely three extensions to a partial spread of size 6.
In the case of S6 any T 2 G6 must stabilize separately both S5 and �6; and so G6

is a subgroup of G5: By the orbit-stabilizer theorem jG6j = jG5j=j
j = 1: Similarly in
the case of S 06 we have jG 06j = jG5j=j
0j = 2; in fact, since �06 is �xed by the involution
K = (2; 1; 34; 4; 5) in lemma 4.1, G 06 = hKi �= Z2. Hence we have proved the following
lemma.

Lemma 4.2 Up to equivalence, there exist precisely two partial spreads of size 6 of regulus
type L, with respective stabilizers of order 1 and 2, listed as VIh.1 and VIh.2 in table B.2a.

Incidentally, besides having di¤erent orders for their stabilizers, VIh.1 and VIh.2 may
be distinguished by their having di¤erent pro�les:

pro�le(S6) = (355)(447)(456)2(555)(566); pro�le(S 06) = (355)(456)4(557):

In particular the line �1 of valency 2 contributes (566) in the case of S6; and (557) in the
case of S 06:
In the case of S 006 we see that the subgroup of G5 which �xes �006 is hKi �= Z2: But

there also exist elements of G 006 which send �006 to another of the lines �2; �4 of valency
1, and so jG 006 j = 3� jhKij = 6: Indeed we �nd that G 006 = hB;Ki �= Sym(3); where
B = (3; 2u; 235; 35; 24) e¤ects the permutation �B = (�1�3�5)(�2�006�4) of the six lines of
S 006 : Hence we have proved the following lemma. (See [24] for another proof.)

Lemma 4.3 (i) Up to equivalence, there exists a unique partial spread of size 6 of type
�: With respect to a suitable choice of basis any S6 = S6(�) = f�1; ::: ; �6g of regulus
pattern R123; R145; R365 may be cast in the form

�1 = f5; 4; 45g; �2 = f3; 2; 23g; �3 = f35; 24; 1ug;
�4 = f34; 1; 134g; �5 = f345; 14; 135g; �6 = f235; 2u; 124g: (4.7)
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(ii) The stabilizer of this partial spread of type � is

G(S6) = hB;Ki �= Sym(3); (4.8)

where B = (3; 2u; 235; 35; 24) has order 3, and where K = (2; 1; 34; 4; 5): �

Remark 4.4 Under the action of its stabilizer G(S6); a partial spread S6(�) decomposes
as S6(�) = S3(O) [ S3(O)0 where the two orbits S3(O); S3(O)0 consist of those lines
whose valency is 2, 1, respectively. For S6(�) as in (4.7), S3(O) = f�1; �3; �5g and
S3(O)0 = f�6; �4; �2g: Note the appropriateness here of the equilateral triangle symbol
�; acted upon by its symmetry group �= Sym(3); upon viewing �1; �3; �5 as the vertices
and �6; �4; �2 (in that order!) as the midpoints of the opposite sides. The order here is
important, since the regulus pattern R123; R145; R365 sets up a pairing �1 $ �6; �3 $ �4;
�5 $ �2 which any T 2 G(S6) must respect. For example K; see (4.5), e¤ects the
symmetry of � which keeps �xed the �vertex��1 and the opposite �midpoint��6:

4.3 The extensions of an S6(�)
If S6 = S6(�) = S3(O) [ S3(O)0 is as in lemma 4.3 and remark 4.4 then the 13-set
complementary to  (S6) is of the form

 (S6)c = H [ �; � = f123; 125; 3u; 5ug; (4.9)

where the nine points of the hyperbolic quadric H are as in the array

H =

0@ 25 15 12
13 u 245
4u 234 145

1A : (4.10)

Observe that the hyperplane � = hHi is of the form

� = H [ � [ � 0; � = f4; 35; 345g; � 0 = f124; 134; 23g; (4.11)

where � and � 0 are the transversals �135 and �642 of the partial spreads S3(O) = f�1; �3; �5g
and S3(O)0 = f�6; �4; �2g: (Also note that the four points of � lie in a plane � which
intersects � in �:)
Let � and � = �opp denote the reguli consisting of the rows and columns, respectively,

of the hyperbolic quadric H in (4.10). Thus � = f�7; �8; �9g and � = f�o7; �o8; �o9g where

�7 = f25; 15; 12g; �8 = f13; u; 245g; �9 = f4u; 234; 145g; (4.12)

�o7 = f25; 13; 4ug; �o8 = f15; u; 234g; �o9 = f12; 245; 145g: (4.13)

Now these six generators of the quadric H are precisely the L0 = 6 lines, see table 2,
external to  : Under the action of the group G(S6) = hB;Ki �= Sym(3) these six lines
fall into three orbits, of lengths 1, 2 and 3, namely �1 = f�o9g; �2 = f�o7; �o8g and � =
f�7; �8; �9g: The next theorem now follows.
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Theorem 4.5 (i) There are precisely three inequivalent partial spreads S7 of type �;
with representatives S6(�) [ f�o9g; S6(�) [ f�o7g; and S6(�) [ f�7g; the stabilizers being
hB;Ki �= Sym(3); hBi �= Z3 and hKi �= Z2; respectively. (These are listed as VIIe.1,
VIIe.2 and VIIe.3 in table B.2b.)
(ii) There are precisely three inequivalent partial spreads S8 of type �; with repre-

sentatives S6(�) [ f�o7; �o8g; S6(�) [ f�o7; �o9g; and S6(�) [ f�7; �8g; the stabilizers being
hB;Ki �= Sym(3); hBi �= Z3 and hKi �= Z2; respectively. (These are listed as VIIIc.1,
VIIIc.2 and VIIIc.3 in table B.2b.)
(iii) There are precisely two inequivalent partial spreads of type I�; with representatives

S�9 = S6(�) [ � and S�9 = S6(�) [ �; (4.14)

listed as IXa.2, type I��, and IXa.3, type I��; in table B.2b. Both S�9 and S�9 have the
same stabilizer group, which they share with S6(�):

G(S�9) = G(S
�
9) = G(S6(�)) = hB;Ki �= Sym(3): (4.15)

Given any partial spread S9 of type I�; let � = S9�S6(�) be its distinguished regulus
(consisting of those lines which contribute the I to the I�). Then S9 is equivalent to S�9 if
G(S9) is transitive on �; and to S�9 if � contains a line �fxd which is �xed by G(S9): �

(Concerning G(S�9); it is no larger than that given in (4.15) since any symmetry of
S�9 = S6(�) [ � must preserve the distinguished regulus �; and hence also preserves
S6(�); similarly for G(S�9):)
Given an S9(I�) we can determine whether it is of the kind I�� or I�� without recourse

to its stabilizer group. One recipe for so doing uses the fact that the partial spread S3(O)
in remark 4.4 has � in (4.11) for its even hyperplane, and so S3(O) induces a null polarity
in �; see section 3.2. For type I�� the distinguished regulus of S9(I�) is of polar type
(3; 0); see section A.2.2, while for type I��; it is of polar type (1; 2): Equally well, note
that � is also the even hyperplane of the partial spread S3(O)0 in remark 4.4, and is
thereby equipped with another null polarity. Using this second null polarity, S9(I�) is of
type I�� or I�� according as its distinguished regulus is of polar type (0; 3) or (2; 1): (The
three inequivalent partial spreads S7(�); and three inequivalent partial spreads S8(�);
may similarly be distinguished.)
A second recipe is as follows. Let the lines of S9 = S9(I�) be numbered such that

the regulus pattern is R123; R145; R365; R789; and let � be the ambient hyperplane of the
distinguished regulus � = f�7; �8; �9g of S9: For i = 1; 2; ::: ; 6; let �i meet � in the point
ai: Then, recall the pairing in remark 4.4, �fxd = fa1 + a6; a3 + a4; a5 + a2g is the line
of H =  (�) which is �xed by G(S9); and S9(I�) is of type I�� or I�� according as
�fxd 2 �opp or �fxd 2 �:
A third recipe is simplest of all: using the null polarity induced in � by S3(O); the

polar (� 0)? = f12; 245; 145g of the transversal � 0 = f124; 134; 23g of S3(O)0 lies in the
distinguished regulus S9�S6(�) of S9(I��) but not in that of S9(I��):
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4.4 The nine extensions of an S5(L) to an S7
For S5 = S5(L) as in lemma 4.1 and section 4.2, any extension to an Sr; r = 7; 8; 9; which
makes use of one of the lines from the orbit 
00 will be of type �; and so equivalent to one
already considered in theorem 4.5. So to obtain anything di¤erent we look at extensions of
an S5(L) to an S7 which use lines solely from the orbits 
 and 
0 (see beginning of section
4.2). Of these extensions we will �nd four which are of type L, these being inequivalent
from the manner of their construction in view of the following remark.

Remark 4.6 If S7 = S5(L) [ f�6; �7g is of type L then any T 2 G(S7) must separately
stabilize both S5(L) and f�6; �7g; since �6; �7 are the only lines 2 S7 of zero valency. Thus
G(S7) is a subgroup of G(S5(L)) �= D8:

First of all consider adding two lines �6; �7 both belonging to 
:We may as well choose
�6 = f25; 13; 4ug; as in eq. (4.6). Since �7 has to be skew to �6; we �nd that there are
four possible choices (a)-(d) for �7 2 
; namely

(a) �7 = K�6; yielding an S7(L); (b) �7 = KA2�6; yielding an S7(L);
(c) �7 = A2�6; yielding an S7(Y); (d) �7 = KA�6; yielding an S7(F): (4.16)

(Here A and K are as in lemma 4.1.) Recalling that the stabilizer of S6(L) = S5(L)[f�6g
is trivial, it follows that

choice (a) G(S7) = hKi; choice (b) G(S7) = hKA2i; (4.17)

so that jG(S7)j = 2 for both of the choices (a) and (b). In each of these two cases we
see that  (S7)c has signature (10; 4; 0)(204142)(100); and so  belongs to the orbit VIIc
of table B.1: The two partial spreads S7 are inequivalent, see before remark 4.6; they are
listed as VIIc.3, VIIc.4 in table B.2b.
For choice (c) we see that N7 = 3; with �167 = f�1; �6; �7g being a regulus, so that

S7 is of type Y. De�ning Y : (1; 2; 3; 4; 5) 7�! (4u; 345; 135; 5; 45); note that Y 2 G(S7)
since it e¤ects the permutation �Y = (�1)(�2�5�7�3�4�6) of the seven lines of S7; and
cyclically permutes the three reguli �123; �145; �167: Consider the subgroup G0 of G(S7)
which �xes the regulus �167; hence stabilizes f�123; �145g; and hence stabilizes S5(L): So
G0 is that subgroup of G(S5(L)) which stabilizes f�6; �7g: From lemma 4.1(ii) we see that
G0 = hA2i: But A2 = Y 3; and so G(S7) is precisely hY i �= Z6:
For choice (d) we see thatN7 = 3; with f�2; �6; �7g being a regulus, so that S7 is of type

F, and we �nd that G(S7) = hKAi �= Z2: One way to see this last result G(S7) = hKAi is
to apply our results in section 7.2 to S6(II) = �145[�267: From (7.4) we see that S6(II) has
stabilizer hCi where C : (1; 2; 3; 4; 5) 7�! (13; 45; 5; 2; 3): Noting that �3 = f35; 24; 1ug is
stabilized by C2 but not by C it follows that G(S7) = hC2i = hKAi:
For both of the choices (c) and (d) we see that  (S7)c has signature (10; 2; 0)(4062)(100);

and so  belongs to the orbit VIIe of table B.1; the partial spreads are listed in table B.2b
as (c) VIIe.4 and (d) VIIe.5.
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Next we consider adding two lines �6 2 
; �07 2 
0; and again we may as well choose
�6 = f25; 13; 4ug; as in eq. (4.6). Since �07 has to be skew to �6; we �nd that there are
two possible choices for �07 2 
0; namely

choice (e) �07 = A�06; yielding an S7 of type L;
choice (f) �07 = A2�06; yielding an S7 of type L.

Here �06 = f25; 15; 12g; as in eq. (4.6). Since �6 and �07 now belong to distinct orbits
of G(S5(L)) it follows, cf. remark 4.6, that any T 2 G(S7) lies in G(S6) \ G(S

0
6); where

S6 = S5(L) [ f�6g and S 06 = S5(L) [ f�07g: But, lemma 4.2, G(S6) is trivial, and hence so
is G(S7) for either of the choices (e), (f). Again for each of these two choices we see that
 (S7)

c has signature (10; 4; 0)(204142)(100); and so  belongs to the orbit VIIc of table
B.1: The two partial spreads S7 are inequivalent, see before remark 4.6; they are listed as
VIIc.5, VIIc.6 in table B.2b.
Finally we consider adding two lines �06; �

0
7 both belonging to 


0: We may as well
choose �06 = f25; 15; 12g; as in eq. (4.6). Since �07 has to be skew to �06; we �nd that there
are two possible choices for �07 2 
0; namely (g) A�06 and (h) KA�06: But K stabilizes �06;
and hence the two choices lead to equivalent partial spreads, so we may as well adopt
choice (g):

S 07 = S5(L) [ f�06; �07g; where

�06 = f25; 15; 12g; �07 = A�06 = f2u; 234; 125g: (4.18)

We see that N7 = 3; with f�4; �06; �07g being a regulus, so that S 07 is of type F. But recall
that we have already found an extension of S5(L) of type F, namely, see choice (d) above,

S7 = S5(L) [ f�6; �7g; where

�6 = f25; 13; 4ug; �7 = KA�6 = f235; 15; 123g: (4.19)

In fact, as in the proof of the next theorem, these two partial spreads S7 and S 07 are
equivalent.

