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Abstract

We consider partial spreads S, of r (> 0) lines in PG(4, 2), and obtain a complete
classification, summarized in tables in appendix B. Under the action of GL(5,2)
there are sixty-four distinct classes of partial spreads. The maximal partial spreads
account for eight of these classes, one class of size r = 5, three of size 7 and four
of size 9. Several of the non-maximal classes are not without interest, including
a regulus-free Sg whose stabilizer = 23:F9;, of order 168, acts 2-transitively upon
the eight lines. Various invariants (regulus type, signature, profile, symplectic type)
are employed to aid the allocation of a partial spread to its class. Even in cases of
inequivalent partial spreads having the same invariants, we provide at least one way
of distinguishing between them. Several examples are given of applications of the
classification, involving flats external to the Grassmannian Gj 42 in PG(9,2), and
also spreads of lines in PG(5, 2).
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1 Partial spreads in PG(4,2) and their reguli

1.1 Introduction

We will be dealing with partial spreads S = S, = {A1, ..., A\, } of 7 (> 0) lines in PG(4, 2).
(For partial spreads in PG(n, ¢) for other values of (n,q), see [1], [27] and the web page
[26].) Because the field is GF(2) we will usually identify the 31 points of the projective
space PG(4,2) = PV(5,2), acted upon by PGL(5,2), with the corresponding non-zero
vectors of the vector space Vs := V/(5,2), acted upon by GL(5,2). We wish to classify all
partial spreads in PG(4,2) under the action of GL(5,2). We will be especially interested
in maximal partial spreads, that is in those which admit no extension to a larger partial
spread. Two partial spreads which belong to the same GL(5,2) orbit will be termed
equivalent. Let us agree upon the following notation:

S=3S8,={\, ..., \}, aset of r (> 0) mutually skew lines in PG(4, 2);

Y =1(S,) = A1 U ... U, the underlying point-set; so || = 3r;

1® = the complement of the subset ¢ C PG(4, 2);

L(v)) = #{internal lines of 1 };

L'(¢) = #{external lines of ¢} (= L(1)°));
(1) = orbit of ¢ under the action of GL(5, 2);
(S)

©

©(S) = orbit (equivalence class) of S under the action of GL(5, 2);
G(1) = subgroup of GL(5,2) which fixes 1) set-wise;

G(S) = subgroup of G(¢)) which permutes the elements \; of S;



<1, ..., V. == vector subspace of V5 spanned by vectors vy, ..., v, € V5;

(v1, ..., v.) = projective subspace of PG(4, 2) generated by points vy, ..., v, € PG(4,2).

oij = (i, Aj) , the solid (hyperplane, PG(3,2)) generated by A; and Aj;

T,k = (a) transversal of the triple of lines {\;, A\;, \y} C S;;

p = a regulus in a PG(3,2); p°*? = the opposite regulus;

o(p) = 04, = the ambient PG(3,2) of a regulus p = pijr = {Nis Aj, A}

N, = the number of reguli contained in &, ;

‘H = a hyperbolic quadric Hs in a PG(3, 2);

Py = a parabolic quadric (in PG(4, 2)).

Let us record here the following well-known facts concerning a hyperbolic quadric
H C o, where o denotes the ambient PG(3,2) of H. The 6-set o \'H consists of a pair
w, it of skew lines, and if 4 = {a,b,c} and p/ = {a',0', ¢} then the nine points of the
quadric ‘H may be displayed as a 3 x 3 array

a+ad b+V c+
H=| b+ c+d a+l |. (1.1)
c+b a4+ b+d

Recall that H has six generators (L(H) = 6), one set of three generators constituting
the regulus p whose lines are given by the three rows of (1.1), and the remaining three
generators constituting the opposite regulus given by the three columns x = p°P? of (1.1).
Moreover the underlying set of any regulus in a PG(3,2) is a hyperbolic quadric.

A transversal of the triple {\;, A;, Ay} C S is a line 7 which meets each of the three
lines i, Aj, Ag; it will sometimes also be referred to as a transversal of S. For ¢ = ¢(S,),
with r > 3, it should be noted that there will always exist transversals which, along
with the r lines \; € S,, will contribute to the number L(1)) of internal lines. This is so
because each three members of S will possess (since we are in projective dimension 4)
at least one transversal, which latter (since we work over GF(2)) will lie completely in
1. (See lemma 1.3 below.) Given a line A = {p1,ps2,p3} € S, suppose that the point p;
lies on m; — 1 transversals, and hence on m; of the L(1) lines of ¢(S). We record this
information as profile(A) = (mq, mg, m3). Of course m; > 1; usually we order the points
of A so that m; < my < ms. A line A € S for which m; = my = ms will be said to be
balanced; otherwise we say it is unbalanced, or also (mq, ms, ms)-unbalanced. The profile
of a partial spread S, is obtained by combining together the r profiles of its constituent
lines. For example a statement profile(S;) = (5,6, 7)2(6, 6, 8)%(6,7,7)*(7,7,8) means that
two lines of S; have profile (5,6, 7), two have profile (6, 6, 8), two have profile (6,7,7) and
one line of S; has profile (7,7,8). The slightly more refined version of the profile used in
tables B.2a and B.2b is explained in section B.3.2.

A partial spread S, is transitive if G(S,) is transitive on {\q, ..., A\, }. If S, is transitive
then each of its lines must have the same profile, and so the profile of S, has to be of the
form (mq, ma, m3)", where the integers m; > 0 satisfy (m; + mse + mg)r = 3L. Amongst
the transitive partial spreads S, are the cyclic ones, for which G(S,) contains a cyclic
subgroup = Z, which is transitive on {Aq, ..., A\, }.



The signature of a point-set 1) will be as used in [7]. For example, signature(y)) =
(15,23,4)(2112517)(2°1221%) conveys the information that the point-set 1 contains (|| =)
15 points, (L =) 23 lines and 4 planes; moreover each of 2 of the 15 points lies on just 1
of the 23 lines, each of 12 of the points lies on 5 of the lines, and 1 of the points lies on
7 of the lines; also 2 of the points lie on none of the 4 planes, 12 of the points lie on 2 of
the planes, and 1 of the points lies on all 4 of the planes.

We will find very useful the somewhat surprising fact that the sum L(v) + L'(¢))
depends only upon ||, and not upon the orbit ©(1)) of v:

Lemma 1.1 For any point-set v C PG(4,2) let k = k(¢) = || — 15. Then
L(y) + L'() =35+ k(k —1)/2. (1.2)

In particular (1.2) holds in the cases ¥ = ¥(S,), k = 3r — 15, and then the values of
L(y) + L'(v) are as follows

r= 1 2 3 4 5 6 7 8 9

L+L'= 113 80 56 41 35 38 50 71 101 (13)

Proof. Set n =4 in the PG(n, 2) result [24, Theorem 1.1]. =
By part (ii) of the next lemma there was no need to include the value r = 10 in (1.3).

Lemma 1.2 (i) If = ¢(S;) then 3,z =0and 3 .x=0.
(ii) Partial spreads of 10 lines do not exist in PG(4,2).
(11i) For a partial spread of 9 lines the complementary 4-set 1 is a (plane\line).

Proof. (i) This holds since } .,z = 0 for each A € S,, and since } pgu2 ¢ = 0.
(ii) From > ..z = 0 it follows that 1) cannot be a single point.

(iii) This follows since ) .2 =0. =

1.2 Reguli and reguli patterns

A partial spread S, = {\1, ..., A} of r (> 3) lines in PG(4, 2) will be termed regulus-free,
or also non-degenerate, whenever (\;, A\j, \y) = PG(4,2) holds for each triple of lines of
S,. In the degenerate cases there is at least one triple such that (\;, A;, \x) = PG(3,2),
that is such that {\;, A\;, Ay} is a regulus. Take note that if S, contains a requlus p then
another partial spread S’ can be obtained by replacing p by p°®®. In this connection it
should be borne in mind that although the subgroup O™ (4,2) of GL(4, 2) which preserves
a quadric H = ¥(p) = (p°’?) lying in a PG(3,2) contains elements which interchange p
and p°PP it does not follow thereby that S, and S are equivalent.

Lemma 1.3 For an S, in PG(4,2) the number N, of reguli of S, and the total number
L of internal lines of ¥(S,) are related by

o+ (;) +2N, = L. (1.4)



Proof. The r members of S, give rise to (;) triples of lines. Each non-degenerate
triple has a unique transversal, while each triple which is a regulus has 3 transversals (the
members of the opposite regulus). =

Given a partial spread S, in PG(4,2), let R;;;, for distinct 4, j, k, carry the meaning
that the triple of lines {\;, A\;, Ay} C S, is a regulus. It will turn out, see corollary 5.2,

that the only reguli patterns which can arise are those listed in the second column of the
following table 1.

Table 1 The possible reguli patterns

Regulus Pattern Type Types for S,\{\}
regulus-free @) )

Rio3 | I (lf r > 3), (0]
R123, R456 [ 1 (lf r> 6) I
Rya3, R3as

Ri23, Rase, Rers
Ri23, Rya5, Rig7 Y (if r >7), L,
Ri23, Ri45, Ros7 F (1f r>17), 1,

L

IL L, I, |

Y

F Y
Ri2s, R3a5, Rs61 A A (if r > 6),

1A

X

E

L (ifr>5),1,0
0

L, I

L

Ry23, Rays, Rse1, Rrsg AL I

Ry23, Ri45, Ri67, Risg Y, O

Ri93, Ryas, Rogr, R3sg F

Ry23, Ri24, Ry34, Ro34 4) (if r > 4), |

(I
Ry, 1<i<j<k<5 () (5 (r=5)

For convenience we also record the pattern in abbreviated form, referred to as the
regulus type, see the third column of the table. Hopefully the symbol which we adopt for
the type immediately conveys the pattern. Thus in the case of type X, the four arms of
the symbol X represent the presence of four reguli, and the fact that the centre of the X
lies on all four arms indicates that one of the lines, A\; for the pattern in the table, belongs
to all four reguli. A partial spread Sy of type X will be referred to as an Sg(X); a similar
interpretation applies to S5(0), Sg(A), Sy(ll), .... . For A € S, the possible reguli types
for S,_1 = S§;\{A} are listed in the final column of the table. Since r < 9, see lemma
1.2, and since types IA, X, E require r = 9, these three types can not occur in the final
column.

%A%p&wwwwwwr—koz

—
e}

Remark 1.4 Certain other feasible types, for example type W, with pattern R123, Rsss5, Rse7,
R7gg, and type LV, with pattern Ris3, R3ss, Rse7, Rsg9, do not appear in the table because,
see corollary 5.2, they are not possible for a partial spread in PG(4,2). Incidentally it will
later emerge that there are just two classes of partial spread Sy of type IA, and it then
proves useful to refer to them as I’A and I®A, see theorem 4.5. These two classes of Sg
give rise to two classes of Sg of type IL, and these will be referred to as I’L and 1L, see
section 5.2.



1.3 Maximal partial spreads and reguli types

1.3.1 Types (;) and ()

In PG(3,2) there exists a projectively unique spread Y5 of five lines, see [11]. Since any
Sz in PG(3,2) is a regulus, the spread Y5 is of type (3) Moreover any Sy in PG(3,2) is
also projectively unique, of the form X5\ {A}, and so necessarily of type (3) In PG(4,2)
observe that

Rijr & Riji = Ry & Rjp, (1.5)

since if {\;, Aj, \g} and {\;, Aj, A} are both reguli then the four lines A;, A;, Ax, A; lie in
a common PG(3,2) and constitute an Sy in the PG(3,2).

Lemma 1.5 (i) A partial spread Ss in PG(4,2) which is a spread in a PG(3,2) subspace
o is a mazimal partial spread in PG(4,2).

(i1) If Sy in PG(4,2) is of type (g) then S, lies in some hyperplane o, and so is of the
form LsN\{\} where X5 is a spread in o.

(111) Suppose that S, is a partial spread in PG(4,2) which is an extension of an Sy of
type (g) Then either
(a) S, is of type (g) and is a spread X5 in a hyperplane, or
(b) r =15, 6 or7 and S, is itself of type (g)

(iv) Any S7 of type (g) is maximal.

Proof. (i) Any line in PG(4, 2) intersects o, and hence meets a line of S5; thus S5 can
not be extended to an Sg.

(ii) This follows from (1.5) and surrounding remarks.