Theorem 4.7 Up to equivalence there are precisely nine extensions of a S5(L) to a S7.
Of these four are of type L, listed as VIIc.3 - VIIc.6 in table B.2b, and three are of type
�; listed as VIIe.1 - VIIe.3. One is of type Y, listed as VIIe.4, and one is of type F, listed
as VIIe.5.

Proof. Because of our preceding work it only remains to show that the two par-
tial spreads S7 and S 07 of type F given in (4.19), (4.18) are equivalent. De�ning T 2
GL(5; 2) by T : (1; 2; 3; 4; 5) 7! (25; 4; 5; 1; 34) note that T maps �1; �2; �3; �4; �5; �6; �7 to
�4; �1; �5; �

0
6; �

0
7; �2; �3; respectively, and so T (S7) = S 07: (Note incidentally that T in this

proof is a Singer element of GL(5; 2) : hT i �= Z31:)

Corollary 4.8 A partial spread S7 is maximal if and only if it is of type
�
4
3

�
; that is if

and only if it is of the form
S7 = S4(

�
4
3

�
) [ S3(O): (4.20)
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Proof. If S7 is of the form (4.20) then, lemma 1.5, it is maximal. To prove the reverse
implication, we will derive a contradiction from supposing that S7 is maximal and yet
does not contain an S4 of type

�
4
3

�
: For if this last is the case then S7; which by theorem

1.7 has N7 = 4; must contain an S5(L): But, see theorem 4.7, an extension S7 of an S5(L)
has N7 � 3; and so is not maximal.
We conclude this section by providing a way to distinguish between the classes VIIc.3,

VIIc.4, VIIc.5 and VIIc.6, all four consisting of partial spreads of type L and pro�le
(5; 6; 7)2(6; 6; 8)2(6; 7; 7)2(7; 7; 8): It is true that classes VIIc.3 and VIIc.4 have already
been distinguished from classes VIIc.5 and VIIc.6, since for the former two G(S7) �= Z2
while for the latter two G(S7) is trivial. The following recipe has the virtue of providing
distinctions between all four classes without the need to computer the stabilizers. Given
that S7 = S5(L) [ f�6; �7g is of type L, suppose that �1 is the line of valency 2 and put
S4 = S5(L)�f�1g: Consider the subset L � S4 consisting of those lines of S4 which lie
inside the even hyperplane � of S3(O) = f�1; �6; �7g: Then one �nds that jLj = 2 if S7
is of class VIIc.3 or VIIc.4, and jLj = 1 if S7 is of class VIIc.5 or VIIc.6. Moreover if
jLj = 2; then for one class, say VIIc.3, the two lines of L are self-polar, and for the other
class, say VIIc.4, the two lines of L are nonpolar. Also if jLj = 1; then for one class, say
VIIc.5, the line � 2 L is self-polar, and for the other class, say VIIc.6, the line � 2 L is
nonpolar.

5 Partial spreads of sizes 8 and 9

5.1 The four maximal partial spreads of size 9

By corollary 1.10, every S9 must be of the form S9 = S5(L)[S4 for suitable S4: Consider
S5(L) as in lemma 4.1, and recall our opening remarks in section 4.4 concerning the three
G(S5(L))-orbits 
;
0;
00 of lines external to  (S5); with representatives �6; �06; �006 as in
eq. (4.6). If S4 contains a line � 2 
00 then S9 will be equivalent to one of the two
classes of S9 found in theorem 4.5(iii), and so be of type I�� or type I��: So to obtain
an S9 of a di¤erent class, S4 must consist solely of lines from orbits 
 and 
0: The four
members of 
0 do not form an S4; and so, without loss of generality, we may suppose that
�6 2 S4: Now skew to �6 are the four lines K�6; KA2�6; A2�6; KA�6 2 
 and the two
lines A�06; A

2�06 2 
0; see choices (a)-(f) in section 4.4. From these six lines we see that we
may form an S3 in just two ways, fA2�6; K�6; KA2�6g and fKA�6; A�06; A2�06g; leading
to the existence of precisely two choices of S4 = f�6; �7; �8; �9g � 
 [ 
0 which contain
�6; namely

S i4 = f�6; A2�6; K�6; KA2�6g and S ii4 = f�6; KA�6; A�06; A2�06g: (5.1)

(Here A and K are as in lemma 4.1.)

Theorem 5.1 (i) Up to equivalence there are precisely four partial spreads of size 9. One
is of type X, represented by S5(L)[S i4; one is of type E, represented by S5(L)[S ii4 ; and the
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other two are of types I�� and I�� as described in theorem 4.5(iii). These four classes
are listed as IXa.1, IXa.4, IXa.2 and IXa.3, respectively, in table B.2b.
(ii) The stabilizer group of an S9(X) is of order 24, and each of the other three classes

has stabilizer group of order 6. In more detail

G(S9(X)) �= Alt(4)� Z2; G(S9(E)) �= Z6;

G(S9(I ��)) �= Sym(3); G(S9(I��)) �= Sym(3): (5.2)

Proof. (i) Up to equivalence there is a unique partial spread S5 of type L, see 4.1, so
part (i) follows from the above run-in to the theorem, after checking that S5(L) [ S i4 is
of type X (having regulus pattern R123; R145; R167; R189); and that S5(L)[ S ii4 is of type E
(having regulus pattern R123; R145; R267; R389):
(ii) Let the four reguli �123; �145; �167; �189 in S9(X) = S5(L)[S i4 be denoted �a; �b; �c; �d,

and note that S9(X) contains the four partial spreads Sa7 ; Sb7; Sc7; Sd7 of type Y, where the
three reguli in Sx7 are f�a; �b; �c; �dg��x: Now, table 2, each Sx7 has just two external lines,
which when added to Sx7 yield the original S9(X); hence G(Sx7 ) < G(S9) for each x: Conse-
quently G(S9) contains four subgroups Zx

3
�= Z3, where Zx

3 cyclically permutes the three
reguli in Sx7 : For example, recall that in considering Sd7 = S5(L)[f�6; A2�6g; in connection
with choice (c) in eq. (4.16), we found that G(Sd7) = hY i �= Z6; with Y : (1; 2; 3; 4; 5) 7�!
(4u; 345; 135; 5; 45): Here Y = Y d e¤ects the permutation �Y = (�1)(�2�5�7�3�4�6)(�8�9)
of the nine lines of S9(X) and hence the permutation (�a�b�c)(�d) of the four reguli; so
(Y d)2 = Y 2; of order 3, e¤ects the permutation (�a�c�b)(�d): Since G(S9) is thus transitive
upon the four Sx7 ; it has order 4 � G(Sx7 ) = 24: Concerning its structure, by the forego-
ing G(S9) achieves all even permutations of the four reguli and so contains a subgroup
�= Alt(4): But note that it also contains the central involution Y 3(= (Y x)3; x = a; b; c; d)
which �xes each of the four reguli (but which swaps the two lines 6= �1 of each regulus).
Consequently G(S9(X)) �= Alt(4)�Z2: Alternatively, by similar reasoning, we may arrive
at G(S9) in the form

G(S9(X)) = hY;Ki = hY 2; Ki � hY 3i �= Alt(4)� Z2; (5.3)

where K : (1; 2; 3; 4; 5) 7�! (2; 1; 34; 4; 5) is as in lemma 4.1 and e¤ects the permutation
(�a�b)(�c�d) of the four reguli. (See also (6.13) below for another derivation of the Alt(4)�
Z2 structure of G(S9(X)).)
Concerning S9(E) = S5(L)[S ii4 observe that it contains three di¤erent partial spreads

S7 of type F. Now the stabilizer of each S7(F) is seen to be hKAi �= Z2; see the discussion
of choice (d) in eq. (4.16). But there exists an element of the stabilizer which cyclically
permutes �1; �2; �3; and hence the three S7(F)s, whence jG(S9(X))j = 3 � 2 = 6: Indeed
we have

G(S9(E)) = hEi �= Z6;

whereE : (1; 2; 3; 4; 5) 7! (2u; 45; 5; 1u; 35) e¤ects the permutation (�1�3�2) (�4�8�7�5�9�6)
and where E3 = KA(= A3K):
See eq. (4.15) for the other two stabilizers in (5.2).
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Corollary 5.2 The regulus type of a partial spread Sr in PG(4; 2) is necessarily one of
those listed in table 1.

Proof. Any Sr lies inside a maximal partial spread; but by our results in theorem
1.7, corollary 4.8 and theorem 5.1 the type of a maximal partial spread is

�
5
3

�
;
�
4
3

�
; X; E or

I�:

5.2 The nine partial spreads of size 8

By removing a line from each of the above four kinds of S9 we will obtain all possible
kinds of S8: For an S9 denote by Li the subset of lines of S9 of valency i:
First of all consider a partial spread S8 = S9�f�g in the cases where � has valency

1. Then S8 has N8 = 3 reguli; thus, see table 2,  (S8) has L0 = 1 external lines, and so
S8 has a unique extension back to the original S9: According as S9 is of type (i) X (ii) E
(iii) I�� (iv) I�� then S8 is of type (i) Y (ii) F (iii) either � or I�L (iv) either � or I�L.
(Here, and in table B.2b, an S8(IL) is said to be of type I�L or I�L according as its unique
extension to an S9 is of type I�� or I��:) In cases (i) and (ii) the stabilizer group G(S9) is
transitive on L1; and so, using jG(S8)j = jG(S9)j=jL1j; the order of G(S8(Y)) is 24=8 = 3
and the order of G(S8(F)) is 6=6 = 1:
In case (iii) L1 consists of two G(S9)-orbits � and �; each of length 3, and S8 is of type

� or I�L according as � 2 � or � 2 �; in either case jG(S8)j = 6=3 = 2: In case (iv) L1
consists, see theorem 4.5 (with �1 = f�o9g; �2 = f�o7; �o8g and � = f�2; �4; �6g); of three
G(S9)-orbits, �1; �2 and �; of lengths 1, 2, 3, and S8 is of type �; � or I�L according
as � 2 �1; � 2 �2 or � 2 �; with G(S8) of corresponding orders 6=1 = 6; 6=2 = 3 and
6=3 = 2:
It follows from the foregoing that there exist projectively unique partial spreads S8 of

types Y, F, I�L and I�L, and precisely three classes of S8 of type �. (These last three
classes, and their stabilizer groups, were considered previously in theorem 4.5(ii).)
Secondly consider a partial spread S8 = S9�f�g in those of the above cases, namely

S9 of type (ii) E (iii) I�� (iv) I��, where � has valency 2. In each of these three cases
G(S9) is transitive on the three lines of L2; and S8 is of type II with stabilizer of order
6=3 = 2: So there exist at most three classes of S8(II): But now N8 = 2 and so there are
L0 = 3 external lines. Thus any S8(II) has precisely three extensions to an S9; moreover
one �nds that these extensions are one each of types E, I�� and I��. Consequently there
exists a projectively unique partial spread S8 of type II.
Finally from an S9 of type X we may remove the unique line � of valency 4 and

thereby deduce that there exists a projectively unique partial spread S8 of type O. In
this case N8 = 0 and so, see table 2, the 7-set  (S8)c has L0 = 7 internal lines, which
entails that  (S8)c is a plane, say �: Hence an S8(O) has precisely seven extensions
S8(O) [ f�g; � � �; to an S9; each extension being an S9(X) since for no other type of
S9 can S9�f�g be of type O. Since an S9(X) is projectively unique, note that G(S8) is
transitive on the seven lines � � �; with �point�-stabilizer G(S9(X)) of order 24. Hence
jG(S8)j = 24� 7 = 168: (For the structure of G(S8); and also for a di¤erent construction
of an S8(O); see section 6.1 below.) Summarizing:
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Theorem 5.3 Up to equivalence there are precisely nine partial spreads of size 8 in
PG(4; 2); three of type �; listed as VIIIc.1, VIIIc.2 and VIIIc.3 in table B.2b, and one
each of types O, II, Y, I�L, I�L, F, listed as VIIIa, VIIIb, VIIIc.4 - VIIIc.7. �

6 Partial spreads Sr(O); r > 5
6.1 The unique partial spreads S8(O) and S7(O)
In section 5.2 we saw that a partial spread S8 of type O is projectively unique and may
be constructed from an S9(X) by removing the line of valency 4. In this section we give a
di¤erent construction of an S8(O); and provide full details of its high symmetry (jG(S8)j =
168): (For further interesting aspects of an S8(O) see [18].) The less symmetrical S9(X) is
then constructed from the more symmetrical S8(O) by adding a line. We also show that
there is a projectively unique S7(O); obtained from an S8(O) by removing any line, with
stabilizer G(S7) of order 21:
Recalling that � =  (S8(O))c is a plane, let us start out from PG(4; 2) as the join of a

line �0 2 S8 and the plane �: So in vector space terms our construction starts out from a
preferred direct sum decomposition V5 = V2 � V3; where PV2 = �0 and PV3 = �: (It will
later emerge that the seven lines of S8(O) other than �0 enter on the same democratic
footing as �0:) We choose a Z7-subgroup hAi of GL(V3); and suppose (for the sake of
de�niteness) that the generator A of this Singer cyclic subgroup satis�es A3 = A + I:
The commutant [A] of A is a �eld F = f0g [ fI; A; ::: ; A6g isomorphic to GF(8): Let F21
denote the normalizer of hAi in GL(V3) and let hCi be one out of the seven Z3-subgroups
of F21: Then F21 = hAi o hCi and (after replacing C by C�1 if necessary) C satis�es
CAC�1 = A2; and indeed CFC�1 = F 2 for all F 2 F:
Now there is a unique line �0 � � which is stabilized by C; and we can choose u 2 �0

so that
�0 = fu;Au;A3ug and Cu = Au: (6.1)

Observe that from Cu = Au and CAC�1 = A2 it follows that CAru = A2r+1u: Let us
also make a choice of linear isomorphism M mapping V2 onto the 2-dimensional vector
space f0g [ �0: For the sake of de�niteness, put �0 = fa; b; cg and set Ma = u; Mb = Au
and Mc = A3u: If we de�ne C2 2 GL(V2) by C2 : a 7! b 7! c 7! a; so as to mirror
C : u 7! Au 7! A3u 7! u; we thereby arrange for M to intertwine C2 with (the restriction
to f0g [ �0 of) C:

MC2 = CM: (6.2)

A general vector v 2 V5 = V2 � V3 will be written v = x+ y; with x 2 V2 and y 2 V3:
For F 2 F we de�ne the 2-dimensional subspace VF � V5 by VF = fx + FMx : x 2 V2g
and we denote by �F � PG(4; 2) the corresponding projective line:

�F = fx+ FMx : x 2 �0g; (6.3)

in particular, choosing F = 0; note that �0 is one of the eight lines thus de�ned.
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Theorem 6.1 (i) The set of eight lines

S8 = f�F : F 2 Fg (6.4)

is a partial spread of type O; moreover  (S8)c is the plane � = PV3:
(ii) If S7 = S8�f�Fg; F 2 F; then S7 is of type O and G(S7) < G(S8):
(iii) If S9 = S8 [ f�g; � � �; then S9 is of type X and G(S9) < G(S8):

Proof. (i) Suppose v = x + y 2 VF \ VF 0 ; with F 6= F 0: Then FMx = F 0Mx; so
(F �F 0)Mx = 0: But F is a �eld, and so Mx = 0; whence x = 0: So VF \VF 0 = f0g; that
is �F \ �F 0 = ;; and S8 is indeed a partial spread of size 8. Since �F \ � = ;; and since
j (S8)cj = 7; it follows that  (S8)c is precisely �:
Concerning the absence of reguli in S8; consider the hyperplane � generated by a pair

�F 0 ; �F 00 of lines of S8: Now the 7 + (3 + 3 + ::: + 3) partition PG(4; 2) = � [F2F �F of
the 31(= 7 + 8� 3) points of PG(4; 2) induces a corresponding partition of the 15 points
of �; from which we obtain

(15 =) j�j = j� \ �j+
P

F2Fj�F \ �j: (6.5)

But a hyperplane in PG(4; 2) meets a plane in at least the 3 points of a line, and meets
a line �F in at least one point. Since j�F 0 \ �j = 3 = j�F 00 \ �j; it follows from (6.5) that
j�\ �j = 3 and j�F \ �j = 1 for each the 6 lines �F with F 6= F 0; F 6= F 00: Hence N8 = 0;
that is S8 is indeed of type O.
(ii) Since S8 is of type O, so also is S7: Now  (S7)c can be expressed as the disjoint

union of a plane and a line in precisely one way, namely as � [ �F , and so any element
T 2 G(S7) must stabilize �F ; whence T 2 G(S8):
(iii) Since N9 = 4; any extension S9 = S8 [ f�g of an S8 of type O must be of type X,

with the line � having valency 4. Any element T 2 G(S9) must stabilize the eight lines of
S9 of valency 0, whence T 2 G(S8):
We now wish to determine the structure of G(S8(O)): For A;C 2 GL(V3) and C2 2

GL(V2) as before the last theorem, de�ne TA; UC 2 GL(V5) by

TA = I2 � A; UC = C2 � C; (6.6)

and note that TA and UC stabilize the line �0 and permute the remaining seven lines
�F ; F 6= 0; of S8 amongst themselves in the manner:

TA : �F 7! �AF ; UC : �F 7! �F 2 : (6.7)

To see the last result, put C2x = x0 and observe that UC(x + FMx) = C2x + CFMx =
x0 + F 2Mx0; after using CF = F 2C and, see (6.2), CM = MC2: If S7 = S8�f�0g note
therefore that both TA and UC lie in G(S7) as well as in G(S8): Since also UCTA(UC)�1 =
TCAC�1 = TA2 ; we see that via A 7! TA and C 7! UC we inject a copy of F21 = hAio hCi
into G(S7) and into G(S8):
Further, for F 2 F; let us de�ne JF 2 GL(V5) by

JF (x+ y) = x+ y + FMx; (6.8)
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and note the properties

JFJF 0 = JF+F 0 = JF 0JF ; (JF )
2 = I;

JF : �F 0 7! �F+F 0 : (6.9)

Thus J : F 7! JF maps the additive group of F; isomorphic to that of a V3; into a subgroup
J < G(S8); where J �= (Z2)3: Note also the properties

TAJF (TA)
�1 = JAF ; UCJF (UC)

�1 = JF 2 : (6.10)

In particular observe that with the aid of TA we may generate all the seven involutions
JF ; F 6= 0; from just one, for example from JI :

Theorem 6.2 (i) The stabilizer of S8(O) is of order 168, with structure

G(S8) �= (Z2)3 o F21: (6.11)

(ii) For any F 2 F the stabilizer G(S7) of the partial spread S7(O) = S8(O)�f�Fg is a
subgroup of G(S8) isomorphic to F21: Up to equivalence every S7 of type O is of this kind,
and so is projectively unique.
(iii) For any line � � � the stabilizer G(S9) of the partial spread S9(X) = S8(O)[ f�g

is a subgroup of G(S8) isomorphic to Alt(4)� Z2:

Proof. (i) From the lead-in to the theorem it follows that the subgroup hTA; UC ; JIi <
G(S8) has the structure (Z2)3oF21 and is of order 8�21 = 168: Since, see before theorem
5.3, jG(S8)j = 168; we have

G(S8) = hJI ; TA; UCi �= (Z2)3 o F21: (6.12)

(ii) Recall that in the case of S7 = S8�f�0g we already know that G(S7) contains a
subgroup hTA; UCi �= F21 = hAio hCi: But, see (6.9), JF (S8�f�0g) = S8�f�Fg and so,
for any F 2 F; G(S8�f�Fg) contains a subgroup �= F21: But since J ; and therefore G(S8);
is transitive on the 8 lines of S8; and since G(S7) < G(S8); see theorem 6.1(ii), we have
jG(S7)j =jG(S8)j � 8 = 21 for any partial spread S7 = S8(O)�f�Fg: Hence G(S7) �= F21:
Any S7 of type O (indeed any non-maximal S7) can be obtained from an S9 by deleting

two lines. But recall that an S9 is of type X; E or I�; so to obtain an S7(O) from an S9 we
need to start out from an S9(X); one deleted line being the line of valency 4. The S7(O)
thus obtained is of the form S7 = S8(O)�f�g: But an S8(O) is projectively unique and,
as just noted, its stabilizer G(S8) is transitive on the lines � 2 S8(O): Hence an S7(O) is
projectively unique.
(iii) The group G(S8); indeed any Z7 subgroup of G(S8); is transitive on the set of

seven extensions S8(O) [ f�g; � � �; of S8: Thus the subgroup G(S9) of G(S8); see
theorem 6.1(iii), which stabilizes an extension has order 168=7 = 24: Also it su¢ ces to
consider the particular extension S9 = S8 [ f�0g; where, see (6.1), �0 is that line of �
which is stabilized by our chosen C 2 F21: Now G(S9) contains J �= (Z2)3 as a subgroup,
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since each of the involutions JF �xes the plane �; and in particular �0; pointwise. But
also G(S9) contains hUCi �= Z3; since C stabilizes �0: Now from (6.10) we see that JF
commutes with UC if and only if F = 0 or F = I: It follows that

G(S9) �= ((Z2)2 o Z3)� Z2 �= Alt(4)� Z2; (6.13)

where, in this case of S9 = S8 [ f�0g; the central Z2 is generated by JI :

Remark 6.3 The constructions in this section using (6.4) can be tied in with spreads and
partial spreads of planes in PG(5; 2); see [24, section 3.2.3] and especially [22, section 4.2],
� by taking a PG(4; 2) section � of a 2-spread �9 = f�0; ::: ; �7; �g in PG(5; 2) such that
� � �: (One of the Z7 subgroups in [22, section 4.2] is not relevant in the PG(4; 2) set-up,
since it does not preserve the set of lines f�i = � \�ig: But the G1 and �G groups in [22,
eqs. (24), (10)] can be tied in with the groups G(S8); G(S9) in (6.11), (6.13) above.)

6.2 Partial spreads S6 of type O
The group G8 = G(S8) in (6.11), for an S8 of type O, is transitive on the lines of S8; and
the subgroup G7 in theorem 6.1(ii) which �xes a line of S8 is transitive on the lines of
S7: Hence G8 is 2-transitive on S8: Since there exist unique classes of partial spreads S7
and S8 of type O it follows that those regulus-free partial spreads S6 which possess an
extension to a regulus-free S7 form a single class, say VIa.1, whose members are of the
form S6 = S8(O)�f�; �0g for some unique S8(O): Note that G6 = G(S6) is a subgroup of
G8; and let G� be that subgroup of G8 (and of G6) which �xes separately the lines �; �0:
By 2-transitivity we have jG8j = 8:7:jG�j; whence jG�j = 3: But there exists an involution
J 2 G8 which e¤ects the interchange � � �0; whence jG6j = 6: In fact G6 �= Z6: To see
this, consider S6 = S8(O)�f�0; �Ig with S8 as in (6.4). Then, see (6.7), G� = hUCi �= Z3
and, see (6.9), JI e¤ects �0 � �I : Moreover, see (6.10), UC commutes with JI : Hence

G(S6) = hUC ; JIi �= Z6: (6.14)

(Alternatively, observe that S6 is also of the form S6 = S7(Y)�f�g; where � is the line of
S7(Y) of valency 3; hence G(S6) = G(S7(Y)) �= Z6; see section 4.4.)
Now G(S6) is seen to be transitive on the six lines 2 S6; and hence the partial spread

S6 is cyclic, of the form

S6 = f�1; �2; ::: ; �6g; with �i+1 = Ai�1; (6.15)

for any choice of line �1 2 S6 and generator A of G(S6): There are two classes, 6A and 6B
(see [4, p.70]), of elements of order 6 in GL(5; 2): Since an element A 2 class 6A only has
two 6-cycles in its action upon PG(4; 2); see [9, Table 4], it follows that A in (6.15) must
belong to class 6B. If in (6.15) we choose A : e1 7! e2 7! e3 7! e4 7! e5 7! u 7! e1 and
�1 = f1; 34; 134g we obtain the following explicit example of a cyclic S6(O) = f�1; ::: ; �6g:

�1 = f1; 34; 134g; �2 = f2; 45; 245g; �3 = f3; 5u; 35u = 124g;
�4 = f4; u1; 4u1 = 235g; �5 = f5; 12; 512g; �6 = fu; 23; u23 = 145g: (6.16)
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Here  =  (S6) has for its complement  c the disjoint union of a plane � and two lines
�; �0 :

 c= � [ � [ �0; where � =� 14; 25; 135 �; � = f35; 13; 15g; �0= f2u; 4u; 24g; (6.17)

and S6 [ f�; �0g is an S8(O): Under the action of G6 �= Z6 the 20 transversals �ijk of
S6(O) = f�1; ::: ; �6g in (6.16) fall into four orbits of lengths 6; 6; 6 and 2; with respective
representatives �123 = f134; 2; 5ug; �125 = f1; 2; 12g; �124 = f34; 245; 235g and �135 =
f34; 5u; 12g: So the points 1; 34; 134 of �1 lie on 3; 4; 3 transversals, respectively, and
hence the pro�le of S6 is (4; 5; 4)6:
To justify our assignment of S6 = S8(O)�f�; �0g to class VIa.1 we need to show that

 (S6) belongs to the orbit VIa in table B.1: To this end let us compute the signature of
the disjoint union � [ � [ �0 in (6.17), where � is the plane  (S8)c: Let the solid h�; �0i
meet � in the line �; and so � = f�; �; �0g is a regulus. Then the 13-set � [ � [ �0 has 12
lines, namely �; �0; the seven lines of � and the three lines of �: The signature of  (S6)c
is then easily seen to be (13; 12; 1)(624334)(6071); with the 6 points of � [ �0 contributing
the 62 and the 3 points of � contributing the 34: Hence the orbit of  (S6) is indeed VIa.