(iii) By (i) Ss = Es\{A} where ¥5 = {A1, Ag, A3, Ay, A} is a spread in a hyperplane
0. Extending S, using A yields the possibility (a) in part (iii). If instead, possibility
(b), lines A5, Ag, A7, ... other than A\ are used to extend S, these must meet o in distinct
points as, ag, az, ... of \. But A only has 3 points, whence r < 7. We still need to show
that for possibility (b) no further reguli are present. Suppose, to the contrary, first of
all that {\;, A5, \¢} is a regulus p for some i € {1,2,3,4}. Now for some = € A; the line
i = join(as, z) will belong to p°*? and so meet A¢ in some point b. But p C o, and so
b = ag. Hence p = join(as, ag) = A, which is impossible since = can not lie on both lines of
the skew pair \;, A. Suppose secondly (for r = 7) that {5, A\g, A7} is a regulus p, and so
A = {as, a6, a7} € p°*P. Choosing v € p v # A, the point p = v N o lies on A; for some
Jj €1{5,6,7}; but p € o\ { A} and so p also lies on \; for some i € {1,2,3,4}, contradicting
S; being a partial spread. (Alternatively, {5, A\s, A7} being a regulus would yield N; > 5,
contradicting the result N; < 4 in (1.6d) below.)

(iv) Such an &7 is an extension of an S, of type (g), and so, see the proof of r < 7 in
(iii), can not extend to an Sg. m



1.3.2 The possibilities for (L, L', N,)

Theorem 1.6 For a partial spread S, in PG(4,2), the only possibilities for L, L', N, and
requlus type are as given in table 2. In particular:

(a’) N4 ¢ {273}; (b) N5 ¢ {37576777 879}; (C) N6 < 4;

(d) Ny <4; (e) Ns <3, but Ng#1; (f) Ng = 4. (1.6)
Table 2 Possibilities for L, L', N, Table 2 (Cont.)
r L L' N, Types r L L' N, Types
3 6 50 1 | 6 30 8 2 LI
4 52 0 O 28 10 1 |
416 25 4 (3 26 12 0 O
10 31 1 | 7 50 0 4 (3);max
8 33 0 O 48 2 3 FVYA
5 35 0 10 (3); maximal 46 4 2 LI
23 12 4 (Z) 44 6 1 |
19 16 2 L 42 8 0 O
17 18 1 | 8 70 1 3 FY,ILA
15 20 0 O 68 3 2 Il (notL)
6 34 4 4 (3 64 7 0 O
32 6 3 A 9 101 0 4 E, IA, X; max

Proof. Most of the entries in table 2 follow immediately from eqgs. (1.3) and (1.4).
For example if » = 7 then (1.3) and (1.4) assert L + L' = 50 and 42 + 2N, = L; hence the
only possibilities for (L, L', N;) are the five listed in the table. In particular, since L' > 0,
we have L < 50 and so N; < 4, as stated in (1.6d). Similarly Ng < 3, as stated in (1.6e).
If =9 then (1.3) and (1.4) assert L+ L' = 101 and 934 2Ny = L; but L’ = 0, by lemma
1.2, and so Ny = 4, as stated in (1.6f).

Concerning (1.6a,b), these follow from the results in section 1.3.1. In particular from
eq. (1.5) we see that Ny > 1 implies V; = 4; similarly N5 > 2 implies N5 > 4 and N5 > 4
implies N5 = 10.

Concerning (1.6¢), the possibility (L, L', Ng) = (36,2,5) for an S is ruled out, since
an extension to an Sy would then exist (because L’ > 0) and have N; > 5, contradicting
(1.6d) N7 < 4. The only other possibility (L, L', Ng) = (38,0,6) for an S is also ruled
out: an Sg with Ng = 6 would, by (1.5), contain an S; of type (g) and hence by lemma
1.5(iii) be also of type (‘31), having Ng = 4 contradicting Ng = 6.

We have still to prove Ng # 1. Suppose to the contrary that an Sg had (L, L', Ng) =
(66,5,1). Then 1(Ss)® would be a 7-set having five internal lines, which is not possible.
(A 7-set in PG(4,2) with > 5 internal lines is necessarily a plane, having 7 internal lines.)

Concerning the final column of the table, we delay until corollary 5.2 the proof that
no other reguli types occur. m



Theorem 1.7 If S, is a mazimal partial spread of v lines in PG(4,2) then one of the
following holds:

(a)r =5, Ns=10; (b)r=7 Ny=4; (c)r=9, Ny=4. (1.7)
Moreover each of the possibilities (a)-(c) is realized.

Proof. From table 2 the possibilities (1.7a,b,c) are the only ones for which L' = 0.
Possibilities (a) and (b) are realized, see lemma 1.51,iv (and also section 7.1 for more
details). Concerning possibility (c), see section 5.1 for its realizations. =

1.3.3 The possible regulus types for an S

Given a partial spread S, = {1, ..., A\, } which contains N, reguli, suppose that \; belongs
to precisely n; of these reguli. We refer to n; as the valency of the line )\;. Observe that
these valencies satisty ¥7_,n; = 3N,.

Lemma 1.8 For an Sy the valencies ny, ...,ng satisfy
(i) X9_n; = 12, (ii) n; > 0. (1.8)

Proof. Since Ny = 4, result (i) follows. Concerning (ii), if a line \; € Sy were to have
n; = 0 then Sg = So\{\;} would have 4 reguli, contradicting the fact, see eq. (1.6e), that
Ng <3 =

Let types LV and W be as described in remark 1.4.

Lemma 1.9 A Sy has regulus type X, LV, E, IA or W.

Proof. After a suitable re-labelling, only three possibilities are allowed by lemma 1.8,
namely

() ng =4, ng= ... =ng=1; (1.9)
(b)yny =3, ne =2, n3= ... =ng =1
(c)np=ng=ng=2,ng= .. =ng=1.

Bearing in mind the result (1.5), the only possible types for the four reguli of an Sy are

correspondingly
(a) X; (b)LV; (c) E, 1A, W. (1.10)

(In fact types LV and W do not occur, see corollary 5.2.) =

Corollary 1.10 FEvery Sy contains an Ss of type L. B



1.4 Further considerations
1.4.1 Dual partial spreads

Nonzero elements of the vector space V" dual to V,, are identified with the points of the
dual projective space PG(n — 1,2)* = PV*. Recall that the annihilator U° = {f €
V¥ f(u) =0, for all w € U} of any subset U C V,, is always a subspace of V*; moreover
if dim < U >== k then dimU°® = n — k. We use the same notation also for projective
subspaces. Thus if « is a plane in PG(4,2) then a© is a line in PG(4,2)*.

Quite generally the notion of a partial spread dualizes to yield the notion of a dual
partial spread. In the present case of PG(4, 2) a dual partial spread P, of size r(> 1) is a set
{m1, ..., m} of r planes in PG(4.2) such that (m;, 7;) = PG(4,2) for each i # j. By setting
pi = (m;)° note that dual partial spreads P, = {my, ..., 7, } in PG(4,2) are in bijective
correspondence with partial spreads S = {uf, ..., p} in the dual space PG(4,2)*. (The
condition (m;, 7;) = PG(4,2) is equivalent to the condition y; N p; = (0.) Consequently
the classification of partial spreads in PG(4,2) obtained in this paper amounts also to a
classification of dual partial spreads in PG(4,2).

See section 2.3.2 below for an instance where duality considerations bear fruit.

1.4.2 The Grassmannian G; 42 in PG(9,2)

Along with the vector space V5 := V(5,2), and its projective space PG(4,2) = PVj, we
have the associated space Viy := A?V5 of bivectors, and its projective space PG(9,2) =
P(A2Vs). Each A € GL(5,2) gives rise to a corresponding element Ty = A2A of GL(Vy)
whose effect on the decomposable bivectors u A v € Vig is Ta(u A v) = Au A Av,
A € GL(5,2). Under the action T' of GL(5,2) the projective space PG(9,2) is the union
Rky URKy of two GL(5,2)-orbits, consisting of those bivectors having rank 2 and rank
4, respectively. The Grassmann map < u,v =—< u A v > sends the 2-spaces of Vj
to those l-spaces of A%Vs which are spanned by decomposable bivectors. Projectively,
the lines of PG(4,2) are mapped onto the points of the orbit Rks, the latter, being the
Grassmannian G142 C PG(9,2) of lines of PG(4,2), having length 155. Consequently
| Rky| = 1023 — 155 = 868. (Similarly the projective space PG(9,2)* := P(A3V3) is the
union of two orbits of lengths 155 and 868; using the Grassmann map < u,v,w =—=<
u A v Aw >, the 155 planes of PG(4,2) are mapped onto the 155 points of the Grass-
mannian Gs 42 C PG(9,2)*.)

Let C. = {my, ...,m,} C PG(9,2) denote the Grassmann image of a partial spread
S, = {p1, ...,y } in PG(4,2). Observe that the study of partial spreads S, in PG(4,2)
is equivalent to the study of r-sets C, = {m4, ...,m,} in PG(9,2) which satisfy the two
conditions

(i) C, C Rka(= Gya2); (ii) m; +m; € Rky, for each i # j. (1.11)
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2 Outline and outlook

2.1 Overview

In this paper we will obtain a classification, summarized in tables B.2a and B.2b (see
appendix B) of all the partial spreads S, of lines in PG(4, 2). The various GL(5, 2)-orbits
of the underlying point-sets ¢)(S,) which occur are classified in table B.1. In these tables
roman numerals are used to indicate the value of r. Thus the six orbits for a 1(S7) are
labelled VIla, VIIb, ..., VIIf. Also the five equivalence classes of partial spreads S; whose
point-sets lie on the orbit VIle are labelled VIle.1, VIle.2, ... VIIe.5.

Up to the action of GL(5,2) we will show that there are exactly 64 distinct classes of
partial spreads, the number s, of equivalence classes of partial spreads S, of size r being

s1=1,80=1, s3=2, sy =4, s5 =10, s =14, s7 =19, s =9, s9 = 4.

The chief interest no doubt lies with the maximal partial spreads. We will show that there
are precisely eight equivalence classes of maximal partial spreads, one of size 5, three of
size 7 and four of size 9:

Vi1, VIIf.1, VIIf.2, VIIES; IXa.l, IXa.2, [Xa.3, IXa.4. (2.1)

But certain of the non-maximal partial spreads are also worthy of attention, for ex-
ample the cyclic partial spreads and the regulus-free (type O) partial spreads. For r > 3
there are nine classes of cyclic partial spreads:

Ila.1, b.1; IVa.l,d.1; Val, el j.l; Vial, VIa.l.

If S, is cyclic, recall that the profile of S, has to be of the form (my,ms, ms)", with the
integers m; > 0 satisfying (m +mgq+mg3)r = 3L. For example, the profile of a cyclic S5 is
seen to be (3,3,3)%, (2,3,4)° or (7,7,7)5, according as S5 belongs to the class Va.1, Ve.l
or Vj.1.

For r > 3 there are twelve classes of regulus-free partial spreads:

IIIa.1; IVa.l, b.1; Va.l,...,el; VIa.l, b.1; VIIa.l; VIIIa.l.

Partial spreads belonging to three of these classes, namely Va.1l, VIb.1 and VIIla.1, have
the maximality property of admitting no extension to a larger regulus-free partial spread.
Class Va.l consists of spreads on parabolic quadrics Py, and its influence also spills over
to the classes Vb.1, Vc.1, Vd.1, see sections 3.4.1, 3.4.2; it has stabilizer group G(S;) =
Sym(5). Class VIIIa.l also has a large stabilizer group, with G(Sg) = 23:Fy;, of order
168, which acts transitively on Sg. (The stabilizer groups for the other eight classes of Sg
are all of order < 6.) This high symmetry is perhaps best seen using the construction in
section 6.1. For an interesting aspect of partial spreads of class VIIIa.l, see section 2.3.2
below.

The group Sym(6), isomorphic to both Sp(4,2) and to O(5, 2), makes a (somewhat un-
expected!) appearance in our description of roughly half of the classes of partial spreads.
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So in Appendix A we summarize the relevant mathematics surrounding the group isomor-
phisms
() Sp(4,2) = Sym(6), (i) O(5,2) = Sym(6). (2.2)

A partial spread S, comes along with various invariants, and by computing one or
more of these we are in many cases able to assign S, to its class. First of all there is
the orbit ©(¢) of the underlying point-set ¢(S,). Indeed the orbit ©(1)) alone suffices to
distinguish the classes of S, for the cases r < 5. The orbit ©(¢)) may in turn be determined,
by reference to table B.1, by computing signature(t)) and signature(¢¢). Usually one needs
only to compute the easiest one of these, namely the signature of the smaller of the two
sets ¥, 1°. However, see section B.3.1(i), the signature of ¢ is needed to distinguish
between the orbits Va and Vc. Other invariants of a partial spread S, include its regulus
type, the structure of its stabilizer group G(S,) and its profile. All of these invariants
(including a refined version of the profile, see section B.3.2) are given in the tables in
appendix B.

However, for » > 5, a number of cases arise where two partial spreads S, and S/
share the same profile, and also the other invariants of the last paragraph, but which are
inequivalent. In such cases it may at first (or even second!) glance be hard to distinguish
between S, and S/. In the majority of such cases the distinction can be made by use
of symplectic considerations arising from the isomorphism (2.2i). See for example the
discussion of the classes VIc.1, VIc.2 and VId.1, VId.2 in section 7.3.1, which follows on
from the Sp(4,2) treatment in section 7.1 of the three maximal partial spreads of size 7.
In a few cases, see classes Vle.1,e.2 in section 7.3.1 and classes VIlc.1,c.2 in section 7.2.2,
the distinction proves more intractable. But in all cases we provide at least one way of
making the distinction.