Theorem 6.4 (i) Those partial spreads S6 of type O which possess extensions to an S7(O)
form a single class, listed as VIa.1 in table B.2a. A partial spread S6 2 VIa.1 is cyclic,
with stabilizer G(S6) �= Z6 and pro�le (445)6:
(ii) If S6(O) 2 class VIa.1 then each S5 = S6(O)�f�g is of class Vd.1.

Proof. (i) See the lead-in to the theorem.
(ii) Consider S5 = S6(O)�f�g with S6(O) as in (6.16). Because of the cyclic symmetry

we may as well take � = �6: The 10 transversals of S5 are a subset of the 20 transversals
of S6 considered above, see after (6.17), and we see that the pro�le of S5 is (234)3(333)2;
with �2 and �3 being balanced and �1; �4 and �5 being (2; 3; 4)-unbalanced. Hence, see
table B.2a, S5 2 class Vd.1.
We now construct an example of a partial spread S6 of type O which does not possess

any extensions to an S7(O): Choose an S5 2 class Vb.1; so S5 is uniquely of the form
S5 = S4 [ f�5g; with pro�le (333)4(135); where S4 = S4(O) is cyclic and contributes the
(333)4: Let n be the nucleus of the parabolic quadric P4 associated with S4; and let �
be that line on P4 such that S4 [ f�g is a spread on P4: Since S5 2 class Vb.1, �5 is a
nuclear tangent to P4; of the form �5 = fn; p; p + ng; for some p 2 �; with the points
n; p; p+n contributing respectively 1; 3; 5 to the pro�le (135) of �5: Consider an extension
S6 = S5 [ f�6g of S5: There are 20 choices for �6; but under the action of G(S5) �= D8

only one orbit 
, of length 4, gives rise to a regulus-free S6: If �6 2 
 then S6 = S5[f�6g
is of type O but, by theorem 6.4(ii), it does not belong to the class VIa.1.
In fact S6 = S5 [ f�6g = S4 [ f�5; �6g is easily seen to have pro�le (445)4(355)2;

with f�5; �6g contributing the (355)2: So any T 2 G(S6) must stabilize separately S4
and f�5; �6g: Since jG(S5)j=j
j = 2; there is an involution J 2 G(S5) which �xes �6;
and so G(S6) contains a subgroup hJi �= Z2: A straightforward check in fact shows that
G(S6) = hJi �= Z2: (To carry out this check it helps to use the fact that T 2 G(S6) must
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permute amongst themselves the four points, one on each line of S4, responsible for the 5
in the (445)4; and also permute the two points, one on each of �5 and �6, responsible for
the 3 in the (355)2:)
The S6(O) just constructed is listed under class VIb.1 in table B.2a. Let us outline a

proof that the two classes VIa.1 and VIb.1 include all the regulus-free partial spreads of
size 6. Now any S6 of type O arises as an extension S6 = S5[f�6g where S5 is regulus-free.
So we need to consider the �ve cases (a)-(e) which arise from the �ve choices Va.1-Ve.1
of class for the regulus-free S5: In fact only the four cases (b)-(e) need to be considered,
since an S5 of class Va.1 has no regulus-free extensions. The proof now proceeds in two
steps:
Step 1. In the cases (b), (c) and (e) one �nds that there is only one G(S5)-orbit for
�6 which gives rise to a regulus-free S6; and that in each of these cases S6 has pro�le
(445)4(355)2; whence S6 is not of class VIa.1. In case (d), where S5 belongs to class Vd.1,
then one �nds there exist two G(S5)-orbits for �6 which yield a regulus-free S6: For one
of these S6 is of class VIa.1, in conformity with theorem 6.4(ii), while for �6 on the other
orbit S6 is not of class VIa.1 since its pro�le is found to be (445)4(355)2:
Step 2. Thus there are at most four regulus-free classes of S6 other than the class VIa.1,
the pro�le in each case (b)-(e) being (445)4(355)2. The proof is completed by checking
for one, and hence for all four, of the cases (b)-(e) that S6 contains partial spreads S5(O)
belonging to each of the classes Vb.1-Ve.1. This check is straightforward but rather
tedious. One �nds that the four classes for S5(O) = S6�f�g arise from the four choices
of G(S6)-orbit for � 2 S6; of lengths 2; 2; 1 and 1: (The check is perhaps most easily
done by starting out from S6 = S5 [ f�6g with S5 2 class Ve.1, since one may then use
the cyclic symmetry of S5 to quickly display 10 out of the 20 transversals of S6:)

Theorem 6.5 There are just two equivalence classes VIa.1 and VIb.1 of regulus-free
partial spreads of size 6 in PG(4; 2); where the class VIa.1 is as considered in theorem
6.4. A S6 of class VIb.1 has stabilizer G(S6) �= Z2 and pro�le (445)4(355)2; and does not
extend to an S7(O); moreover an S6 2 class VIb.1 can be obtained as an extension of an
S5 belonging to any of the four classes Vb.1-Ve.1. �

7 The remaining classes of partial spreads

In this section we deal with the remaining classes of partial spreads Sr; r > 5; namely
those of types

�
4
3

�
; II and I.

7.1 The three maximal partial spreads of size 7

We already know, see corollary 4.8, that a partial spread S7 is maximal if and only if it
is of type

�
4
3

�
; that is if and only if it is of the form

S7 = S4(
�
4
3

�
) [ S3(O): (7.1)
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We now show that the maximal partial spreads (7.1) of size 7 fall into three di¤er-
ent GL(5; 2) orbits. Given S7 = S4(

�
4
3

�
) [ S3(O); with S4(

�
4
3

�
) = f�1; �2; �3; �4g and

S3(O) = f�1; �2; �3g; let � be the hyperplane containing the lines �i and let �(� �)
be the transversal of the lines �i. Hence �5 = f�1; �2; �3; �4; �g is a spread for �;
and � is the even hyperplane determined by S3(O): So � comes equipped with a dis-
tinguished null polarity, see sections 3.2 and A.2.1. By lemma A.4 the 56 spreads of lines
in PG(3; 2) fall into three Sp(4; 2)-orbits (of lengths 6; 20 and 30) consisting of spreads of
the respective polar types (5; 0); (3; 2) and (1; 4): Since � is self-polar, the partial spread
S4 = f�1; �2; �3; �4g for � is of polar type (4; 0); (2; 2) or (0; 4): These three possible polar
types for S4 lead to three di¤erent orbits for a maximal S7: We denote a partial spread
in (7.1) by S7(

�
4
3

�
(4;0)
);S7(

�
4
3

�
(2;2)
) or S7(

�
4
3

�
(0;4)
) according as S4(

�
4
3

�
) = f�1; �2; �3; �4g

contains four, two or no self-polar lines for the null polarity for � determined by S3(O):
If S7 = S4 [ S3 is of the form (7.1) then clearly G(S7) is a subgroup of the group

G(S3) �= Sym(4) � Z2 considered in lemma 3.1, with the central Z2 being generated by
the involution J = J(S3): Now, see eqs. (A.3)-(A.11), � = �(s23) belongs to precisely
(i) two spreads, �5(T2) and �5(T3); of polar type (5; 0);
(ii) two spreads, see eq. (A.11), of polar type (1; 4); and
(iii) four spreads, �5(23k); k = 1; 4; 5; u; of polar type (3; 2):
According as �5 = f�1; �2; �3; �4; �g belongs to case (i), (ii) or (iii) then S7 is of type�
4
3

�
(4;0)

;
�
4
3

�
(0;4)

or
�
4
3

�
(2;2)

: Since in each case G(S3) acts transitively, the index of G(S7) in
G(S3) is accordingly (i) 2, (ii) 2, and (iii) 4. In cases (i) and (ii), the involution J e¤ects
the interchange of the two spreads; so, since J =2 G(S7); we must have G(S7) �= Sym(4):
In fact one sees that

G(S7) =
(
G0(S3)0; if S7 is of type

�
4
3

�
(4;0)

;

G0(S3); if S7 is of type
�
4
3

�
(0;4)

;

where G0(S3) �= Sym(4) and G0(S3)0 �= Sym(4) are as in remark 3.2. On the other hand
in the case (iii), where S7 is of type

�
4
3

�
(2;2)

; we see that J 2 G(S7); and hence that
G(S7) �= Sym(3)� Z2: (In this last case the Z3 subgroup of G(S7) �xes each line of �5:)

Theorem 7.1 There are precisely three classes of maximal partial spreads S7; represented
by S7(

�
4
3

�
(4;0)
); S7(

�
4
3

�
(0;4)
) and S7(

�
4
3

�
(2;2)
) as just described. These three classes are listed

as VIIf.1, VIIf.2 and VIIf.3, respectively, in table B.2b, the stabilizer groups being iso-
morphic to Sym(4); Sym(4) and Sym(3)� Z2; of respective orders 24, 24 and 12. �

Suppose S7 = S4(
�
4
3

�
) [ S3(O) = f�1; �2; �3; �4g [ f�1; �2; �3g is as above, of type�

4
3

�
: For �xed S6 = S4 [ f�1; �2g there are (L0 =)4 choices for �3; leading therefore to

four di¤erent Sp(4; 2) geometries for the hyperplane �: It is straightforward to check that
S4 = f�1; �2; �3; �4g is of polar type (4; 0); (0; 4) and (2; 2) for respectively one, one and
two of these choices. Since a partial spread S6 of type

�
4
3

�
is necessarily of the kind

S6 = S7(
�
4
3

�
)�f�3g; it follows that there is just one class of partial spread S6 of type

�
4
3

�
:

By considering either the case when S7 is of type
�
4
3

�
(4;0)

or the case when S7 is of type
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�
4
3

�
(0;4)

; it also follows that G(S6) has index 3 in G(S7) �= Sym(4); and hence that S6(
�
4
3

�
)

has stabilizer G(S6) �= D8:

Lemma 7.2 There is just one class, VIj.1 in table B.2b, of partial spread S6 of type
�
4
3

�
;

with stabilizer isomorphic to D8: �

7.2 Partial spreads of type II
7.2.1 The projectively unique S6(II)

Suppose S6 = � [ �0 is of type II, with reguli � = f�1; �2; �3g and �0 = f�4; �5; �6g: Then,
with respect to an appropriate basis, we may cast S6 into the form

�1 = f1; 25; 125g; �2 = f3; 345; 45g; �3 = f13; 234; 124g;
�4 = f2; 35; 235g; �5 = f4; 145; 15g �6 = f24; 134; 123g: (7.2)

Here the basis has been chosen such that the ambient hyperplanes � = �123; �
0 = �456 of

the two reguli � = �123; �
0 = �456 are � = h1; 25; 3; 45i; �0 = h15; 2; 35; 4i: The quadric

H =  (�) = �1[�2[�3 intersects the plane � = �\�0 in the conic � = f13; 125; 345g and
the quadricH0 =  (�0) = �4[�5[�6 intersects the plane � in the conic �0 = f24; 145; 235g:
Note that � = � [ �0 [ f5ug; the point 5u being privileged, since it is the only point of
� not belonging to  (S6): The pair of points f13; 24g; and hence also the pair of lines
f�3; �6g; is distinguished, since 13 is the nucleus of the conic �0 and 24 is the nucleus of
the conic �: Also note that � = H [ � [ � and �0 = H0 [ �0 [ � 0; where

� = f5u; 145; 235g; � = f24; 4u; 2ug;
�0 = f5u; 125; 345g; � 0 = f13; 1u; 3ug:

Here �; �0 are the external lines of the conics �; �0; and the lines �; � 0 intersect � in the
nuclei 24; 13 of the conics �; �0:
Let A be that element of GL(5; 2); belonging in fact to class 4C, see [4], which is

de�ned on the chosen basis by

A : 1 7! 2 7! 3 7! 4 7! 1; 5 7! 5 (and hence u 7! u): (7.3)

Then A e¤ects the permutation (�1�4�2�5)(�3�6) of the lines of S6; whence G(S6) contains
hAi �= Z4 as a subgroup. In fact G(S6) is no larger:

G(S6) = hAi �= Z4: (7.4)