2.2 Plan of the proof

In outline, the main steps involved in the proof of our classification are as follows. First
of all we deal with partial spreads S, for r < 5. See section 3. Here the two classes I1la.1
and Vh.1 should be particularly noted. If S3(O) € class IIIa.1 then, see section 3.2, it
determines a privileged even hyperplane equipped with a distinguished null polarity, and
it turns out that the resulting Sp(4,2) considerations help in the understanding of many
of the classes considered later. The class Vh.1, consisting of partial spreads Sy of type
L and considered further in section 4.1, is of especial importance, since by corollary 1.10
every partial spread Sy contains an S5(L) € class Vh.1.

Secondly, using this last fact, in sections 4 and 5 we determine all partial spreads S,
for » > 5 which are not of type O, I, Il or (g) Then, in section 6, we consider those partial
spreads Sg, S7 and Sg which are of type O. Finally, in section 7, we classify the remaining
partial spreads, namely those S,, r > 5, which are of type I, Il or (g), the latter including
the three classes of maximal partial spreads of size 7.
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2.2.1 Use of the computer

The proof that there are just the eight classes (2.1) of maximal partial spreads in PG(4, 2)
is computer-free. Our determination of all equivalence classes of non-maximal partial
spreads is also essentially computer-free. Nevertheless use of the computer has been of
great help to the project, especially in respect of the detailed information provided in
tables B.1, B.2a and B.2b, as we now describe.

First of all consider the entries in table B.1 under the headings signature(vy)) and
signature(t)¢). On the one hand it is straightforward to compute these by hand, especially
for the smaller of the two sets 1(S,), ¥(S,)°. See for example the computation immediately
before theorem 6.4 of the signature of a 13-set 1(Sg)¢. However such computations are
rather tedious, and especially so for the larger of the sets 1, ¥°. So, for many of the
signatures, we have relied on computer-generated results using Magma. (For details of
Magma, see [2] and [3].)

Secondly, a similar remark applies to the entries in tables B.2a and B.2b under the
heading profile(S,): many entries were computed by hand, but all were computed using
Magma. The latter was also used to analyze output from GRAPE, see below, especially
in connection with the regulus pattern of partial spreads.

Thirdly, in assigning the underlying point-sets of distinct classes of partial spreads,
such as VIle.1, VIle.2, ... ,VIle.5, to the same GL(5,2)-orbit, in this case VIle, we make
use of the following fact: given ¥ = (S,) and ¢’ = ¢(S!) then

signature(e)) = signature(v)

signature(1)¢) = signature((¢)')°) } = O(y) = O(y").

For this fact we appeal to a certain more general result which may be read off from [7,
Table 8.4.6], the derivation of which used the computer, see section B.3.1(ii). We also
borrowed from [7] information concerning the orders of the stabilizer groups of point-sets,
see column 4 of table B.1, although many of these were also obtained by hand, see for
example section 3.1.

Finally we mention the extremely useful contribution from GRAPE, see below, at a
half-way stage of the project. At this stage the determination of the eight classes (2.1)
of maximal partial spreads was almost complete, but we were somewhat daunted by the
task of describing all the non-maximal ones. The results from GRAPE pointed the way
to what was still to be done by hand, and provided invaluable checks on our assertions
concerning the stabilizer groups G(S), and that there are indeed precisely 56 classes of
non-maximal partial spreads.

GRAPE [25] is a GAP [6] package for computing with finite graphs endowed with
group actions. The GRAPE package is designed primarily for constructing and analyzing
graphs related to groups, designs and finite geometries. The GRAPE philosophy is that
a graph I' always comes together with a known subgroup G of the automorphism group
of I' (the group G usually comes from the construction of I'). Then G is used to store I'
efficiently and to speed up computations with I.

In the present context, the graph I' constructed by GRAPE is the graph whose vertices
are the lines of PG(4,2), with two lines (vertices) joined by an edge if and only if they
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are skew. The associated group G of automorphisms is GL(5,2) in its action on the
lines of PG(4,2). Now the partial spreads in P(G(4,2) are precisely the vertex-sets of the
complete subgraphs of I'. We determined these complete subgraphs up to G-equivalence
using GRAPE (version 4.0), first determining the maximal complete subgraphs up to
G-equivalence. GAP (version 4.1) was then used to determine the stabilizer G(S) for
each partial spread S classified. The complete classification of partial spreads and the
determination of their stabilizers took about 10 minutes of CPU-time on a 350 MHz
Pentium II PC running Linux. This computation is detailed explicitly within the web
page [26]. (With the latest version of GRAPE (version 4.2), this computation can be
done more quickly.)

2.3 Outlook

We claim that the classification in this paper is currently the only complete classification
of partial spreads in a projective space PG(4,q). Moreover we are of the strong belief that
any future complete classification in PG(4, q) for any value of ¢ > 2 will only be achieved
with much use of the computer and with much less theoretical understanding than in the
present ¢ = 2 case.

Naturally we hope that our classification will prove to be of interest and use to other
researchers in the field. In support of this, we sketch, in the rest of this section, three
instances where the classification has already proved to be of considerable use.

2.3.1 Flats in PG(9,2) external to the Grassmannian G, 45

In this section the terms internal and external refer to the Grassmannian Rky = G142 C
PG(9,2), see section 1.4.2. The internal flats of G; 4 are well understood, the maximal
ones being of two kinds, Greek planes and Latin solids, see [10, Section 24.2]. However it
is much more difficult to determine all GL(5, 2)-orbits of external flats. But in fact this
formidable classification problem has recently been completely solved, see [15], [16], [17]
— aided in no small way by the results of the classification in the present work.

For k =0,1,2,3,4, the external k-flats in PG(9, 2) are proved in [17] to fall respectively
into 1, 2,3, 2,2 distinct GL(5, 2)-orbits:

E=0: Rky; k=1: orb(la), orb(15);
k=2: orb(2«a), orb(28), orb(2v);
k=3: orb(3a), orb(35); k=4: orb(4+), orb(4—). (2.3)

Furthermore no external k-flats exist for £ > 4. One way to see this last is to use the fact,
see [13], [14], that Gy 42 is a hypersurface in PG(9, 2) of degree 5, and then to apply the
theorem in [19]. It was demonstrated in [17] that of the ten orbits (2.3) no less than seven
can be simply constructed out of partial spreads in PG(4,2), by means of the following
even hyperplane construction.
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The even hyperplane construction of external flats. As in section 1.4.2, let
Cr = {mq, ...,m.} C PG(9,2) denote the Grassmann image of a partial spread S, =
{1, .., pr} in PG(4,2). In searching for external flats the property (1.11)(ii) suggests
that we consider the projective space £(C,.) defined to be that generated by the (;) points
m; + m;. In cases where the m,; are linearly independent then £(C,) is the unique hy-
perplane inside the (r — 1)-flat (C,) which is disjoint from the r points m; € C,; since
the latter points are internal, take note that no hyperplane of (C,) other than £(C,) is a
candidate to be an external flat.

Theorem 2.1 (See [17, Theorems 2.5, 2.10, 2.11].) If S,,r > 2, is a partial spread in
PG(4,2), then £(C,) is an external flat if and only if one of the following holds:

(o) m=2; £(C,) is an external point;
(i) » = 3 and one of the following holds:
(a) S3 € class Illa.1, in which case £(C,) € orb(1la);
(b) S3 € class IIIb.1, in which case £(C;) € orb(15);
(ii) 7 = 4 and one of the following holds:
(a) Sy € class IVb.1, in which case £(C,) € orb(2a);
(b) Sy € class IVc.1, in which case £(C,) € orb(20);
(iii) 7 = 5 and one of the following holds:
(a) S5 € class Ve.1, in which case £(C;) € orb(3a);
(b) Ss € class Vg.1, in which case £(C5) € orb(30).

2.3.2 Conclaves of planes in PG(4,2) and certain planes in PG(9,2) external
to G142

By theorem 2.1, of the ten orbits (2.3) of flats, external to GGy 42, only the three orbits
orb(27), orb(4+) and orb(4—) can not be obtained using the foregoing even hyperplane
construction. Concerning the external planes belonging to orb(27) their stabilizer group is
known, [17, Theorem 4.1], to have the structure 23: Fo;. Now we also have G(Sg) = 23: Fy
in the case of a partial spread Sg of class VIIla.l. So we naturally enquire: can we
construct external planes of orb(2v) out of partial spreads of class VIIla.1? The answer
is in the affirmative, as we now sketch.
First we need the notion of a conclave of planes in PG(4, 2).

Definition 2.2 An 8-set Py = {1, ..., ms} of planes in PG(4,2) is termed a conclave if
the (g) = 28 intersections m; N\ m;, i # j, are distinct points. (See [23] for a more general

definition, of a conclave {ay, ...,an} of PG(m,q)’s.)

Lemma 2.3 Let Py = {m, ...,ms} be a dual partial spread in PG(4,2) which is in bi-
jective correspondence — wia uf = (m;)?, see section 1.4.1 — with a partial spread
S = {pf, ..., s} in the dual space PG(4,2)*. Suppose S§ is of class VIIla.1; then Py
15 a conclave.
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Proof. To each of the solids of; = (i, i) of PG(4,2)* corresponds a point v :=
(07;)° = m Nm; of PG(4,2). But because S§ is regulus-free, the (5) = 28 solids oy are
distinct. Hence so are the 28 points v;;, that is Pg is a conclave. m

Theorem 2.4 (See [18, Theorem 3.6].) Let Ps = {m1, ..., ms} be a conclave of planes
in PG(4,2), and let its Grassmann image be the 8-set Kg = {p1, ...,ps} of points on the
Grassmannian Ga 49 C PG(9,2)*. Then the annihilator P := (Kg)© is an external plane
in PG(9,2) which belongs to orb(27).

Consult [18] for more details of the bijective correspondences S§ < Ps, and Pg < P
between the three kinds of geometric objects just considered, and of their shared symmetry
group gsg = ng =Gp.

Remark 2.5 In the terminology of [5] a regulus-free partial spread S, in PG(4,2) is a
(n,q) = (4,2) instance of a generalized r-arc. In the terminology of [12] a conclave of
planes Ps in PG(4,2) is a (n,q) = (4,2) instance of a 2-dimensional dual hyperoval.
Concerning this last, we prefer to keep to the term conclave of planes; at least it met with
the approval of J.H. Conway during the talk of one of us (R.S., see [22]) at the First
Pythagorean Conference, Spetses, Greece 1996.

2.3.3 An invariant for a spread of lines in PG(5, 2)

The problem of finding all spreads of lines in PG(5,2) will probably only ever be solved
with the aid of computers. In particular, given two spreads S, &’ in PG(5, 2), it is usually
a highly nontrivial task to decide whether or not they are equivalent (belonging to the
same GL(6,2)-orbit). It is therefore of some interest that the present classification of
partial spreads in PG(4, 2) provides us with an invariant for spreads of lines in PG(5,2),
as we now describe.

Lemma 2.6 Let S be a spread of lines in PG(5,2), and let m be any hyperplane of
PG(5,2). Then precisely 5 of the 21 lines of S lie inside 7.

Proof. The 32 points of ¢ account for 16 lines of S which meet 7 in a point. The
remaining 31 — 16 = 15 points of 7 must therefore support the remaining 21 — 16 = 5
lines of S. m

Each line-spread S in PG(5, 2) thus determines a partial spread Sy in each PG(4, 2) of
PG(5,2). Suppose that of these 63 partial spreads Sy, one for each hyperplane of PG(5, 2),
precisely N, belong to class Vx.1, x = a, b, ... , j, in table B.1.

Definition 2.7 The sequence (N,, Ny, ... , N;) is the invariant sequence of the spread S.

Clearly spreads S, &’ in PG(5,2) which have different invariant sequences will be
inequivalent.

As an example of an invariant sequence, consider the spread S = S;US;USY in PG(5, 2)
defined as follows. In the shorthand notation described at the start of the next section,
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let {1,2,3,4,5,6,7} be a hyperbasis (= basis + unit point) for V'(6,2). So 123456 = 7,
etc. The 63 points of PG(5,2) are then the 7 points 7, the 21 points ij, and the 35 points
ijk, where i < j < k. Let A in GL(6,2) be the element of order 7 which effects the cyclic
permutation (1234567), and let S7, S5, SY be the A-cyclic partial spreads which contain
the respective lines {12,14,24}, {1,235,467}, {127,136,145}. Then S; accounts for the
21 points ij, S} accounts for the 7 points ¢ and for 14 of the points ijk, and S7 accounts
for the remaining 21 points 7jk.

Claim 2.8 The spread S = S; US,USY in PG(5,2) has (7,0,0,28,28,0,0,0,0,0) for its
moariant sequence.

The computation of the invariant sequence was fairly painless, but only because one
could take advantage of the Z; (in fact Z; x Z3) symmetry.

3 Small partial spreads: r < 5

Shorthand notation. Having made a choice B = {ey, ...,e5} of basis for Vs it will often
prove convenient to use %, %j, ... as shorthand for e;, e;+¢;, ... . We also set u = e; +... +
e5 = 12345, and use 4u as shorthand for e, +u = 1235, etc. From time to time we make use
of the hyperbasis B* = BU{u}, see section A.2.1 of the Appendix. Concerning generators
for the stabilizer G(S,) of a partial spread S,, that element A € GL(5,2) whose action on
the basis B is, for example A : 1 — 134, 2 — 23, 3 — 3, 4 — 34, 5 — 125, is written
A:(1,2,3,4,5) — (134,23, 3,34, 125), or, more often, simply A = (134,23, 3,34,125).

3.1 Introduction

We have considered earlier those (projectively unique) partial spreads which lie in some
hyperplane o C PG(4, 2), namely partial spreads Ss of type | (reguli), S; of type (;") and
S5 of type (g) These three orbits are listed as IIIb.1, IVd.1 and Vj.1 in table B.2a. Now
associated with the hyperplane o is a group N' = (Z,)* of involutions, where N\ {I}
consists of those 15 transvections (projectively, elations) {J(a) : a € o} which fix o
pointwise. Here J(a)r = z if x € 0, and J(a)r = x 4+ a if x € ¢°. In each of the three
cases, S = S3, Sy and S, under consideration clearly the stabilizer groups G(¢) and G(S)
will contain N as a normal subgroup.

In the case of ¥5 = ¥(S5) = o, we have G(15) = N x GL(4,2) and G(S5) = N x K,
where IC = — L(2,4), of order | GL(4,2)| + 56 = 360, is the stabilizer within GL(4,2) of
a spread in PG(3,2). So |G(S5)| = 16 x 360 = 5760. In the case of 1y = (Sy) = o\ A
the stabilizer within GL(4, 2) of the line A C PG(3,2) is & (Z,)* x (GL(2,2) x GL(2,2)),
of order 16 x 6 x 6 = 576. Since 14 contains eight Sys the stabilizer within GL(4,2)
of a particular S; has order 576 + 8 = 72. Hence |G(¢4)| = |N]| x 576 = 9216 and
1G(S,)| = |NV| x 72 = 1152, as recorded in tables B.1 and B.2a. In the case of 3
¥(8S3) = H, the stabilizer within GL(4,2) of the quadric H C PG(3,2) is O7(4,2)

e i
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(GL(2,2) x GL(2,2)) X Z,, of order 72. Hence |G(¢3)| = |N| x 72 = 1152 and, since H
contains two Sss, |G(S;)| = 1152 <+ 2 = 576, again as recorded in tables B.1 and B.2a.
At this point we may as well consider a partial spread Ss of the form S, U {u} where
S, is of type (g), with ¢y = 9(S4) = o\ \, and where the line z meets A in a point p. So,
see lemma 1.5, S5 is necessarily of type (g) It is projectively unique. For if SL = SqU{u'}
then there exists T' € G(S,) sending p’ = AN ' to p, and there exists J(a) € N sending
Ty to p, whence J(a)T sends Sf to Ss. Moreover, for a given S, of type (g) there are
3 x 8 = 24 choices for p. So the orders of G(v)5) and G(S;) are |G(1)4)| + 24 = 384 and
|G(S,)| + 24 = 48, as recorded in the entries Vi in tables B.1 and B.2a. The structure of
G(S;) is seen to be
G(S5) = Go x (J(p)) = Sym(4) x Zy, (3.1)

with Gy effecting all 4! permutations of the lines of S;.

Consider also a partial spread Sy of type |, and so of the form S; U {u} where S; is of
type |, with ¢(Ss5) = H C o, and where the line y meets ¢ in a point p. Since G(S;) is
transitive on the points p € o\ 'H, a corresponding argument to the previous one shows
that a partial spread Sy of type | is projectively unique. Moreover, for a given regulus S3
there are 6 x 8 = 48 choices for p. So the orders of G(4) and G(S,) are |G(¢3)] =48 = 24
and |G(S;)| =~ 48 = 12, as recorded in the entries IVc in tables B.1 and B.2a. See eq.
(3.28) for the structure Sym(3) x Z; of G(S,).

We now proceed to consider all the remaining partial spreads of sizes 3,4 or 5. One
of these is a projectively unique partial spread S5 of type L, and because it turns out to
play a particularly important role in our determination of all partial spreads, we will also
consider it later, in greater detail, in section 4.1.

3.2 The projectively unique S3(0) and its extensions to an S,

Without loss of generality any partial spread S3 which is not a regulus can be taken to
be 83 = S3(0) = {A1, A2, A3} where, in shorthand notation with respect to the basis

B = {61, ,65},
A= {1,2,12}, Ao = {3,4,34}, \s = {5, u, 5u}. (3.2)

Selecting a particular choice of S3 = S3(0) equips PG(4,2) with a surprising amount of
structure. First of all there is the unique transversal 7 = {12, 34, 5u} of the lines Aj, \a, A3.
Secondly S3 determines the hyperbasis B* = ¢(S3)\ 7 = BU{u} for V5, and so, see section
A.2.1, it follows that S also determines a privileged hyperplane, the even hyperplane o
of B*, which comes along with a distinguished null polarity. The 10 + 5 = 15 points of o
are those, {ij} and {iu}, which are of even weight in a(ny) basis B = B*\{p},p € B*,
and the scalar product z.y is such that ¢7.ik = ij.iu = iu.ju = 1, and ij.kl = 15.ku = 0,
whenever i, j, k, [ are distinct, see (A.7). Observe that S; also selects one line, namely
T = A12345u) (= As,;), see after eq. (A.8)), out of the fifteen self-polar lines (A.81) of o.

Next S3 determines that involution J = J(S3) € GL(5,2) which, for i = 1,2,3,
interchanges the two points of A; not on 7. Thus, for S5 as in (3.2), we have, in shorthand
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notation, J = (12)(34)(5u) — meaning that J is that element of GL(5,2) with effect
J e 2 ey, e3 = ey, e5 = u. Consequently S also determines that plane o which is the
fixed-point-set fix(J) of J, and which is seen to be

fix(J) =a=7UE  where &= {135, 145,235,245}, (3.3)

So S; also determines the 4-set & = fix(J)\ 7.
(We might also mention the three solids (hyperplanes) o2, 013, 023 which are deter-

mined by Ss, where o;; = (\;, \;), and the associated three 3-dimensional hyperbolic
quadrics Hia, His, Has, where H;; = o\ (A U A;), and note the alternative definition
€ = (012 U 013 U 093)° of the 4-set £. Moreover if o;; has equation f;; = 0, where

fij € V&¥ (= the dual of V;), then we find that o is that solid whose equation is f = 0,
where f = fia + fi3 + fo3.)

In lemma 3.1 below we describe the stabilizer group G(S;) of S3 = S5(0). Since any
A € G(S;) must preserve the various structures 7, B*,0,§, ... described above, it is not
difficult to arrive at these details of G(S;) by elementary means. Nevertheless it is of some
interest to see how to obtain G(S;) from the material in section A.1.2 of the Appendix.
For note that A € G(S;) if and only if A preserves both B* and the particular self-
polar line 7 = A(se3) C o which is labelled by the syntheme s,3 = {12,34,5u} in the
array (A.2). Let us identify Sym(6) with Sym(B*) = Sym({1,2, 3,4, 5, u}). Using lemma
A.2(ii) it follows that

G(S,) = stab(se3) = O(stab{2,3}), where

stab{2,3} = Sym({1,4,5,u}) x ((23)) = Sym(4) X Z, (3.4)
and where § = 6! is that outer involutory automorphism of Sym(6) which is described in
section A.1.2. The elements of G(S;) can now be obtained from elements of Sym({1,4,5, u})x
((23)) upon using the property (A.6) of 0: if s, = {ij, kl, mn}, then 0(ab) = (ij)(kl)(mn).
Thus, for example, the central involution (23) € stab{2, 3} yields the central involution
6(23) = (12)(34)(5u) = J € G(S;). As another example, since s14 = {13,24,5u} and
s15 = {12,45,3u}, see (A.2), we have

0(154) = 6(14)0(15) = (13)(24)(5u) (12)(45)(3u) = (14u)(235),
and so arrive at the element A; € G(S,) in the lemma.
Lemma 3.1 If S5 is of type O, with involution J = J(S3), then
G(S5) = Go(Sy) x (J),  where Go(S;) = Sym(4), (3.5)

with Gy effecting all 4! permutations of the four points of . Explicitly, for Sz as in (3. 2)
the subgroup Goo < Go, isomorphic to Alt(4), contains the four Zs subgroups (A;), i =
1,2, 3,4, where, in shorthand notation, the A; effect the following permutations of the six
elements 1 = eq, ... ,b =e5, u:

Ay (135)(24u), Ao : (145)(23u), As @ (235)(14u), Ay : (245)(130). (3.6)
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Also the four-group inside Goy is {I,(12)(34), (12)(5u), (34)(5u)}. Fach A; lies in class
3B of GL(5,2) and is of cycle type 3'°1' in its action upon PG(4,2), (see [4, p.70] and
[9, Table 4]), and the unique fized points of the four A; are precisely the four points
135(= 24u), 145(= 23u), 235(= 14u) and 245(= 13u) of the set . The six involutions
€ Go\Goo may be represented by K = (13)(24), and the siz elements of order 4 by (1324).
|

Remark 3.2 The stabilizer group G(S;) contains two subgroups isomorphic to Sym(4),
namely Go(S;) and Go(S5)', where Go(S3) = GooU K G is as in the theorem and Go(S;) =
Goo U JKGoo. The subgroup Go(S,;)" will occur later, see the lead-in to theorem 7.1.

Consider now an extension Sy = S3(0) U {\4}, and note from table 2 that there are
L' = 52 choices for \4. Of these 52 lines, 16 lie in the even hyperplane o and 36 intersect
o in a point, each of the 12 points of o\ 7 contributing 3 lines of the 36.

Under the action of G(S;) the 16 lines of o which are skew to 7 form two orbits © and
', each of length 8, with representatives

A= {13,25,4u}, X, = {13,15,35}, (3.7)

the lines of  being self-polar and those of {2’ being nonpolar, see eq. (A.8). Each of
the partial spreads Sy = S3 U {\y} and S = S3 U {\}} is of type O. However they are
inequivalent because they have distinct profiles (see section 1.1):

profile(S,) = (2,2,2)%, profile(S}) = (1,2,3)%(2,2,2), (3.8)

each line of S, being balanced, while in the case of S} only A} is balanced. The resulting
two classes of partial spreads S, of type O are listed, respectively, as IVa.l and IVb.1 in
table B.2a. They will be considered further below in section 3.3.

Of the remaining 36 lines the three which meet ¢ in the point 13 are:

N ={13,124,234}, A7 ={13,125,235}, A% ={13,145,345}. (3.9)

Now 8§ = S; U {\]} is of type |, since {\1, A2, A} is a regulus, while " = S3 U {\]'} is
seen to be of type O. There is no need to consider S3 U {\}} because A} lies on the same
G(S;)-orbit Q" as A, the element K = (5u) of G(S,) effecting the interchange A\; = A}
Since G(S;) is transitive on the 12-set o\\7 it follows that the 36 choices for A4 which
meet o in a point form two orbits 2" and ", of lengths 12 and 24, with representatives
Ay and ).

Lemma 3.3 Up to equivalence, there exist precisely four partial spreads Sy of size 4.
Three of these arise as extensions of an S3(0), represented by the partial spreads Sz U
{A\}, SsU{N,} and Ss U{\]} just considered; they are of the respective types O, O and |,
listed as IVa.1, b.1 and c.1 in table B.2a. (For more details concerning classes IVa.1 and
1Vb.1, see section 3.3; for class IVe.1, see end of section 3.1 and the beginning of section
3.5.) The fourth is of type (g), as considered in section 1.3.1, and listed as IVd.1.
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Proof. By our lead-in to the lemma the only other possibility for an extension of an
S3(0) would have 8" = S; U {\]'} as representative. But in fact S}’ is equivalent to S,
with A3 being the sole balanced line of S}”. To see this, start out from SI = {\;, Ay, \Y'}
and note that A3 is a nonpolar line in the even hyperplane ofof Sg.