This can be seen as follows. If T 2 G(S6) then T must �x the privileged point 5u
and also the pair f24; 13g of nuclei. If T �xes 13; and hence also 24; then T must �x
�123 = f1; 3; 13g 2 �opp and �456 = f2; 4; 24g 2 (�0)opp and so �xes the pairs f1; 3g and
f2; 4g:: If instead T e¤ects 24� 13; then T e¤ects �123 � �456 and so interchanges f1; 3g
and f2; 4g: In the latter case we quickly see from (7.2) that either T = A or T = A�1 = A3;
and in the former case T = A2:
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Partial spreads S6 of type II are classed as VIg.1 in table B.2a. Concerning the pro�le
of S6 in (7.2), the distinguished lines �3 and �6 each contribute (4; 4; 7); with the dis-
tinguished points 13 and 24 each contributing a 7. Each of the remaining four lines has
pro�le (4; 5; 6); with the remaining points 125; 345; 145; 235 on the conics contributing a
6, and the points 1; 3; 2; 4 on the transversals through 13 and 24 contributing a 4. So
pro�le(S6(II)) = (4; 4; 7)2(4; 5; 6)4:

7.2.2 The three classes of S7 of type II

Consider an extension S7 = S6(II) [ f�g: Under the action of G(S6) �= Z4; see (7.4), the
L0 = 8 choices for � fall into four orbits 
; 
0; 
00 and 
000; of lengths 4, 1, 1 and 2, with
respective representatives

�7 = f1u; 2u; 12g; �07 = f5u; u; 5g;
�007 = f5u; 135; 245g; �0007 = f5u; 12; 34g:

The extension S 0007 = S6(II) [ f�000g is seen to be of type F, with f�3; �6; �7g the extra
regulus; it is projectively unique, of class VIIe.5, see theorem 4.7. The remaining three
extensions S7, S 07, S 007 , using �7; �07; �007; are all of type II, and represent the three classes
VIId.1, VIIc.1, VIIc.2, respectively, in table B.2b. For VIIc.1, VIIc.2, but not for VIId.1,
the line � of zero valency passes through the privileged point (= 5u; for S6(II) as in the
previous section) of S6(II): For S7 2 VIId.1 the line � is balanced, with pro�le (6; 6; 6);
while for class VIIc.1 and class VIIc.2 the line � is (5; 5; 8)-unbalanced. It seems quite
hard to distinguish between the classes VIIc.1 and VIIc.2! One distinction is that for one
of them, say VIIc.1, but not for the other, say VIIc.2, the line � of zero valency is �xed
pointwise by the stabilizer group (the latter being �= Z4; as in the next lemma).

Lemma 7.3 Up to equivalence, there exist precisely three partial spreads S7 of regulus type
II, listed as VIIc.1, VIIc.2 and VIId.1 in table B.2b. For VIIc.1 andVIIc.2, G(S7) �= Z4;
while for VIId.1, G(S7) is trivial.

Proof. Since any S7 of type II is of the form S6(II) [ f�g; and since there is only one
class of S6(II); we have already proved the �rst part of the lemma. Let classes VIId.1,
VIIc.1 and VIIc.2 be represented by S7, S 07, and S 007 ; as in the lead-in to the lemma.
Since j
j = 4 the order of G(S7) is jG(S6)j � 4 = 1; and since j
0j = j
00j = 1; we have
G(S 07) = G(S 007 ) = G(S6) �= Z4:

7.3 Partial spreads of type I
7.3.1 The seven classes of partial spreads S6 of type I

If S6 is of type I then it has a unique decomposition of the form

S6 = S3(I) [ S3(O): (7.5)
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Let � denote the ambient hyperplane of the regulus � = S3(I); and so � = H [ � [ � 0;
where �; � 0 are the external lines of the quadric H =  (�) � �: Let � denote the unique
transversal of the three lines of S3(O): Two cases arise

Case (a): � � �; Case (b): � meets � in a point p: (7.6)

If case (a) holds then � is the even hyperplane of S3(O) and comes along equipped with
a distinguished null polarity, see section 3.2. Four possibilities arise, according as the three
lines of � are of polar type (see section A.2.2 of the appendix) (3; 0); (2; 1); (1; 2) or (0; 3):
The corresponding four classes of S6(I) are listed in table B.2a as VId.2, VIc.2, VId.1,
and VIc.1, respectively, and representatives will be denoted S6(I)(3;0); S6(I)(2;1);S6(I)(1;2)
and S6(I)(0;3): These four classes can just as well be arrived at by removing a line from
the S4(

�
4
3

�
) in the maximal S7 in eq. (7.1) and theorem 7.1:

VIc.1 : S6(I)(0;3) = S7(
�
4
3

�
(0;4)
)�f�1g; VIc.2: S6(I)(2;1) = S7(

�
4
3

�
(2;2)
)�f�nonpolarg;

VId.1 : S6(I)(1;2) = S7(
�
4
3

�
(2;2)
)�f�self-polarg; VId.2: S6(I)(3;0) = S7(

�
4
3

�
(4;0)
)�f�1g:

(7.7)

Incidentally, see lemma A.10, every extension of a parabolic S5(O) is of class VIc.2.
Concerning the stabilizer groups of these four classes of S6(I), recall the discussion of

the stabilizers of maximal spreads S7(
�
4
3

�
) in the lead-in to theorem 7.1. First of all let

us deal with classes VIc.2 and VId.1 in (7.7). If S3(O) in (7.5) is as in eq. (3.2) then, cf.
�5(234) in eq. (A.10), the spread �5 in � de�ned by

�5 = f�; �(s24); �(s34); �; � 0g = f�g [ S4(
�
4
3

�
); where

� = �(s23) = f12; 34; 5ug; � = �135 = f13; 15; 35g; � 0 = �24u = f24; 2u; 4ug;

is of polar type (3; 2): So an S6 = � [ S3(O) of the kind S6(I)(2;1) may be realized by the
choice � = f�(s24); �(s34); � 0g; and of the kind S6(I)(1;2) by the choice � = f�(s34); �; � 0g:
Now the Z3 subgroup of the stabilizer G(S7) �= Sym(3)�Z2 of S7(

�
4
3

�
(2;2)
) = S4(

�
4
3

�
[S3(O)

is generated by A1 = (3; 4; 5; u; 1); since A1; as in eq. (3.6), not only stabilizes S3(O) but
also �xes each line of �5: Moreover the element L = (3; 4; 1; 2; 5) of G(S3(O)) �xes � 0 and
e¤ects the interchange �(s24) � �(s34); while L0 = (4; 3; 2; 1; u) �xes �(s34) and e¤ects
the interchange � � � 0: So, since J =2 G(S6); the stabilizer of S6(I)(2;1) is seen to be
hA1; Li �= Sym(3); and the stabilizer of S6(I)(1;2) is hA1; L0i �= Sym(3): The classes VIc.1
and VId.2 are dealt with more simply. The stabilizer G(S7) �= Sym(4) of either S7(

�
4
3

�
(4;0)
)

or S7(
�
4
3

�
(0;4)
) e¤ects all permutations of the four lines of S4(

�
4
3

�
); and on removing one,

say �1; of these lines the resulting S6(I)(3;0) or S6(I)(0;3) has stabilizer G(S6) �= Sym(3)
e¤ecting all permutations of the three lines of the regulus � = S4(

�
4
3

�
)�f�1g: So for all

four classes in (7.7) we have G(S6) �= Sym(3).
Suppose now that case (b) holds in (7.6). Let the three lines of S3(O) intersect � in

points p1; p2 and p3: Because � does not lie inside �; these points are not collinear; so we
may as well label things so that p1 2 � and p2; p3 2 � 0: Two subcases arise: (b1): p = p1
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and (b2): p = p2 (say). Subcase (b1) yields the class VIf.1 in table B.2a, with stabilizer
G(S6) �= Z2 which e¤ects the interchange p2 � p3: Subcase (b2) yields the classes VIe.1
and VIe.2 in table B.2a. For either of these classes there are so many distinguished points
that one �nds that the stabilizer is trivial. The classes VIe.1 and VIe.2 are quite hard to
distinguish. One distinction is as follows: in the labelling with p = p2; let � be the line
of � which contains the point p1 + p2; then pro�le(�) = (5; 5; 5) for one class, say VIe.1,
and pro�le(�) = (4; 5; 6) for the other class VIe.2.

Lemma 7.4 There exist precisely seven equivalence classes of partial spreads S6 of regulus
type I. Each of the four classes VIc.1, VIc.2, VId.1 and VId.2, see table B.2a, has stabilizer
G(S6) �= Sym(3). For class VIf.1, G(S6) �= Z2; while for both of the classes VIe.1 and
VIe.2, G(S6) is trivial. �

7.3.2 The three classes of partial spreads S7 of type I

Any non-maximal S7 can be expressed in the form S7 = S9�f�; �0g: In order for S7 to be
of type I then S9 must be of type E or I�; with at least one of �; �0 of valency 2; hence,
if � has valency 2, note that S8 = S9�f�g is of type II. But recall from section 5.2 that
there is a unique class of partial spreads S8(II): Hence any S7 = S7(I) can be expressed in
the form

S7 = S9(E)�f�; �0g; for suitable �; �0 2 S9(E): (7.8)

Without loss of generality we may suppose that S9(E) is as in theorem 5.1, with regu-
lus pattern R123; R145; R267; R389: Then under the action of G(S9) = hEi �= Z6; where
E = (2u; 45; 5; 1u; 35) e¤ects the permutation (�1�3�2) (�4�8�7�5�9�6); the relevant pairs
f�; �0g of lines of S9(E) fall into just three orbits 
1; 
2 and 
3; of lengths 3, 6 and 6,
with representatives

(i) f�1; �2g; (ii) f�1; �9g; (iii) f�1; �7g:

We now show that the resulting three partial spreads S i7; S ii7 and S iii7 of type I are inequiv-
alent, and so conclude that there are precisely three classes of partial spreads S7 of type
I. These are listed as VIIb.1, VIIb.2 and VIIb.3 in table B.2b.
For each of the choices (i), (ii) and (iii), S7 = S7(I) is of the form S3(I) [ S4(O); in

each case let us denote by �; � 0 the two lines such that S3(I) [ f�; � 0g is a spread in the
ambient hyperplane � of the regulus S3(I): In the case (i), S i7 = S9(E)�f�1; �2g; we see
that S4(O) is cyclic and that its four lines meet the lines �; � 0 in a 2 + 2 pattern. In
contrast, for each of the choices (ii) and (iii) we �nd that S4(O) is non-cyclic and that its
four lines meet the lines �; � 0 in a 3+1 pattern. So, for both choices (ii) and (iii), we have
S4(O) = S3(O)[f�g; where the transversal � of S3(O) is (say) � and the even hyperplane
of S3(O) is �; and where �; meeting � 0 in a point, is one of the unbalanced members of
S4(O): Moreover S ii7 and S iii7 share the same pro�le (5; 5; 8)(5; 6; 7)2(6; 6; 6)(6; 7; 7)3; with
S3(I) contributing in each case the (6; 7; 7)3: Nevertheless S ii7 and S iii7 are inequivalent. To
see this let us, in each of the two cases, make use of the null polarity induced in the even
hyperplane � of S3(O) to examine the polar type of the regulus S3(I):
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for S ii7 = S9(E)�f�1; �9g; the regulus �267 is of polar type (1; 2);
for S iii7 = S9(E)�f�1; �7g; the regulus �389 is of polar type (3; 0):
For each of the partial spreads S i7; S ii7 and S iii7 one �nds that the stabilizer is of order

2. In the case of S i7 = S9(E)�f�1; �2g; with S9(E) is as in theorem 5.1, the stabilizer is
hE3i �= Z2: A quick way to see that class VIIb.3 has stabilizer of order 2 is to represent
the class by S7 = S9(I��)�f�1; �7g; with S9(I��) as in theorem 4.5, when one sees that
the stabilizer is hKi; where K = (2; 1; 34; 4; 5):

7.4 Conclusion

All classes of partial spreads of lines in PG(4; 2) have now been found, and are as listed
in tables B.2a and B.2b. In particular there are precisely eight classes of maximal partial
spreads, namely

Vj.1; VIIf.1, VIIf.2, VIIf.3; IXa.1, IXa.2, IXa.3, IXa.4.

A Appendix: Aspects of Sym(6); Sp(4; 2) and O(5; 2)

In this appendix we treat the well-known group isomorphisms

(i) Sp(4; 2) �= Sym(6); (ii) O(5; 2) �= Sym(6); (A.1)

stressing those features which are relevant to the main body of the paper.