Any other kind of §; must be an extension of a regulus, since the latter, of type
l, is the only class of S5 other than one of type O already considered. Recalling from
theorem 1.6(a) that Ny ¢ {2, 3}, an extension S, of a regulus is either a partial spread in
a hyperplane, of type (g), or else it is of type |. But, see end of section 3.1, there is only
the one class, IVc.1, of Sy(I)s. =

3.3 The two classes of partial spread S;(0)
3.3.1 The cyclic partial spread S4(0)

In section 3.2 we proved that there exists a unique class IVa.l of partial spreads S; of
type O and profile (2,2,2)%, represented by Sy = {1, A2, A3, \a }:

)\1 = {1, 2, 12}, /\2 = {3,4, 34}, )\3 = {5,U,5U}, )\4 = {13,25,4U} (310)

That each line of S, is balanced, contributing (2,2, 2) to profile(S;), comes about because
each of the twelve points of 1)(Sy) lies on just one of the four transversals of Sy. It follows
that these four transversals themselves constitute a Sy of type O and profile (2,2,2)*. The
12-set 1) thus has the structure of a double-four of lines (the terminology here being that
used in [23]), and may conveniently be represented in a 4 x 4 array

- 2 1 12
4 — 3 M4

v=1 . 5 _ s (3.11)
du 25 13 —

Here the lines of the original partial spread S, are given by the four rows, and the transver-
sals To34, T134, T124, T123 Of Sy, forming, let us say, the opposite partial spread S;*", are given
by the four columns.

Given any double-four ¢y C PG(4,2),

— T12 Ti13 Ti4
To1r — T2z T4
P = , (3.12)
T31 T3z — T34
T41 T42 T43 —

then its twelve points x;;,¢ # j, satisfy various relations. First of all we have the defining
properties Y;.;x;; = 0, and X, 4;z;; = 0. From these it quickly follows that x;; + z;; =
T + ;- holds for any permutation ijkl of 1234, and also that x;; + x;; + xi; does not
depend on the choice of 3-set {7, 7, k} C {1,2,3,4}. If 2;; + x;;, + x4 = O then ¢ lies in
a hyperplane and the rows, also columns, of 1 form an S, of type (g) (In this case of
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a degenerate double-four, 1) can be expressed as a double-four in more than one way.)
However we are interested in a non-degenerate double-four, such as (3.11), where the z;;
generate PG(4, 2); in which case the rows of 1) are an S4(0), as are the columns. So a non-
degenerate double-four ¢ comes along with a privileged point given by n = x;; 4+, + x;
for any 3-set {7, j,k} C {1,2,3,4}. The significance of the point n is explained in the next
lemma.

Lemma 3.4 If is a non-degenerate double-four in PG(4,2) then it extends to a unique
parabolic quadric Py. In detail, if 1 is as in (3.12), and if the points y1,y2,ys are defined
by yi = xis + 245 = T4 + Tij, for any permutation ijk of 123, then Py = ¢ U X\, where
A = {y1,y2,y3}. Moreover, for any 3-set {i,j,k} C {1,2,3,4}, the nucleus n of Py is
given by n = T;; + T + Tpi.

Proof. Recall from section A.3.2 that if S5 is a spread on a parabolic quadric P4 then
Sy = SN\ {A} has profile (2,2,2)* and, by lemma A.9, type O, and so is of class IVa.l.
So, by projective uniqueness, any S; € class IVa.l can be viewed in this way, as an Sy
on a Py, with double-four ¢, = 1/(Sy) of the form P,N\\. It is easy to see that distinct
parabolic quadrics can not share the same 12-set 14, that is the extension P, of 9y, is
unique. Taking 14 to be as in (A.13), a straightforward check confirms the validity of the
recipe in the lemma for finding the nucleus n and the missing line \. =

Example 3.5 If ¢ is the non-degenerate double-four given in (3.14) below, then Py =
UM\, where A = {245, 5u, 135} and n = u.

If we view S, € class IVa.l as an S, on a Py, with double-four ¢4 = 1(Sy) as in (A.13),
then from lemma A.8 we deduce that

G(v4) = Sym(4) x Zy,  G(S4) = Sym(4), (3.13)

and that Sy is cyclic. (Here Zy = (J) where in terms of (3.12) J is z;; = z;;.)
The cyclic symmetry of a partial spread S, belonging to the class IVa.l is made
manifest if we employ the canonical form

- 1 125 25
3B - 2 235

V= 345 45 - 3 (3.14)
4 415 15 —

for the double-four ¢(Ss) as an alternative to that in (3.11). Let Sy = {1, Aa, A3, \a}
be given by the rows and S = {u1, 2, pi3, 14} by the columns of the array (3.14).
Observe that A = (2,3,4,1,5) achieves the 4-cycle (A AaA3\y) and so A € G(S,). It is
also easy to use (3.14) to fill in further details of the isomorphisms (3.13). For note that
B = (2,345,25,145,24) keeps A4 fixed and achieves the 3-cycle (A;A2A3); so B € G(Sy).
Hence G(S,) contains the subgroup (A, B) = Sym(4) which effects all permutations of
the four lines \; € Sy. (Similarly (A4, B) C G(S;"), with A, B effecting the permutations
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(papiopispes), (papiops).) But the subgroup Gy < G(Sy) which stabilizes each \; € S is
trivial, since any 7' € Gy will also fix each p; € S;*", hence fixes each point p;; = \; N p;,
whence 7" = I. Hence G(Ss) = (A, B) = Sym(4). Since the class of partial spreads S,
of type O and profile (2,2,2)* is unique, it must be the case that S;*” is equivalent to
Ss. But the 12-set ¢y = 1(S4) supports just the two partial spreads S, and S;"", and
s0 |G(¥4)] = 2|G(S4)|. In fact the equivalence of S;"” with S, may be realized by the
involution J = (35,45,15,25,5), which in terms of (3.12) is x;; &= z;;. Now J not only
achieves the interchanges \; = p; but also commutes with A and B. Hence G(¢,) =
G(84) x (J). Summarizing:

G(1y) = (A, B, J) = Sym(4) X Zy, G(S4) = (A, B) = Sym(4). (3.15)

3.3.2 The non-cyclic partial spread S;(0)
Recalling eqs. (3.7) and (3.8), the partial spread Sy = {\1, Ao, A3, \g }:

)\1 = {1,27 12}, )\2 = {3,4,34}, )\3 = {5,U, 5U}, )\4 = {13, 15,35}, (316)

representing the class IVb.1, is of type O and profile (1,2,3)3(2,2,2). Any T € G(S,)
must permute amongst themselves the three unbalanced lines i, A2, A3 and must keep
fixed (set-wise) the sole balanced line A\y. (So S, is a non-cyclic partial spread.) More
can be said: T" must permute amongst themselves the three points 1, 3, 5, since only these
points lie on two transversals, and similarly for the three points 2,4, u which lie on no
transversals. It quickly follows that

G(Ss) = G(¥) = (A, B) = Sym(3), (3.17)
where A and B in GL(5,2) effect the permutations (135)(24u) and (13)(24)(5)(u) of the
hyperbasis B*.

3.4 The five classes of S5 of type O

Any regulus-free partial spread S5 must arise as an extension of a regulus-free S;. Recall
that an S;(0) is either cyclic, of class IVa.1, or non-cyclic, of class IVb.1. First of all let us
consider a partial spread S5 = S;U{ )5} where Sy is of class IVa.1l. Then Ss is regulus-free
for eighteen choices of the line A5, and under the action of G(S,) = Sym(4) these 18 form
four orbits €, Qp, Q. and g4, of lengths 1,3,6 and 8. For let Sy = {A1, A2, A3, A4} be as
given by the rows of (3.14):

A= {1,125,25}, Ay = {2,235,35}, As = {3,345,45}, A, = {4,415,15}.  (3.18)

Then, see (3.15), G(S4) = (A, B) = Sym(4), where A = (2,3,4,1,5) and B = (2, 345,
25,145,24), and representatives of the four orbits €, €2, 2., Q4 are seen to be

Ao = {bu, 245,135}, Ny = {bu,5,u}, .= {bu,12,34}, N;={12,1u,2u}. (3.19)
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Below we describe some distinguishing features of the four S;(O) which arise from the
four choices (3.19), and in particular see that they are inequivalent. In table B.2a they
are assigned classes Va.1l, Vb.1, Vc.1 and Vd.1, since the four supporting point-sets ¢, =
1(S,) belong to distinct orbits, listed Va, Vb, Vc and Vd in table B.1.

3.4.1 The parabolic S5(0)

The singleton orbit €2, is occupied by that unique line A, such that (S;) U A, is the
unique parabolic quadric P, which extends the double-four ¢(S,), see lemma 3.4 and
example 3.5. The partial spread S5 = S, U {\,} is thus a spread S5 on the quadric Py,
see appendix §A.3.2. Tt has profile (3,3,3)°, see lemma A.7. So, in the present case of an
S5 of class Va.l, we have

classVa.l:  G(¢y) = O(5,2) = Sym(6), G(S;) = Sym(5). (3.20)

(See lemma A.8(i) for the isomorphism of G(S;) with Sym(5), and lemma A.9 for the
fact that Sy is regulus-free.) Here G(S;) effects all 5! permutations of the five lines; in
particular S5 is a cyclic partial spread.

It should be noted that if S5 is spread on a parabolic quadric P, then S5 has the
mazimality property of admitting no extension to a larger requlus-free partial spread in
PG(4,2). Indeed, see lemma A.10(i), all 20 extensions SsU{ A} are of type |, and moreover
are all of class Vlc.2.

3.4.2 The classes Vb.1, Vc.1, Vd.1, Ve.l of partial spreads S5(0)

If now S5 = S; U {\} then we see that S5 has profile (3,3,3)%(1,3,5), with A5 = X,
contributing the (1,3,5). This distinguishing feature of A5 goes along with the fact that
S5\ { i} is non-cyclic, of class IVb.1, for i = 1,2,3,4 and is cyclic, of class IVa.l, only for
i = 5. It follows that G(S;) is a subgroup of G(S,), and has order |G(S,)|/|2| = 8. But if
A =1(2,3,4,1,5), see after (3.14), then A is not only in G(S,) but also fixes \,. Similarly
K = (25,15,45,35,5) is in G(S,), since it effects the permutation (A;)(A3)(A2A4), and it
also fixes ). Hence

class Vb.1: Gg(S;) = (A K) = Ds. (3.21)

Now the 15-set 15 = 1)(S5) supports just two partial spreads S5, namely S5 = S4U{\;} and
St = 8" U {\y}. Moreover the involution J = (35,45,15,25,5), see before (3.15), fixes
Ay and so effects the interchange S5 = SZ. Consequently G(¢5) = G(S;) x (J) = Dg x Zs.

We next consider S5 = S;U{ A5} with A5 = \., and we find that S5 has the same profile
(3,3,3)% as an S5 of class Va.1l. Nevertheless the classes Va.l and Vc.1 are distinct, since
S5\ { i} is non-cyclic for i € {1,3} and cyclic fori € {2,4,5}. Thus G(S5) is not transitive
on Ss, since any T' € G(S5) must necessarily respect the 3 + 2 partition {\a, Ay, A5} U
{A1, A3} of Ss. By looking at S5\ {1}, which has A3 as sole balanced line, our attention
is drawn to C' = (125,15,45,34,5), which effects the permutation (A1)(A3)(A2A4A5), and
to K = (25,15,45,35,5), which effects the permutation (A1)(A3)(A5)(A2A4). Thus G(S5)
contains a subgroup (C, K) = Sym(3) which achieves all permutations of {Ag, Ay, A5}
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and which separately stabilizes both A; and A3. But G(S5) also contains the involution
L = (45,35,25,15,5} which effects the permutation (A;A3)(A2)(A4)(As5), leading to:

class Ve.l: G(S5) = (C, K) x (L) = Sym(3) x Z. (3.22)

In the present case the 15-set 15 supports precisely four partial spreads S, all equiv-
alent, the further three arising by replacing Ss\{\;}, i € {2,4,5}, by (SsN\{\:})°PP.
Consequently |G(v5)| = 4 x |G(S5)| = 48.
For S5 = Sy U {\s} with A5 = \g we find that S5 has profile (2,3,4)3(3, 3, 3)?, with
A4 and A5 being the two balanced lines. Nevertheless Ay and A5 do not enter S on an
equal footing, since SsN\{\;} is cyclic only for i = 5. It follows, cf. the discussion of
class Vb.1, that |G(S;)| = |G(S,)|/Qa| = 3, whence G(S;) = Z3. But recall that B =
(2,345,25,145,24) effects the permutation (A;A2A3)(A4), and note that B also stabilizes
A5 = A\g. Hence
class Vd.1:  G(S5) = (B) = Zs. (3.23)

In the present case the 15-set 15 supports just two partial spreads Ss, namely S5 =
Sy U {\;} and S = S U {\s}. Moreover the involution K’ = (345,2, 145,25, 24) not
only fixes Ay but also effects the interchanges A\ & 1, Ao & s, A3 = pg and Ay & iy,
and hence S5 = S¥. Consequently G(¢5) = (B, K') = Sym(3).

Remark 3.6 From the spread S5 = S,U{\,} on the parabolic quadric Py, partial spreads
belonging to the four classes Va.1, Vb.1, Ve.1, and Vd.1 have arisen above as (SsN\{Aa})U
{A}, with X belonging respectively to the G(S,)-orbits Qy, Qp, Q. and Qq. Observe that these
last orbits are subsets of the O(5,2)-orbits A1, Ao, A3 and Ay, respectively, in lemma A.6.
Of the 33 external lines X of 1(S4) we have used the (1+3+6+8 =)18 choices which give
rise to a requlus-free Ss. The remaining 33 — 18 = 15 choices comprise: 3 further lines
of A3 (non-nuclear tangents, one at each point of \,), which give rise to an Ss of type L,
and 12 further lines of Ay (the remaining lines external to Py), which give rise to an Ss
of type I, of class Vf.1.

Any regulus-free partial spread S5 = {1, ..., A5} which is not of the classes Va.1, Vb.1,
Ve.1, Vd.1 so far considered must be such that Ss\{\;} is of class IVb.1 for each \; € Ss.
At least one such class exists, for consider the partial spread S5 where A1, Ao, A3, Ay, A5 are

{1u,2,345}, {2u,3,451}, {3u, 4,512}, {du,5,123}, {5u, 1,234} (3.24)

Then Ss is cyclic, since if A € GL(5,2) is defined by A: 1+ 2+ 3+ 4+— 5+ 1, then
A effects the permutation (A;A2A3Ag)\;5). Hence, see after (3.20), Sy is regulus-free. Under
the action of (A) = Z; the ten transversals 7;;; fall into two orbits 2 and €', each of length
5, with Q represented by 7123 = {2,451, 3u} and €' represented by 794 = {1u, 451, 123}.
Also the fifteen points of 15 fall into three orbits, each of length 5, with representatives
lu, 2 and 345. Since the points lu, 2, 345 lie on 2, 1, 3 transversals, respectively, it
follows that S5 has profile (3,2, 4)%; moreover we see that 15 has the distinctive signature
(15,15,0)(5%535%)(15°). Hence S5 belongs to a different class, Ve.1, from the four already
discovered.
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Now any T € G(S;) must permute amongst themselves those points which lie on only
one transversal, namely the points 1,2,3,4,5. It then quickly follows from (3.24) that
G(S;) is precisely (A):

classVe.l: G(S;) = (A4) = Zs. (3.25)

Note that the 15-set 15 supports just one other partial spread, namely the partial spread

Sé = {7345,7’45177'51277'123,7'234} = {M1,N27M37ﬂ4aﬂ5} (3-26)

which consists of the five transversals belonging to the orbit €. Since the involution
K:1— 1,225,324 achieves the interchanges \y & o, Ao &= 1, A3 & s, Ay &= g,
As = g we see that G(St) = G(Ss) and G(¢5) = (A, K) = Dy,.

Finally, to show that there are no further classes of S5(0), consider a partial spread
S5 = S4U{ A5} where S is of class IVb.1. Of the eighteen choices of the line A5 for which
Ss is regulus-free, we find that twelve yield an S5 which contains a cyclic S4(0), in which
case S5 is of class Vb.1, Vc.1 or Vd.1. The remaining six choices are seen to form a single
orbit under the action of G(S;) = Sym(3). So there is just one class of S5(O) with the
property that S\ {\;} is of class IVb.1 for each \; € S5, namely the class Ve.l described
above.

Lemma 3.7 There are precisely five equivalence classes of regqulus-free partial spreads S,
namely Va.1, Vb.1, Ve.1, Vd.1 and Ve.1, with stabilizer groups isomorphic to Sym(5),
Ds, Sym(3) X Zy, Z3 and Zs, respectively. B

3.5 The remaining partial spreads of size 5

Any S5 which is not of type O will either be of type (g) or will arise as an extension
of an Sy(l). Recall from section 3.1 that there is just one equivalence class IVc.1 of
partial spreads S, of type |. Let us take as representative of this class the partial spread

S1 = S4(1) = S5(1) U {\4} given by
A= {5,4,45), Ao = {3,2,23}, \s = {35, 24, 1u}, \y = {34,1,134}. (3.27)

For this choice, the ambient hyperplane of the regulus S3(l) is 0 = (2, 3,4, 5) and A4 meets
o in the point p = 34. We now wish to show that the stabilizer of this partial spread of
type | is

G, =G(S,) =(C,D) x (J) = Sym(3) x Z, (3.28)
with J = (134,2,3,4,5), C = (1, 1u,24,23,2) and D = (1,5,4,3,2),
To this end let 1 = 7403, B2 = 7413 and 3 = 7412 denote the three transversals

of S84 which meet A\4. In terms of the hyperbolic quadric H = (S3), f1, Ps, O3 are the
three bisecants from p to H. If for j # i the bisecant 3; meets A; in the point p;; then
Ni = {pi1, pi2, piz} where (p,p;;) is one of the three tangents from p to H. (For Sy(l) as
in (3.27) we have 51 = {34,23,24}, 5y = {34,45,35} and 53 = {34,4, 3}, and the three
tangent points are p;; = 5, pee = 2 and p33 = 1lu.) Now any T' € G(S,) must of course
permute amongst themselves the three lines Aj, Ao, A3 of Ss(I), preserve the line Ay of
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valency 0 and fix the point p = 34 where A4 meets 0. But 7" must also permute amongst
themselves the three bisecants (3, §o and (3, and also the three tangent points pi1, pao
and pss. It follows that there exists a homomorphism 7 : 7' — 7(7") from G(S,) to Sym(3)
such that T'pi; = pr(r)ir(r)j- Now (C, D) is a subgroup of G(S,) which is isomorphic to
Sym(3), since C' and D, of orders 3 and 2, fix Ay and effect the permutations (AjAa)\3)
and (A1A2)(A3) of the lines of S3. So 7 is surjective. If K is in the kernel ker 7 of this
homomorphism then K fixes each point of H and hence of o, whence K € N, where
N ={J(a) : a € 0} U{I} is as in section 3.1. But since K must also preserve A4, it
follows that ker m = (J(p)) = Zs. Since J(p) = J(34) = (134,2,3,4,5) commutes with C'
and D, we have completed the proof of (3.28).

Incidentally we also see that 14 = 1(S4) has stabilizer G(14) = G4 x (L) = Sym(3) x
(Z3)%, where L = (1,2,4,3,5) fixes Ay and maps Ss(l) to Ss(1)°PP.

External to 14 are 31 lines, which fall into five G4-orbits Q, ', Q", Q" and QV,of
lengths 12,6,6,6 and 1, with respective representatives

As = {245,12,145}, AL = {25,15,12}, i = {25,13, 4u},
M ={25,124,145}, A = {25,234, 345}. (3.29)

Note that A lies in the hyperplane 0123, and so the extension Sy(I) U {AL'} is of type (3).
Next, the extension Sy(l) U {A\Y'} is seen to be of type L, with {3, A\s, \Y'} as the other
regulus. The remaining extensions

Ss=8&(uirt,  S=8&MU{r} S =8()U{rs} (3.30)

are all seen to be of type |. Consequently, since Sy(l) is projectively unique, we deduce
(i) there is a projectively unique Ss((3));
(ii) there is a projectively unique Ss(L).

Concerning (i), it is of the form S5 = 84((;1)) U {4} and was encountered earlier,
in section 3.1; the structure G(S;) = Sym(4) x Z, is easily obtained from our present
concerns, with J in (3.28) being J(p) in (3.1). Concerning (ii), S5(L), it is listed as Vh.1
in table B.2a. It will be considered in more detail in section 4.1, see lemma 4.1.

Now 0123 = S3(1)U{p, ¢/'}, where u = {25,234, 345} = \Y and ¢/ = {34, 245,235}, and
the points where Ay, A5, A\t and AY meet 0193 are aq = 34, a5 = 245, a5 = 25 and a; = 25,
respectively. Note that the two points a4, as both lie on y’ while for a4, a; and for ag4, af
one point a4 lies on y’ and the other point a; = af lies on u. Hence Ss is not equivalent to
St nor to SY. On the other hand S! and S!' are equivalent. For if 7" € GL(5, 2), of order
4, is defined by T': (1,2,3,4,5) — (13,3,2,5,4), then T fixes each of A\j, A2, A3 and sends
Aq to AL and AL to Ay

That S5 and S are inequivalent follows also from the fact that the profile (2, 3, 4)%(3, 3, 5)
(3,4,4)? of S5 is distinct from that (1,3,5) (2,2,5)(3,4,4)% of S.. In fact even the signa-
tures of 1(Ss) and (S%) are distinct, and in table B.2a the partial spreads S5 and S
are listed under the entries Vf.1 and Vg.1, respectively, with the stabilizer group being
of order 2 in each case. To see this last, note that the stabilizer group G(S;) must pre-
serve the pair of lines {\4, A5} of valency 0, and G(S;) must preserve the pair of lines
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{A4, A5} Now A5 is on a Gy-orbit of length 12 = |G4|, and so the subgroup of G(S;) which
preserves A5 is trivial. But K : (1,2,3,4,5) — (145,35,24,5,4) effects the permutation
(A1)(A2A3)(A4A5), whence G(S;) = (K) = Z,. On the other hand A is on a Gs-orbit of
length 6, and so the subgroup of G(S;) which preserves \; has order |G4|/6 = 2; indeed
this subgroup is (D). But in this case no element of G(S;) interchanges A\, and Aj; so
G(S:) = (D) = Z,.

Lemma 3.8 There are just two classes of partial spreads Ss which are of type I. One
class, listed as Vf.1 in table B.2a, is represented by Sy() U {As} in (3.30) and the other
class, listed as Vg.1, is represented by Sq() U{A\;} in (3.30). In each case G(Sy) = Z,. B

3.6 Summary

Theorem 3.9 There are precisely ten equivalence classes of partial spreads in PG(4,2)
of size 5. Five of these, Va.1, Vb.1, Ve.1, Vd.1, and Ve.1, are regulus-free. Two, Vf.1
and Vg.1, are of type I, and there is just one class in the case of types L, (‘31) and (g) [ |

4 Further preliminary results

Prior to our discussion of maximal partial spreads of orders nine (in section 5.1) and
seven (in section 7.1), it will be helpful to list some facts surrounding non-maximal partial
spreads of the kinds S5(L) and Sg(A). First we show afresh that there is a projectively
unique partial spread Sy of type L, listed as Vh.1 in table B.2a, but this time determine
its stabilizer group. We then proceed, in sections 4.2 - 5.2, to classify, up to equivalence,
all those partial spreads which properly contain an S5 of type L, that is all those partial
spreads S,, r > 5, which are not of type O, I, Il or (g) In particular, on account of lemma
1.9, we classify all Sy s.

4.1 The projectively unique S;(L)

Given any S5 = {1, ..., A5} of type L, we may, after a suitable re-labelling, suppose that
the two reguli are p = pia3 = {1, A2, A3} and p' = p1as = {1, Mg, A5}. Let the plane of
intersection of the two solids o = 0123 and ¢’ = o145 be denoted by «, and let H= H123 C o
and H' = Hys C o' denote the 3-dimensional hyperbolic quadrics associated with the
reguli p and p’. Now in a PG(3,2) a plane intersects a hyperbolic quadric either in a conic
(= 3-arc) or in two intersecting lines. Since the intersections « N’H and « N H’ contain
A1 they are thus necessarily of the form A; U p and A\ U i/ where the line p € p°P? and
the line 1/ € (p')°*? meet in a privileged point p of A;. (The four lines of o other than
A1, p and p' belong to none of the reguli p, p°P®, o', (p/)°PP.) Let us choose a basis such
that o = (3,4,5) and \; = (4,5) = {5,4,45}, with privileged point p = 5. So, without
loss of generality, we may display S5 = Ss(L) in the form

A = {5,4,45}, Xy ={3,2,23}, A3 = {3524, 2345},
)\4 = {34, Yy, y34}, )\5 = {345, y4, y35}, (41)
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for some y € o\« and = € o'\ «, the two hyperbolic quadrics H = Hi23 and H'= Hius
being given by the arrays

5 4 45 5 4 45
H=| 3 =z a3 ., H' =1 34 vy y34 |. (4.2)
35 24 2345 345 yd 35

Here the two reguli p, p’ are given by the rows, and the two opposite reguli p°PP, (p")°PP
by the columns, of these two arrays.

Lemma 4.1 (i) With respect to a suitable choice of basis any S5 = S5(L) = {1, ..., A5},
with requlus pattern Ris3, Ri45, may be cast in the form

A= {5,4,45}, Ao ={3,2,23}, A3 ={35,24,1u},
A= {34,1,134}, \; = {345,14,135}. (4.3)

(it) The stabilizer Gs = G(Ss) of this partial spread of type L is
gs = (A, K) = D, (4.4)
with A = (1u, 134, 34,45,5) of order 4 and K = (2,1,34,4,5) of order 2.

Proof. (i) In (4.1) z,y, e3, e4, €5 are necessarily independent and so (4.3) follows from
the choice e; =y, es = .