A.1 Aspects of Sym(6)

A.1.1 Synthemes, totals and near-totals

Consider the symmetric group Sym(6) on the six symbols f1; 2; 3; 4; 5; 6g; and let ijklmn
denote any permutation of 123456: From the six symbols we may form not only �fteen
duads ij but also �fteen synthemes ij kl mn: Just as each syntheme contains three duads,
each duad is contained in three synthemes. From the six symbols we may also form six
totals. (A total is de�ned to be a set of �ve synthemes such that each duad occurs in one
syntheme of the total � just as a symbol i could be interpreted as a pentad fij : j 6= ig
of �ve duads such that each syntheme contains one of the duads of the pentad.) That
there exist precisely six totals was noticed by Sylvester [28] in 1861, and he pointed out
that any two totals overlap in precisely one syntheme (just as any two symbols are shared
by one duad). The six totals are displayed in the following symmetric 6 � 6 array, the
ith total Ti consisting of the �ve synthemes in the ith row, equally the ith column, of the
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array.
T1 T2 T3 T4 T5 T6

T1 � 15 23 46 14 35 26 13 24 56 12 45 36 25 34 16
T2 15 23 46 � 12 34 56 14 25 36 24 35 16 13 45 26
T3 14 35 26 12 34 56 � 23 45 16 13 25 46 15 24 36
T4 13 24 56 14 25 36 23 45 16 � 15 34 26 12 35 46
T5 12 45 36 24 35 16 13 25 46 15 34 26 � 14 23 56
T6 25 34 16 13 45 26 15 24 36 12 35 46 14 23 56 �

(A.2)

Observe therefore that the synthemes can be given a duadic labelling, with sij(= sji)
denoting that syntheme, in the ij entry of the array (A.2), which is contained in the two
totals

Ti = fsik : k 6= ig and Tj = fsjk : k 6= jg: (A.3)

Remark A.1 We ought to point out that the numbers 1; 2; 3; 4; 5; 6 labelling the six totals
can be assigned in a quite arbitrary manner. In the array (A.2) we chose to number the
totals so as to satisfy i6 2 si6; for i = 1; 2; 3; 4; 5: In fact our array has the property that
ab 2 scd if and only if cd 2 sab; here c; d are not necessarily distinct from a; b.

If from a total Ti we remove a syntheme sij the resulting set Ti;j = Ti�fsijg = fsik :
k 6= i; k 6= jg of four synthemes will be referred to as a near-total. If D denotes the set of
15 duads, consider the subset Dij = D�sij of 12 duads obtained by removing from D the
three duads in the syntheme sij: Then observe that the 12-setDij = Dji can be partitioned
as a near-total in precisely two ways, namely as Ti;j and as Tj;i: Consequently the 12-set
Dij may be conveniently exhibited as a double-four array, with the four synthemes of
Ti;j in the four columns and the four synthemes of Tj;i in the four rows. For example,
in the numbering scheme (A.2) for which s56 = f14; 23; 56g; we may exhibit D56 as the
double-four array

D56 =

0BB@
� 16 25 34
45 � 13 26
36 24 � 15
12 35 46 �

1CCA : (A.4)

A.1.2 An outer automorphism � of Sym(6)

As is well-known, the group Sym(6); alone amongst the symmetric groups Sym(n); pos-
sesses outer automorphisms. There are 6! of these, and they map, see lemma A.2, proof
(i), one class of six Sym(5) subgroups of Sym(6) on to another class of six Sym(5) sub-
groups. (The existence of outer automorphisms lies behind the duality, hinted at in the
opening paragraph of section A.1.1, between on the one hand the 6 symbols/pentads and
15 duads, and on the other the 6 totals and 15 synthemes: in particular, see (A.6) below,
outer automorphisms map the class of 15 involutions of the kind (ij) to the class of 15
involutions of the kind (ij)(kl)(mn).) A particular outer automorphism �; arising from
our particular numbering of the totals in (A.2), is obtained as follows. Each permutation
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� 2 Sym(6) acts, via ij 7! �(i)�(j), on the �fteen duads, hence on the �fteen synthemes,
and hence induces a permutation of the 6 totals T1, T2, ... T6. Consequently there exists
an automorphism � of Sym(6) which maps � 2 Sym(6) onto �(�) = �, where � 2 Sym(6)
is that permutation such that

�(Ti) = T�(i); and hence �(sij) = s�(i)�(j) : (A.5)

The e¤ect of � on the transpositions (ab) 2 Sym(6) is as follows:

if sab = fij; kl; mng then �(ab) = (ij)(kl)(mn) ; (A.6)

this last result con�rming that � is indeed outer. Using (A.6) one can show that � is
involutory: �2 = id. (See ([20]) for further details and references.)

Lemma A.2 (i) The subgroup of Sym(6) which stabilizes a total is �= Sym(5):
(ii) The subgroup which stabilizes a syntheme is �= Sym(4)� Z2:
(iii) The subgroup which stabilizes a near-total is �= Sym(4):

Proof. (i) stab(Ti) = �(stabfig); and stabfig �= Sym(5):
(ii) stab(s23) = �(stabf2; 3g); and stabf2; 3g = Sym(f1; 4; 5; 6g)� h(23)i:
(iii) In part (ii) the Sym(4) subgroup of stab(s23) stabilizes the near-totals T2;3 and

T3;2 but the Z2 subgroup e¤ects T2;3 � T3;2:

Remark A.3 Just as stabfig e¤ects all 5! permutations of the �ve symbols 6= i; so
stab(Ti) e¤ects all 5! permutations of the �ve totals 6= Ti: Similarly both stab(sij) =
stab(Dij) and stab(Ti;j) e¤ect all 4! permutations of the four totals Tk; k 6= i; k 6= j:

A.2 Aspects of Sym(6) and Sp(4; 2)

A.2.1 Sp(4; 2) geometry in even hyperplanes

Let the 6-set B� = fp1; ::: ; p6g be a �hyperbasis� (= 6-arc) for V5 = V (5; 2): That is,
the only non-trivial linear relation satis�ed by the pi is �ipi = 0; so, for each of the six
choices of u 2 B�; we have a decomposition B� = B[fug where B = fe1; ::: ; e5g is a basis
and u = �5i=1ei is the �all-one�vector (projectively, the unit point) in that basis. Setting
pij = pi+ pj and pijk = pi+ pj + pk, take note that pijk = plmn holds for any permutation
ijklmn of 123456: Observe further that, in the projective space PG(4; 2) = PV5; the 15
points � = fpijg; of even weight in a(ny) basis B = B��fug; constitute a PG(3; 2), to be
referred to as the even hyperplane � of B�, or of B:
For � 2 Sym(6) we may de�ne an element A(�) of GL(5; 2) by A(�)pi = p�(i)

and thereby embed Sym(6) as a subgroup fA(�) : � 2 Sym(6)g of GL(5; 2): Under
the action A of Sym(6) the 31 points of PG(4; 2) split into the three orbits B�; � and

 = fpijkg = �c�B�; of respective lengths 6, 15 and 10. Now the hyperbasis B� gives
rise to a distinguished Sp(4; 2) geometry for the even subspace V4 = �[f0g of V5; namely
that determined by the scalar product x:y on V4 which satis�es

pij:pik = 1; pij:pkl = 0; (A.7)
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whenever i; j; k; l are distinct. If B(�) : pij 7! p�(i)�(j) denotes the restriction of A(�) to
the invariant subspace V4 of V5; then note that � 7! B(�) embeds Sym(6) as a subgroup
of GL(V4) �= GL(4; 2) which preserves the scalar product (A.7). Since Sym(6) has the
same order 720 = 6! as Sp(4; 2); we thus arrive at the isomorphism (i) in (A.1).
In projective terms the even hyperplane � of B� thus comes equipped with a distin-

guished null polarity. Of the 35 lines of the polar space �; �fteen are self-polar (�? = �)
and the remaining twenty are nonpolar (�?\� = ;); with the latter comprising ten polar
pairs f�; �?g: Explicitly the self-polar and nonpolar lines are of the respective forms

(i) �ij klmn = fpij; pkl; pmng and (ii) �ijk = fpij; pik; pjkg = (�lmn)?; (A.8)

the former being labelled by one of the 15 synthemes ij kl mn; and the latter by one of the
20 triples ijk: Relative to our choice of scheme (A.2), take note that the �fteen self-polar
lines may just as well be written �sij ; and so labelled by the �fteen duads ij rather than
by the �fteen synthemes.

A.2.2 Symplectic classi�cation of spreads in PG(3; 2)

There are precisely 56 spreads of lines in PG(3; 2), all equivalent under the action of
GL(4; 2); see [11, Section 17.1]. However, for our present purposes, we need to know the
split of this single GL(4; 2)-orbit into Sp(4; 2)-orbits. To this end, for a given choice of
symplectic geometry, let us say that a spread �5 in PG(3; 2) is of polar type (n; n0) if n
lines of �5 are self-polar and n0(= 5�n) lines are nonpolar. (The polar type (n; r�n) of
an Sr in PG(3; 2) is similarly de�ned for r < 5.) Clearly spreads of di¤erent type belong
to di¤erent Sp(4; 2)-orbits.
Since there exist precisely six totals, from (A.8i) there must exist precisely six spreads

of polar type (5; 0); namely �5(Ti); i = 1; ::: ; 6; where

�5(Ti) = f�sij : j 6= ig: (A.9)

Moreover, by use of the isomorphism Sp(4; 2) �= Sym(6); we see that these six spreads
belong to the same Sp(4; 2)-orbit.
Next there exist precisely

�
6
3

�
= 20 spreads of polar type (3; 2); namely those of the

form �5(ijk); for some choice of triple ijk; where

�5(ijk) = f�sij ; �sik ; �sjk ; �; �g; (A.10)

here the lines f�; �g are determined uniquely by the requirement that they extend the
three self-polar lines S3 = f�sij ; �sik ; �sjkg to a spread for PG(3; 2): Observe that the lines
of S3 are indeed pairwise skew; for example �sij is skew to �sik since sij and sik belong
to the same total Ti: Moreover the lines �; � are necessarily nonpolar, since a fourth self-
polar line would not be skew to at least one member of S3, for example �sil meets �sjk ;
since sil and sjk do not lie in a common total. Also one sees that � = �?:
If instead we start out from one of the 15 self-polar lines and seek extensions using

only nonpolar lines, then it is easy to see there are precisely two such extensions, leading
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to a Sp(4; 2)-orbit of 15 � 2 = 30 spreads of type (1; 4): For example the self-polar line
�(12 34 56) belongs to just the following two spreads of type (1; 4):

f�12 34 56; �135; �146; �236; �245g; f�12 34 56; �246; �235; �145; �136g: (A.11)

It is easy to check directly that there are no further spreads in PG(4; 2): Alternatively
the 6 + 20 + 30 spreads just described already account for the known total number 56 of
spreads. So we have proved the following lemma:

Lemma A.4 Under the action of Sp(4; 2) the 56 spreads of lines in PG(3; 2) fall into
three orbits of lengths 6; 20 and 30; which consist of spreads of the respective polar types
(5; 0); (3; 2) and (1; 4): �

A.3 Aspects of Sym(6) and O(5; 2)

A.3.1 O(5; 2) geometry and subspaces

Let us start from a 6-dimensional symplectic space V6 and choose, cf. [21], a basis
fa1; ::: ; a6g whose vectors are pairwise non-perpendicular, satisfying that is ai:aj = 1
for i 6= j: Set V5 =� n �?; where n = a1 + ::: + a6; so that V5 consists of those vectors
of V6 of even weight in the chosen basis. The 31 points of the associated projective space
PG(4; 2) are then: 15 points aij(= aji); 15 points vij(= vji) and n; where we de�ne, for
i 6= j;

aij = ai + aj; vij = n+ aij:

Using x:y for the scalar product on V5 (whose kernel is � n �), observe that the aij enjoy
the metrical properties

aij:aik = 1; aij:akl = 0; n:aij = 0; (A.12)

whence we also have aij:vik = 1 = vij:vik and aij:vkl = 0 = vij:vkl:
Let Q be that quadratic form on V5 such that Q(x) = 1 for x a vector of the basis

fa16; a26; ::: ; a56g and whose associated alternating form is x:y: It follows that Q(aij) =
1; Q(n) = 1; Q(vij) = 0: Thus Q = 0 is the equation of a parabolic quadric P4
in PG(4; 2); whose points are the 15 points fvij; i 6= jg; whose nucleus is n and whose
invariance group is O(5; 2): Now the symmetric group Sym(6) acts linearly upon the space
V6 via � 7! C(�); where C(�)ai = a�(i); and upon restriction to the invariant subspace
V5 we obtain a monomorphism Sym(6)! O(5; 2) : � 7! D(�); where D(�)aij = a�(i)�(j):
Since O(5; 2) has the same order 720 as Sym(6); we thus arrive at the isomorphism (ii) in
(A.1).