(ii) Observe that KAK = A™! = A3, and so (A, K) = Dg. Also note that A and K
effect permutations 74 and 7 of the five lines of S5 given by

A = (Al)(Ag)\4)\3)\5), TK = ()\1)(/\2/\4)(/\3>\5)7 (45)

whence (A, K) lies inside Gs. Now if T" € G5 then T necessarily stabilizes the line \;
(the only line of Sy of valency 2), fixes the privileged point 5 € \; and either effects
permutations of {Ay, A3} and of {\g, A5} separately, or else swaps { Ao, A3} with {4, A5}.
On noting that (w4, mx) = Dg it follows that a suitable S € (A, K) exists such that
T* = ST stabilizes each of the five lines and also fixes 5. It quickly follows that T = I,
whence T' € (A, K), and so G5 = (A, K). m

If from S5 = S5(L) we remove the line A; of valency 2 the resulting S4(0) = S5\ {1}
is of class IVa.l. So ¥4 = ¢(S,) is a double-four and is of the form ¢, = P,\{A}, where
the parabolic quadric Py, the line A C P4 and the nucleus n of P, are uniquely determined,
see lemma 3.4. Now, cf. remark 3.6, A\; is a non-nuclear tangent to P, which meets X\ in
a point p (the privileged point of S5(L)). Since n, A and \; are coplanar it follows that
every line through n meets 95 = ¥(Ss) in a point. This distinguished point n € (i5)°
accounts for the 1% in the signature (16,16, 0)(1°629%)(16") of (15)¢, see the orbit Vh in
table B.1. (For S5(L) as in (4.3), Ay = {5,4,45}, p = 5 and, using lemma 3.4, n = 3u,
A = {5,12,125}.) Along with p and n the point n’ = p + n is also fixed by Gs, and the
lines through n’ which lie in (¢5)¢ form a single Gs-orbit of length 4. (For Ss(L) as in
(4.3), n’ = 124 and the Gs-orbit is the orbit Q" at the start of the next section.)
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4.2 The three extensions of an S;(L) to an S

Let S5 = Ss(L) be as in lemma 4.1, and, from table 2, note that 1(Ss) has L' = 16
external lines. Under the action of G5 these 16 lines are seen to fall into three orbits 2, €/
and " of lengths 8, 4 and 4, with respective representatives

Xe = {25,13,4u}, N, ={25,15,12}, A/ = {235,2u, 124} (4.6)
Consider the resulting three extensions of S5 = Ss(L) to an Sg:
Se =S5 U{X}, St=8SsU{Ns}, S§=38sU{N\},

and denote by Gs, G and G their stabilizers. We see that S¢ is of type A, with regulus
pattern Riss, Ri45, Rses, and so is inequivalent to both Sg and S which are of type L.
But S and S are also inequivalent. For if 7' € GL(5,2) were to map Sg on to Sg then T’
would lie in G(Ss), since 7' must map lines of nonzero valency to lines of nonzero valency,
whence T'\g = Ag, in contradiction to g, Ay belonging to different G(S5)-orbits. Hence,
up to equivalence, S5 = Ss(L) has precisely three extensions to a partial spread of size 6.

In the case of Sg any T' € Gg must stabilize separately both S5 and Ag, and so Gg
is a subgroup of Gs. By the orbit-stabilizer theorem |Gs| = |G5|/|€2] = 1. Similarly in
the case of S§ we have |G| = |Gs|/|Q| = 2; in fact, since Aj is fixed by the involution
K = (2,1,34,4,5) in lemma 4.1, G = (K) = Z5. Hence we have proved the following
lemma.

Lemma 4.2 Up to equivalence, there exist precisely two partial spreads of size 6 of regulus
type L, with respective stabilizers of order 1 and 2, listed as VIh.1 and VIh.2 in table B.2a.

Incidentally, besides having different orders for their stabilizers, VIh.1 and VIh.2 may
be distinguished by their having different profiles:

profile(Ss) = (355)(447)(456)%(555)(566), profile(Sy) = (355)(456)*(557).

In particular the line A; of valency 2 contributes (566) in the case of S, and (557) in the
case of .

In the case of Sf we see that the subgroup of G; which fixes \{ is (K) = Z,. But
there also exist elements of Gf which send A{ to another of the lines Ay, A4 of valency
1, and so |G¢| = 3x [(K)| = 6. Indeed we find that G = (B, K) = Sym(3), where
B = (3,2u,235, 35,24) effects the permutation 75 = (A1 A3A5)(A2AgA4) of the six lines of
S¢. Hence we have proved the following lemma. (See [24] for another proof.)

Lemma 4.3 (i) Up to equivalence, there exists a unique partial spread of size 6 of type
A. With respect to a suitable choice of basis any Sg = Se(A) = {1, ..., X\¢} of requlus
pattern Ryo3, Ri45, R3es may be cast in the form

A ={5,4,45}, Ay ={3,2,23}, A3 ={35,24,1u},

A ={34,1,134}, A5 ={345,14,135}, g = {235,2u, 124}. (4.7)
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(ii) The stabilizer of this partial spread of type A is
G(S,) = (B, K) = Sym(3), (43)
where B = (3, 2u,235,35,24) has order 3, and where K = (2,1,34,4,5). &

Remark 4.4 Under the action of its stabilizer G(S;), a partial spread Sg(A) decomposes
as Sg(A) = S3(0) U S3(0)" where the two orbits S3(0), S3(0) consist of those lines
whose valency is 2, 1, respectively. For Sg(A) as in (4.7), S3(0) = {1, A3, A5} and
S3(0) = {Xg, \1, \a}. Note the appropriateness here of the equilateral triangle symbol
A, acted upon by its symmetry group = Sym(3), upon viewing A1, A3, A5 as the vertices
and Xg, Ay, Ao (in that order!) as the midpoints of the opposite sides. The order here is
important, since the regulus pattern Riss, Riss, R3gs sets up a pairing Ay <= g, A3 <> Ay,
As > Ay which any T € G(Sg) must respect. For example K, see (4.5), effects the
symmetry of A which keeps fized the “vertex” \i and the opposite “midpoint” Ag.

4.3 The extensions of an Ss(A)

If S¢ = Ss(A) = S5(0) U S5(0) is as in lemma 4.3 and remark 4.4 then the 13-set
complementary to 1(Sg) is of the form

P(Se) =HUE, € ={123,125,3u, 5u}, (4.9)

where the nine points of the hyperbolic quadric H are as in the array

25 15 12
H=| 13 u 245 |. (4.10)
du 234 145

Observe that the hyperplane o = (H) is of the form
o=HUTUT, r=1{4,35345}, 7 = {124,134, 23}, (4.11)

where 7 and 7’ are the transversals 7135 and 742 of the partial spreads S3(0) = {1, A3, A5}
and S3(0)" = { e, A4, A2}. (Also note that the four points of ¢ lie in a plane o which
intersects o in 7.)

Let p and k = p°PP denote the reguli consisting of the rows and columns, respectively,
of the hyperbolic quadric H in (4.10). Thus p = {A7, As, Ao} and k = {A2, A2, A\§} where

A7 ={25,15,12}, Ag = {13,u,245}, Ao = {4u, 234,145}, (4.12)
A2 ={25,13,4u}, Ao ={15,u,234}, A= {12,245, 145} (4.13)

Now these sixz generators of the quadric H are precisely the L' = 6 lines, see table 2,
external to 1. Under the action of the group G(S;) = (B, K) = Sym(3) these six lines
fall into three orbits, of lengths 1, 2 and 3, namely x; = {3}, ko2 = {A\, A3} and p =
{A7, A8, Ag}. The next theorem now follows.
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Theorem 4.5 (i) There are precisely three inequivalent partial spreads S; of type A,
with representatives Sg(A) U {Ag}, Se(A) U {A2}, and Sg(A) U {A7}, the stabilizers being
(B,K) = Sym(3), (B) = Zs and (K) = Z,, respectively. (These are listed as VIle.1,
VIle.2 and VIle.3 in table B.2b.)

(i) There are precisely three inequivalent partial spreads Ss of type A, with repre-
sentatives Sg(A) U {3, Mg}, Se(A) U{A, A}, and Sg(A) U {7, As}, the stabilizers being
(B,K) = Sym(3), (B) = Z3 and (K) = Z, respectively. (These are listed as VIIc.1,
VIIIc.2 and VIIIc.3 in table B.2b.)

(11i) There are precisely two inequivalent partial spreads of type IA, with representatives

S =S8s(A)Up and 8§ = Se(A) Uk, (4.14)

listed as 1Xa.2, type I’A, and IXa.3, type I"A, in table B.2b. Both S and S§ have the
same stabilizer group, which they share with Sg(A):

G(Sg) = G(S5) = G(S6(A)) = (B, K) = Sym(3). (4.15)

Given any partial spread So of type IA, let 1 = So\Se(A) be its distinguished regulus
(consisting of those lines which contribute the | to the IA). Then Sy is equivalent to SY if
G(Sy) is transitive on 1, and to S§ if n contains a line Ay which is fived by G(S,). W

(Concerning G(Sy), it is no larger than that given in (4.15) since any symmetry of
S = Ss(A) U p must preserve the distinguished regulus p, and hence also preserves
Ss(A); similarly for G(Sy).)

Given an Sy(IA) we can determine whether it is of the kind 1PA or |*A without recourse
to its stabilizer group. One recipe for so doing uses the fact that the partial spread S3(O)
in remark 4.4 has ¢ in (4.11) for its even hyperplane, and so S3(0O) induces a null polarity
in o, see section 3.2. For type I’PA the distinguished regulus of So(IA) is of polar type
(3,0), see section A.2.2, while for type I"A, it is of polar type (1,2). Equally well, note
that o is also the even hyperplane of the partial spread S3(0)" in remark 4.4, and is
thereby equipped with another null polarity. Using this second null polarity, Se(I1A) is of
type I?A or I"A according as its distinguished regulus is of polar type (0, 3) or (2,1). (The
three inequivalent partial spreads S7(A), and three inequivalent partial spreads Sg(A),
may similarly be distinguished.)

A second recipe is as follows. Let the lines of Sy = So(IA) be numbered such that
the regulus pattern is Ri23, R145, R365, R7s9, and let ¢ be the ambient hyperplane of the
distinguished regulus n = {7, Ag, Ao} of Sg. For i = 1,2, ... 6, let \; meet ¢ in the point
a;. Then, recall the pairing in remark 4.4, Ar.q = {a1 + ag, asz + ay, a5 + as}is the line
of H = 1(n) which is fixed by G(S,), and Sy(IA) is of type I’A or I"A according as
Atxd € 1°PP OF Ageq € 7).

A third recipe is simplest of all: using the null polarity induced in o by S3(0), the
polar (7)+ = {12,245 145} of the transversal 7/ = {124,134, 23} of S3(0)’ lies in the
distinguished regulus So\Sg(A) of Sy(I1*A) but not in that of Sy(I°A).
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4.4 The nine extensions of an S;(L) to an &7

For S5 = Sx(L) as in lemma 4.1 and section 4.2, any extension to an S,, r = 7,8,9, which
makes use of one of the lines from the orbit 2" will be of type A, and so equivalent to one
already considered in theorem 4.5. So to obtain anything different we look at extensions of
an Ss(L) to an S; which use lines solely from the orbits 2 and €’ (see beginning of section
4.2). Of these extensions we will find four which are of type L, these being inequivalent
from the manner of their construction in view of the following remark.

Remark 4.6 If S; = S5(L) U { s, A7} is of type L then any T € G(S7) must separately
stabilize both Ss(L) and { g, A7}, since Ag, A7 are the only lines € Sy of zero valency. Thus
G(S7) is a subgroup of G(S5(L)) = Ds.

First of all consider adding two lines Ag, A7 both belonging to 2. We may as well choose
X¢ = {25,13,4u}, as in eq. (4.6). Since A7 has to be skew to Ag, we find that there are
four possible choices (a)-(d) for \; € , namely

(a) Ay = K )\, yielding an S;(L); (b) A\r = KA?)\g, yielding an S;(L);
(c) Az = A%, yielding an S;(Y); (d) A7 = KAXg, yielding an S;(F). (4.16)

(Here A and K are as in lemma 4.1.) Recalling that the stabilizer of Sg(L) = S5(L)U{ )¢}
is trivial, it follows that

choice (a) G(57) = (K); choice (b) G(S;) = (K A?), (4.17)

so that |G(S7)| = 2 for both of the choices (a) and (b). In each of these two cases we
see that 1 (S7)¢ has signature (10,4,0)(2°4'4?)(10°), and so ¢ belongs to the orbit VIIc
of table B.1. The two partial spreads S7 are inequivalent, see before remark 4.6; they are
listed as VIlc.3, VIIc.4 in table B.2b.

For choice (c) we see that N; = 3, with pigr = {1, X6, A7} being a regulus, so that
S7 is of type Y. Defining Y : (1,2,3,4,5) — (4u, 345,135,5,45), note that Y € G(S7)
since it effects the permutation my = (A1)(A2AsA7A3A46) of the seven lines of S;, and
cyclically permutes the three reguli pia3, p145, p167. Consider the subgroup Gy of G(S7)
which fixes the regulus pig7, hence stabilizes {pi23, p145}, and hence stabilizes Ss(L). So
Go is that subgroup of G(S.(L)) which stabilizes {\g, A7}. From lemma 4.1(ii) we see that
Go = (A%). But A% = Y3, and so G(Sy) is precisely (V) = Zs.