Remark A.5 We have encountered two subgroups of GL(5; 2) which are isomorphic to
Sym(6); namely the subgroup fA(�) : � 2 Sym(6)g of section A.2.1 and the subgroup
fD(�) : � 2 Sym(6)g of the present section. These two subgroups are not conjugate in
GL(5; 2); since, when acting on V5�f0g; the former has orbits of lengths 6; 15 and 10;
while the latter has, see the next lemma, orbits of lengths 15; 15 and 1: (By using E(�) =
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B(�)� I1 on V5 = V4 � V1 we obtain a third subgroup fE(�) : � 2 Sym(6)g �= Sym(6) of
GL(5; 2); this is not conjugate to either of the previous two subgroups, since unlike them
it has a decomposable action on V5:)

By using the foregoing 6-dimensional notation for the points, and by appealing to the
isomorphism O(5; 2) �= Sym(6); it is an easy matter, [20], [21], to classify, and list quite
explicitly, all subspaces of the orthogonal space (V5; Q): Let ijklmn denote, as usual, an
arbitrary permutation of 123456; and let us adopt projective language. Then, restricting
our attention to the points and lines of PG(4; 2), we have:

Lemma A.6 Under the action of O(5; 2) �= Sym(6) the 31 points of PG(4; 2) fall into
the three orbits of lengths 15; 1 and 15; namely the 15 points fvijg on the quadric P4; the
nucleus fng of P4 and the remaining 15 points faijg o¤ P4: The 155 lines of PG(4; 2) fall
into the �ve orbits

�1 : the 15 lines on P4, namely �(ij kl mn) = fvij; vkl; vmng;
�2 : the 15 nuclear tangents to P4, namely �(ij) = fn; vij; aijg;
�3 : the 45 other tangents to P4; namely �(ij; kl) = faij; akl; vmng;
�4 : the 20 external lines �(ijk) = faij; aik; ajkg;
�5 : the 60 bisecants �(i; jk) = fvij; vik; ajkg: �

A.3.2 The six spreads on a parabolic quadric P4
Since the 15 internal lines �1 of P4 are labelled by the 15 synthemes ij kl mn; we can
immediately deduce features of P4 from the Sym(6) material of section A.1.1. Since a
spread S5 on a P4 is, by de�nition, a partition of the 15 points of P4 into �ve skew lines,
and since each duad belongs to precisely three synthemes, we deduce:

Lemma A.7 There exist precisely six spreads on a P4; each S5 having pro�le (3; 3; 3)5;
the �ve lines �(ij kl mn) = fvij; vkl; vmng of the rth spread having their synthemic labels
ij kl mn drawn from the rth total Tr in the array (A.2). Each of the 15 lines � on
P4 belongs to precisely two of these spreads, the 12-set  = P�4 = P4�� being a non-
degenerate double-four, see section 3.3.1, partitioning in precisely two ways to yield partial
spreads S4 and Sopp4 ; each of pro�le (2; 2; 2)4; on P4. �

Thus if S5 = f�(si6) : i 6= 6g is the spread on P4 which uses the total T6 in the array
(A.2), and if S4 = S5�f�(s56)g; then, see (A.4),  4 =  (S4) is the double-four

 4 =

0BB@
� v16 v25 v34
v45 � v13 v26
v36 v24 � v15
v12 v35 v46 �

1CCA (A.13)

whose rows are the lines �(si6); i = 1; 2; 3; 4; of S4 and whose columns are the lines
�(s5j); j = 1; 2; 3; 4;of Sopp4 :
Also from lemma A.2 and remark A.3 we obtain:
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Lemma A.8 If S5;  4 and S4 are as in the preceding paragraph, then

(i) G(S5) �= Sym(5) (ii) G( 4) �= Sym(4)� Z2 (iii) G(S4) �= Sym(4):

Moreover G(S5); G(S4) e¤ect all permutations of the lines of S5; S4; respectively, and in
particular both S5 and S4 are cyclic. �

(Incidentally there are three kinds of cyclic S5 s in PG(4; 2); the other two belong-
ing to classes Ve.1 and Vj.1.) Let S5 = f�1; �2; �3; �4; �5g again be that spread on P4
corresponding to the total T6 in (A.2):

�1 = �(25 34 16); �2 = �(13 45 26); �3 = �(15 24 36);

�4 = �(12 35 46); �5 = �(14 23 56): (A.14)

Then for the 5-cycle � = (12345)(6) the element D(�) 2 O(5; 2) e¤ects the cyclic permu-
tation (�1�2�3�4�5) of the lines of S5: If we set ei = ai6 then fe1; :::; e5g is a basis with
u = n; and D(�) e¤ects (e1e2e3e4e5): In this basis the �ve lines of S5 in (A.14) are, in
abbreviated notation,

�1 = f134; 125; 1ug; �2 = f245; 231; 2ug; �3 = f351; 342; 3ug;
�4 = f412; 453; 4ug; �5 = f523; 514; 5ug; (A.15)

and the double-four  4 = P4��5 in (A.13) is

 4 =

0BB@
� 1u 134 125
231 � 245 2u
3u 351 � 342
453 412 4u �

1CCA : (A.16)

Starting from this 4 � 4 array we may recover �5; and the nucleus n = u; with the aid
of lemma 3.4. By taking advantage of the Z5-symmetry of S5 in (A.15), we see that the
equations fr s = 0 of the hyperplanes �rs = h�r; �si are given by the ten linear forms:

fr r+1 = xr + xr+1 + xr+3; fr r+2 = xr + xr+1 + xr+2; (A.17)

where the coordinates x1; :::; x5 are relative to the chosen basis, and where r runs through
1; 2; 3; 4; 5 mod 5:

Lemma A.9 A partial spread S5 in PG(4; 2) which is a spread on a P4 is necessarily of
type O (and hence so is S4 = S5�f�g):

Proof. The ten fr s in (A.17) are distinct, whence so are the ten hyperplanes h�r; �si :

(Alternative proof: if one regulus exists then, by the cyclic symmetry, at least �ve
exist; but, from (1.5) or theorem 1.6(b), N5 > 4 implies N5 = 10; which only occurs when
S5 is a spread in a hyperplane.)
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A.3.3 Extending an S5 on a P4 to an Smaxr

Let ijklmn be any permutation of 123456: Then take note that the twenty lines �(ijk) =
faij; aik; ajkg external to P4; see lemma A.6, partition into ten pairs of the kind f�; ��g;
where for � = �(ijk) we de�ne �� = �(lmn): In the coordinates xi; 1 � i � 5; used in
eq. (A.17), let the hyperplane �rs = h�r; �si have equation xi + xj + xk = 0; and observe
that the ten equations (A.17) make use of all ten linear forms which are of weight 3 in
the coordinates. Also note that �rs contains precisely two of the twenty lines which are
external to P4; namely �(ijk) = fij; ik; jkg and �(lm6) = fl;m; lmg: So we have part (i)
of the next lemma.

Lemma A.10 (i) For an S5 on a P4 each hyperplane �rs = h�r; �si contains precisely
two lines which are external to P4: The two lines form a pair f�; ��g; with all ten such
pairs arising from the ten hyperplanes �rs:
(ii) Every extension S6 of S5 is of class VIc.2.

Proof. (ii) Consider the extensions S6 = S5 [ f�ijkg and S�6 = S5 [ f�lm6g of
S5: Both extensions are of the form S3(I) [ S3(O) where, see the lead-in to the lemma,
S3(O) = S5�f�r; �sg and S3(I) is a regulus in the hyperplane �rs = h�r; �si; here S3(I) =
f�r; �s; �(ijk)g for S6 and S3(I) = f�r; �s; �(lm6)g for S�6 : Observe that f�r; �s; �(ijk);
�(lm6); �g is a spread for �rs whose �fth member � can only be the transversal of the
non-regulus S3(O): Consequently S6 and S�6 are of type I and moreover case (a) of (7.6)
applies. Upon inspection we see that, for the null polarity induced in the even hyperplane
�rs of S3(O); both �r and �s are self-polar, and both �(ijk) and �(lm6) are nonpolar lines.
Since for both S6 and S�6 the regulus S3(I) is thus of polar type (2; 1); each extension is,
see section 7.3.1, of class VIc.2.
If S5 is a spread on a P4 then the 16-set ( 5)c complementary to  5 =  (S5) consists

of the nucleus n of P4 and the remaining 15 points aij o¤ P4: If Sr = S5+t = S5 [ St is
an extension of S5 then St must consist of mutually skew lines chosen from the 20 lines
�(ijk): external to P4: If Sr is maximal then two cases arise: either (i) t = 2; or else (ii)
t = 4: In the former case it is easily seen that S2 must be one of the ten pairs f�; ��g just
described.
So let us consider the possibilities for S4 in case (ii), where we deal with an extension

S9 = S5[S4 of S5: The 4-set ( 9)c complementary to  9 =  (S9) consists of the nucleus n
of P4 together with three of the points aij; these three being of the form faij; akl; amng for
some syntheme ij kl mn: Observe that the 4-set ( 9)c is thus of the form ���(ij kl mn)
where � is a plane � in conformity with lemma 1.2(iii). Two subcases arise:

(iia) �(ij kl mn) 2 S5; (iib) �(ij kl mn) =2 S5: (A.18)

Without loss of generality we may suppose that S5 = f�(si6) : i 6= 6g is the spread on
P4 which uses the total T6 in the array (A.2). Since G(S5) is transitive both on the �ve
lines of S5 and on the ten other internal lines �1�S5; we may also suppose that the two
subcases to consider are:

(a) ( 9)c = ���(s16); (b) ( 9)c = ���(s23): (A.19)
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Consider  4 =  (S4) =  9�P4: Since �(s16) = �(25 34 16); if (A.19a) holds we see that
 4 = faijg1�i<j�6�fa25; a34; a16g has the double-four structure

 4 =

0BB@
� a12 a23 a13
a56 � a36 a35
a45 a14 � a15
a46 a24 a26 �

1CCA : (A.20)

Consequently the spread S5 on P4 has precisely two extensions to an S9 such that (A.19a)
holds, namely S9 = S5 [ S4 and S 09 = S5 [ S

opp
4 ; where

S4= f�(123); �(356); �(145); �(246)g; Sopp4 = f�(456); �(124); �(234); �(135)g (A.21)

are given by the rows and columns of the double-four array (A.20), and so are both of
class IVa.1. Since there are �ve choices for � 2 S5 in (A.18a), case (iia) gives rise to ten
extensions of S5 to an S9: Similarly, since �(s23) = �(12 34 56); if (A.19b) holds we see
that  4 = faijg1�i<j�6�fa12; a34; a56g has a double-four structure and that the spread S5
on P4 has precisely two extensions to an S9 such that (A.19b) holds, namely S9 = S5[S4
and S 09 = S5 [ S

opp
4 ; where

S4= f�(135); �(146); �(236); �(245)g; Sopp4 = f�(246); �(235); �(145); �(136)g (A.22)

are of class IVa.1. Since there are ten choices for � =2 S5 in (A.18b), case (iib) gives rise
to twenty extensions of S5 to an S9:

Theorem A.11 If S5 is a spread on a parabolic quadric P4 then its extensions to a
maximal partial spread are precisely those listed below:
(i) there are ten extensions of S5 to an Smax7 ; each of class VIIf.3;
(iia) there are ten extensions of S5 to an S9(X);
(iib) there are twenty extensions of S5 to an S9(I��):

Proof. This follows from our lead-in upon noting the following.
(i) Consider the extension Smax7 = S5[f�(123); �(456)g; and recall the proof of lemma

A.10. We have Smax7 = S4(
�
4
3

�
) [ S3(O) where S3(O) = f�2; �4; �5g and where S4(

�
4
3

�
) =

f�1; �3; �(123); �(456)g is of polar type (2; 2): Hence, see theorem 7.1, Smax7 is of class
VIIf.3.
(iia) If S9 = S5[S4 with S4 as in (A.21) then the four reguli of S9 are, by use of (A.17),

seen to be f�1; �2; �(356)g; f�1; �3; �(123)g; f�1; �4; �(145)g and f�1; �5; �(246)g; and so
S9 is of type X. By lemma A.10(i), the same regulus pattern holds if each �(ijk) 2 S4 is
replaced by �(ijk)� 2 Sopp4 ; and so S 09 = S5 [ S

opp
4 ; with Sopp4 as in (A.21), is also of type

X.
(iib) If S9 = S5 [ S4 with S4 as in (A.22) then the four reguli of S9 are, by use of

(A.17), seen to be f�2; �3; �(146)g; f�1; �(236); �4g; f�4; �(245); �5g and f�5; �(135); �1g;
and so, see section 4.3, S9 is seen to be of type I��. Again the same regulus pattern holds
if each �(ijk) 2 S4 is replaced by �(ijk)� 2 Sopp4 ; and so S 09 = S5 [ S

opp
4 ; with Sopp4 as in

(A.22), is also seen to be of type I��:
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B Appendix: Tables of results

B.1 Point-set orbits
Table B.1: the orbits of  (Sr); 1 � r � 9

�( ) jG( )j Signature ( ) Signature ( c)

Ia 64512 (3; 1; 0)(31)(30) (28; 112; 64)(2812)(2816)

IIa 1152 (6; 2; 0)(61)(60) (25; 78; 24)(169910)(16698)

IIIa 48 (9; 4; 0)(6132)(90) (22; 52; 8)(4612768)(16264)
IIIb 1152 (9; 6; 0)(92)(90) (22; 50; 8)(16669)(16264)

IVa 48 (12; 8; 0)(122)(120) (19; 33; 4)(1315537)(1313233)
IVb 6 (12; 8; 0)(316233)(120) (19; 33; 2)(349576)(6012112)
IVc 24 (12; 10; 0)(21326314)(120) (19; 31; 2)(2364652637)(808132)
IVd 9216 (12; 16; 0)(124)(120) (19; 25; 4)(16339)(16134)

Va 720 (15; 15; 0)(153)(150) (16; 20; 0)(10154)(160)
Vb 16 (15; 15; 0)(1113315)(150) (16; 20; 0)(22144)(160)
Vc 48 (15; 15; 0)(153)(150) (16; 20; 2)(3212416)(3012112)
Vd 6 (15; 15; 0)(329334)(150) (16; 20; 1)(736435)(9071)
Ve 10 (15; 15; 0)(525354)(150) (16; 20; 0)(5310415)(160)
Vf 8 (15; 17; 0)(22636415)(150) (16; 18; 1)(4263342516)(9071)
Vg 4 (15; 17; 1)(1122436425)(8071) (16; 18; 0)(32635425)(160)
Vh 48 (15; 19; 1)(9365)(8071) (16; 16; 0)(106294)(160)
Vi 384 (15; 23; 4)(2112517)(2012214) (16; 12; 0)(2012226)(160)
Vj 322560 (15; 35; 15)(157)(157) (16; 0; 0)(160)(160)

VIa 48 (18; 26; 0)(12465)(180) (13; 12; 1)(624334)(6071)
VIb 16 (18; 26; 0)(238485)(180) (13; 12; 0)(428314)(130)
VIc 36 (18; 28; 0)(33155)(180) (13; 10; 0)(109234)(130)
VId 48 (18; 28; 0)(64125)(180) (13; 10; 1)(614334)(6071)
VIe 4 (18; 28; 2)(23646546)(708132) (13; 10; 0)(21624314)(130)
VIf 16 (18; 28; 2)(4313517)(708132) (13; 10; 0)(11224)(130)
VIg 32 (18; 30; 4)(84454627)(81102) (13; 8; 0)(418214)(130)
VIh 8 (18; 30; 3)(1344854617)(301014213) (13; 8; 0)(10414243)(130)
VIi 144 (18; 32; 3)(15537)(3012133) (13; 6; 0)(4092)(130)
VIj 192 (18; 34; 8)(438667)(40144) (13; 4; 0)(408114)(130)

VIIa 1008 (21; 42; 0)(216)(210) (10; 8; 1)(3173)(3071)
VIIb 32 (21; 44; 4)(45868718)(8012214) (10; 6; 0)(414223)(100)
VIIc 16 (21; 46; 7)(25868738)(201225325) (10; 4; 0)(204142)(100)
VIId 48 (21; 46; 8)(15668)(1012284) (10; 4; 0)(9113)(100)
VIIe 48 (21; 48; 9)(6612738)(6212335) (10; 2; 0)(4061)(100)
VIIf 720 (21; 50; 15)(65158)(60157) (10; 0; 0)(100)(100)

VIIIa 64512 (24; 64; 0)(248)(240) (7; 7; 1)(73)(71)
VIIIb 768 (24; 68; 16)(188610)(2016468) (7; 3; 0)(6113)(70)
VIIIc 144 (24; 70; 21)(98129310)(9412739) (7; 1; 0)(4031)(70)

IXa 9216 (27; 101; 54)(2411313)(2413322) (4; 0; 0)(40)(40)
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B.2 Partial spread orbits
Table B.2a: the classes of partial spreads Sr; 1 � r � 6

�(Sr) Nr Type G(Sr) pro�le(Sr) Notes
Ia.1 0 O 64512 (111) 26:(L2(2)�L3(2))
IIa.1 0 O 1152 (111)2 {24:(L2(2)�L2(2))g:2

IIIa.1 0 O Sym(4)� Z2 (112)3 §3.2, non-regulus, cyclic
IIIb.1 1 I 576 (222)3 §3.1, regulus, cyclic

IVa.1 0 O Sym(4) (222)4 §3.3.1, cyclic
IVb.1 0 O Sym(3) (123)3(222) §3.3.2
IVc.1 1 I Sym(3)� Z2 (233)3(114) §3.1, §3.5, eq. (3.28)
IVd.1 4

�
4
3

�
1152 (444)4 §3.1, cyclic

Va.1 0 O Sym(5) (333)5 §3.4, §A.3.2, cyclic
Vb.1 0 O D8 (333)4(135) §3.4
Vc.1 0 O Sym(3)� Z2 (333)5 §3.4
Vd.1 0 O Z3 (234)3(333)2 §3.4
Ve.1 0 O Z5 (234)5 §3.4, cyclic
Vf.1 1 I Z2 (344)2(335):(234)2 §3.5
Vg.1 1 I Z2 (344)3:(135)(225) §3.5
Vh.1 2 L D8 (355):(335)4 §3.5, lemma 4.1
Vi.1 4

�
4
3

�
Sym(4)� Z2 (555)4:(117) §3.1

Vj.1 10
�
5
3

�
24:�L(2; 4) (777)5 §3.1, maximal, cyclic

VIa.1 0 O Z6 (445)6 §6.2, cyclic
VIb.1 0 O Z2 (355)2(445)4 §6.2
VIc.1 1 I Sym(3) (555)3:(355)3 §7.3.1
VIc.2 1 I Sym(3) (555)3:(355)3 §7.3.1
VId.1 1 I Sym(3) (555)3:(445)3 §7.3.1
VId.2 1 I Sym(3) (555)3:(445)3 §7.3.1
VIe.1 1 I 1 (456)2(555):(346)2(445) §7.3.1
VIe.2 1 I 1 (456)2(555):(346)2(445) §7.3.1
VIf.1 1 I Z2 (555)3:(355)2(337) §7.3.1
VIg.1 2 II Z4 2� (456)2(447) §7.2.1
VIh.1 2 L 1 (566):(456)2(447)(555):(355) §4.2, lemma 4.2
VIh.2 2 L Z2 (557):(456)4:(355) §4.2, lemma 4.2
VIi.1 3 � Sym(3) (557)3:(555)3 §4.2, lemma 4.3
VIj.1 4

�
4
3

�
D8 (667)4:(337)2 §7.1, lemma 7.2
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Table B.2b: the classes of partial spreads Sr; r > 6
�(Sr) Nr Type G(Sr) pro�le(Sr) Notes
VIIa.1 0 O 7:3 (666)7 §6.1, cyclic
VIIb.1 1 I Z2 (668)(677)2:(567)4 §7.3.2
VIIb.2 1 I Z2 (677)3:(558)(567)2(666) §7.3.2
VIIb.3 1 I Z2 (677)3:(558)(567)2(666) §7.3.2
VIIc.1 2 II Z4 {2� (668)(677)2g:(558) §7.2.2, lemma 7.3
VIIc.2 2 II Z4 {2� (668)(677)2g:(558) §7.2.2, lemma 7.3
VIIc.3 2 L Z2 (778):(668)2(677)2:(567)2 §4.4
VIIc.4 2 L Z2 (778):(668)2(677)2:(567)2 §4.4
VIIc.5 2 L 1 (778):(668)2(677)2:(567)2 §4.4
VIIc.6 2 L 1 (778):(668)2(677)2:(567)2 §4.4
VIId.1 2 II 1 (668)6:(666) §7.2.2, lemma 7.3
VIIe.1 3 � Sym(3) (778)3:(677)3:(666) §4.3, theorem 4.5
VIIe.2 3 � Z3 (778)3:(677)3:(666) §4.3, theorem 4.5
VIIe.3 3 � Z2 (778)3:(677)3:(666) §4.3, theorem 4.5
VIIe.4 3 Y Z6 (888):(677)6 §4.4
VIIe.5 3 F Z2 (778)2:(668)(677)4 §4.4
VIIf.1 4

�
4
3

�
(4;0)

Sym(4) (888)4:(558)3 §7.1, maximal
VIIf.2 4

�
4
3

�
(0;4)

Sym(4) (888)4:(558)3 §7.1, maximal
VIIf.3 4

�
4
3

�
(2;2)

Sym(3)� Z2 (888)4:(558)3 §7.1, maximal

VIIIa.1 0 O 23: F21 (888)8 §6.1, transitive
VIIIb.1 2 II Z2 (88t)6:(888)2 §5.2
VIIIc.1 3 � Sym(3) (99t)3:(899)3:(888)2 §4.3, thm 4.5, §5.2
VIIIc.2 3 � Z3 (99t)3:(899)3:(888)2 §4.3, thm 4.5, §5.2
VIIIc.3 3 � Z2 (99t)3:(899)3:(888)2 §4.3, thm 4.5, §5.2
VIIIc.4 3 Y Z3 (ttt):(899)6:(888) §5.2
VIIIc.5 3 I�L Z2 (99t):(899)2(88t)2j(899)3 §5.2
VIIIc.6 3 I�L Z2 (99t):(899)2(88t)2j(899)3 §5.2
VIIIc.7 3 F 1 (99t)2:(888)(899)4:(888) §5.2

IXa.1 4 X Alt(4)� Z2 (13; 13; 13):(11; 11; 11)8 §5.1, thms 5.1, 6.2, maximal
IXa.2 4 I�� Sym(3) (11; 11; 13)3:(11; 11; 11)6 §5.1, thm 5.1, maximal
IXa.3 4 I�� Sym(3) (11; 11; 13)3:(11; 11; 11)6 §5.1, thm 5.1, maximal
IXa.4 4 E Z6 (11; 11; 13)3:(11; 11; 11)6 §5.1, thm 5.1, maximal

B.3 Notes to the tables

B.3.1 Table B.1

(i) By appeal to table B.1, the GL(5; 2)-orbit of the underlying set  =  (Sr) of a given
partial spread Sr can be found as follows. Compute either signature( ) or signature( c);
whichever is easiest, and then, with one exception, the orbit may be read o¤ from ta-
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ble B.1: The one exception is of orbits Va and Vc, both of which have signature( ) =
(15; 15; 0)(153)(150); but these two orbits are still distinguished by  c having di¤erent
signatures.
(ii) A point-set  (Sr) de�nes uniquely a homogeneous polynomial f of reduced degree

� 3 in the coordinates x1; ::: ; x5 such that if r is odd then  has equation f(x) = 0;
while if r is even then  c has equation f(x) = 0; see [23], [19]. In [7], all point-sets  
de�ned in terms of a homogeneous polynomial f of reduced degree � 3 were classi�ed into
GL(5; 2)-orbits; also for each orbit the signature, along with a representative polynomial
f; was computed. From [7, Table 8.4.6] it is seen that, even for these more general point-
sets  , the pair fsignature( ); signature( c)g su¢ ces to distinguish between the various
GL(5; 2)-orbits. (It should be mentioned that most of the computations in [7] were carried
out using a combination of specially written Pascal code and Mathematica [29]; for details,
see [7, Section 8.4] and [8].)
For j j = 24 there are three orbits, all being represented by a  of the form  (S8); for

j j = 21 there are seven orbits, all but one being represented by a  of the form  (S7);
and for j j = 18 there are twelve orbits, all but two being represented by a  of the form
 (S6): (Of the eighteen orbits in [7] for j j = 15; eight do not arise from a  (S5); and of
the twelve orbits for j j = 12; eight do not arise from a  (S4):)

B.3.2 Tables B.2a and B.2b

A pro�le (1; 2; 3)3(2; 2; 2); see section 1.1, is written (123)3(222):We use t as an abbrevia-
tion for 10: Dots are used to separate groups of lines of the same valency, with the valencies
occurring in descending order. Thus for an S6 of type L a pro�le (557):(456)4:(355) con-
veys the information that the line of valency 2 has pro�le (5; 5; 7); each of the four lines
of valency 1 has pro�le (4; 5; 6) and the line of valency 0 has pro�le (3; 5; 5): The entry
2�(456)2(447) for the pro�le of class VIg.1, of type II, indicates that both reguli contribute
(4; 5; 6)2(4; 4; 7) to the overall pro�le.
VIIe.5. There are �ve lines of valency 1, and one of these forms a regulus with the

two lines of valency 2; it is this line which has pro�le (6; 6; 8); and the other four which
have pro�le (6; 7; 7):
VIIIc.7. A similar remark applies concerning the line of valency 1 and pro�le (8; 8; 8):
VIIIc.5, c.6. In the case of an S8 of type IL the 7 lines of valency 1 have a natural 4+3

split, with the 3 forming the stand-alone regulus. A vertical line j is used to separate the
pro�le of the 4 from that of the 3:

Reguli reversals. If a partial spread Sr contains a regulus � then we may obtain another
partial spread S 0r by reversing the regulus �; that is by replacing � by �opp: Since Sr and
S 0r share the same point-set  (Sr) =  (S 0r); it follows from eq. (1.4) that reguli reversals
do not change the number of reguli : N(Sr) = N(S 0r): Moreover in the cases r � 5 the
partial spreads Sr and S 0r necessarily belong to the same class since, as pointed out in
section 2.1, the orbit �( ) of the underlying point-set  (Sr) su¢ ces to distinguish the
classes of Sr if r � 5: For r > 5 some reguli reversals � � �opp do result in Sr and S 0r
belonging to di¤erent classes. Examples include the following pairs of classes which are
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interchanged under a (suitable) regulus reversal:
Type I: VIc.1 & VIc.2; VId.1 & VId.2; VIe.1 & VIe.2; VIIb.2 & VIIb.3.
Type L: VIh.1 & VIh.2. Type II: VIIc.1 & VIIc.2.
Type IL: VIIIc.5 & VIIIc.6. Type I�: IXa.2 & IXa.3.
Types X & E: IXa.1 & IXa.4.
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