For choice (d) we see that N7 = 3, with {2, \¢, A7} being a regulus, so that Sy is of type
F, and we find that G(S7) = (K A) = Z,. One way to see this last result G(S7) = (K A) is
to apply our results in section 7.2 to Sg(Il) = p145 U pag7. From (7.4) we see that Sg(Il) has
stabilizer (C') where C': (1,2,3,4,5) — (13,45,5,2,3). Noting that A3 = {35,24, lu} is
stabilized by C? but not by C' it follows that G(S7) = (C?) = (K A).

For both of the choices (c) and (d) we see that 1/(S7)¢ has signature (10, 2, 0)(4°6%)(10°),
and so ¥ belongs to the orbit VIle of table B.1; the partial spreads are listed in table B.2b
as (c) VIle.4 and (d) VIIe.5.
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Next we consider adding two lines A\g € Q, A, € ¥, and again we may as well choose
A¢ = {25,13,4u}, as in eq. (4.6). Since A, has to be skew to Ag, we find that there are
two possible choices for X, € ', namely

choice (e) \; = A)g, yielding an S; of type L;
choice (f) A, = A%)\;, yielding an S; of type L.

Here Ay = {25,15,12}, as in eq. (4.6). Since A¢ and A, now belong to distinct orbits
of G(S5(L)) it follows, cf. remark 4.6, that any T € G(S7) lies in G(S,) N G(S), where
S = S5(L) U {6} and S = S5(L) U {A7}. But, lemma 4.2, G(S) is trivial, and hence so
is G(S57) for either of the choices (e), (f). Again for each of these two choices we see that
¥(S7)¢ has signature (10,4, 0)(2°4'42)(10°), and so v belongs to the orbit VIIc of table
B.1. The two partial spreads S; are inequivalent, see before remark 4.6; they are listed as
VIlc.5, VIIc.6 in table B.2b.

Finally we consider adding two lines Aj, A, both belonging to €. We may as well
choose A\ = {25,15,12}, as in eq. (4.6). Since A, has to be skew to \j, we find that there
are two possible choices for X, € €, namely (g) AN and (h) KAN,. But K stabilizes A,
and hence the two choices lead to equivalent partial spreads, so we may as well adopt
choice (g):

S; = S5(L) U{Ag, A7}, where
A= {25,15,12}, M = AN, = {2u, 234,125} (4.18)

We see that Ny = 3, with {4, A\§, \;} being a regulus, so that S is of type F. But recall
that we have already found an extension of S5(L) of type F, namely, see choice (d) above,

87 = S5(|_) U {>\6> )\7}, where
Ao = {25,13,4u}, A = KA\ = {235,15,123}. (4.19)

In fact, as in the proof of the next theorem, these two partial spreads S; and S’ are
equivalent.

Theorem 4.7 Up to equivalence there are precisely nine extensions of a Ss(L) to a S;.
Of these four are of type L, listed as VIlc.3 - VIlc.6 in table B.2b, and three are of type
A, listed as VIle.1 - VIle.3. One is of type Y, listed as VIle./, and one is of type F, listed
as Vile.5.

Proof. Because of our preceding work it only remains to show that the two par-
tial spreads S; and S} of type F given in (4.19), (4.18) are equivalent. Defining 7" €
GL(5,2) by T': (1,2,3,4,5) — (25,4, 5,1,34) note that T" maps A1, Aa, A3, Ag, A5, Ag, A7 tO
A1y A1, Az, NGy AT, A, A, respectively, and so T'(S7) = S7. (Note incidentally that 7" in this
proof is a Singer element of GL(5,2) : (T) = Z5;.) m

Corollary 4.8 A partial spread S; is mazximal if and only if it is of type (g), that is if
and only if it is of the form
Sy =384((3)) USs(0). (4.20)
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Proof. If S; is of the form (4.20) then, lemma 1.5, it is maximal. To prove the reverse
implication, we will derive a contradiction from supposing that S; is maximal and yet
does not contain an S, of type (g) For if this last is the case then S;, which by theorem
1.7 has N; = 4, must contain an Ss(L). But, see theorem 4.7, an extension S; of an S5(L)
has N; < 3, and so is not maximal. =

We conclude this section by providing a way to distinguish between the classes VIlc.3,
Vllc.4, VIlc.5 and VlIlc.6, all four consisting of partial spreads of type L and profile
(5,6,7)%(6,6,8)%(6,7,7)%(7,7,8). It is true that classes VIIc.3 and VIIc.4 have already
been distinguished from classes VIIc.5 and VIc.6, since for the former two G(S7) = Z
while for the latter two G(S7) is trivial. The following recipe has the virtue of providing
distinctions between all four classes without the need to computer the stabilizers. Given
that S; = S5(L) U {Xs, A7} is of type L, suppose that A; is the line of valency 2 and put
Sy = Ss(LN{ A1 }. Consider the subset £ C Sy consisting of those lines of Sy which lie
inside the even hyperplane o of S3(0) = {1, A6, A7}. Then one finds that |[£| = 2 if S;
is of class VIIc.3 or VIlc.4, and |£| = 1 if S; is of class VIIc.5 or VIIc.6. Moreover if
|£| = 2, then for one class, say VIIc.3, the two lines of £ are self-polar, and for the other
class, say VIlc.4, the two lines of £ are nonpolar. Also if |£| = 1, then for one class, say
Vllc.5, the line A € L is self-polar, and for the other class, say VIlc.6, the line A € L is
nonpolar.

5 Partial spreads of sizes 8 and 9

5.1 The four maximal partial spreads of size 9

By corollary 1.10, every Sy must be of the form Sg = S5(L) U S, for suitable Sy. Consider
S5(L) as in lemma 4.1, and recall our opening remarks in section 4.4 concerning the three
G(S5(L))-orbits €2, €, Q" of lines external to 1)(Ss), with representatives Ag, A\, A§ as in
eq. (4.6). If Sy contains a line A € Q" then Sy will be equivalent to one of the two
classes of Sy found in theorem 4.5(iii), and so be of type I’A or type I"A. So to obtain
an Sy of a different class, S, must consist solely of lines from orbits 2 and ©'. The four
members of ' do not form an S, and so, without loss of generality, we may suppose that
¢ € Si. Now skew to \g are the four lines K)\g, K A%)\g, A%Xg, KAXg € Q and the two
lines ANg, A?M; € €, see choices (a)-(f) in section 4.4. From these six lines we see that we
may form an Sz in just two ways, {A%\g, K\g, KA%X¢} and { K A)\g, AN;, A2)\;}, leading
to the existence of precisely two choices of Sy = {Ag, A7, Ag, Ao} C Q U’ which contain
Ag, namely

Si= {6, A%, KXg, KA?X\g}  and S} = {Xg, KANg, AN, A%NS}. (5.1)
(Here A and K are as in lemma 4.1.)
Theorem 5.1 (i) Up to equivalence there are precisely four partial spreads of size 9. One

is of type X, represented by Ss(L)US., one is of type E, represented by Ss(L)US}', and the
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other two are of types I’A and I"A as described in theorem 4.5(iii). These four classes
are listed as 1Xa.1, IXa.4, IXa.2 and 1Xa.3, respectively, in table B.2b.

(ii) The stabilizer group of an So(X) is of order 24, and each of the other three classes
has stabilizer group of order 6. In more detail

G(So(X)) = Alt(4) x Za,  G(Sy(E)) = Ze,
G(Se(I”7A)) = Sym(3),  G(Sy(I"A)) = Sym(3). (5-2)

Proof. (i) Up to equivalence there is a unique partial spread Ss of type L, see 4.1, so
part (i) follows from the above run-in to the theorem, after checking that Ss(L) U S} is
of type X (having regulus pattern Rjs3, Ri4s, Rig7, Riso), and that Ss(L) U S is of type E
(having regulus pattern Ris3, Ris5, Rog7, Raso)-

(ii) Let the four reguli p123, p1as, p167, P1so in So(X) = Ss5(L)US) be denoted pq, py, pe, pa,
and note that Sy(X) contains the four partial spreads S2, S2, S¢, S¢ of type Y, where the
three reguli in SF are {pq, pb, Pe, pa} \pz- Now, table 2, each SF has just two external lines,
which when added to S7 yield the original Sy(X); hence G(S¥) < G(S9) for each x. Conse-
quently G(Sg) contains four subgroups Z§ = Z3, where Z§ cyclically permutes the three
reguli in S¢. For example, recall that in considering S¢ = S5(L)U{\s, A%\ }, in connection
with choice (c) in eq. (4.16), we found that G(S9) = (V) & Zg, with Y : (1,2,3,4,5) —
(4u, 345,135,5,45). Here Y = Y effects the permutation my = (A1)(AaAs A7 A3 A4 6) (As o)
of the nine lines of Sy(X) and hence the permutation (p,pppc)(pa) of the four reguli; so
(Y92 = Y2 of order 3, effects the permutation (p.p.ps)(pa). Since G(Sy) is thus transitive
upon the four S7, it has order 4 x G(S7) = 24. Concerning its structure, by the forego-
ing G(Sy) achieves all even permutations of the four reguli and so contains a subgroup
>~ Alt(4). But note that it also contains the central involution Y?3(= (Y*)3 z = a,b, ¢, d)
which fixes each of the four reguli (but which swaps the two lines # A; of each regulus).
Consequently G(So(X)) = Alt(4) x Z,. Alternatively, by similar reasoning, we may arrive
at G(S,) in the form

G(Se(X)) = (Y, K) = (Y2 K) x (Y3 = Alt(4) x Zs, (5.3)

where K : (1,2,3,4,5) — (2,1,34,4,5) is as in lemma 4.1 and effects the permutation
(papy)(pepa) of the four reguli. (See also (6.13) below for another derivation of the Alt(4) x
Zj structure of G(S4(X)).)

Concerning Sy(E) = S5(L) USY observe that it contains three different partial spreads
Sy of type F. Now the stabilizer of each S7(F) is seen to be (K A) = Z,, see the discussion
of choice (d) in eq. (4.16). But there exists an element of the stabilizer which cyclically
permutes Aj, Ao, A3, and hence the three S;(F)s, whence |G(Sq(X))| = 3 x 2 = 6. Indeed
we have

G(Se(E)) = (E) = Z,

where E : (1,2,3,4,5) — (2u,45, 5, 1u, 35) effects the permutation (A AzA2) (AgAg Az A5 A9 A6)
and where E? = KA(= A’K).
See eq. (4.15) for the other two stabilizers in (5.2). =
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Corollary 5.2 The regulus type of a partial spread S, in PG(4,2) is necessarily one of
those listed in table 1.

Proof. Any S, lies inside a maximal partial spread; but by our results in theorem
1.7, corollary 4.8 and theorem 5.1 the type of a maximal partial spread is (g), (g), X, E or
IA. =

5.2 The nine partial spreads of size 8

By removing a line from each of the above four kinds of Sg we will obtain all possible
kinds of Sg. For an Sy denote by £; the subset of lines of Sy of valency 1.

First of all consider a partial spread Sg = Sg\{A} in the cases where A has valency
1. Then Sg has Ng = 3 reguli; thus, see table 2, 1(Sg) has L' = 1 external lines, and so
Ss has a unique extension back to the original Sy. According as Sy is of type (i) X (ii) E
(iii) I?PA (iv) I"A then Sg is of type (i) Y (ii) F (iii) either A or I’L (iv) either A or I*L.
(Here, and in table B.2b, an Sg(IL) is said to be of type I°L or I”L according as its unique
extension to an Sy is of type I’A or I"A.) In cases (i) and (ii) the stabilizer group G(Sy) is
transitive on L1, and so, using |G(Ss)| = |G(So)|/|L1], the order of G(Ss(Y)) is 24/8 = 3
and the order of G(Sg(F)) is 6/6 = 1.

In case (iii) £; consists of two G(Sg)-orbits p and J, each of length 3, and Sg is of type
A or I’L according as A € p or A € 4; in either case |G(Ss)| = 6/3 = 2. In case (iv) £;
consists, see theorem 4.5 (with k1 = {AJ}, ko = {A\2, A3} and § = {Aa, Ay, Ag}), of three
G(Sy)-orbits, k1, ko and d, of lengths 1, 2, 3, and Sg is of type A, A or I"L according
as A € K1, A € Ky or A € 4, with G(Sg) of corresponding orders 6/1 = 6, 6/2 = 3 and
6/3 = 2.

It follows from the foregoing that there exist projectively unique partial spreads Ss of
types Y, F, I°L and "L, and precisely three classes of Ss of type A. (These last three
classes, and their stabilizer groups, were considered previously in theorem 4.5(ii).)

Secondly consider a partial spread Ss = SN\ {A} in those of the above cases, namely
Sy of type (ii) E (iii) I’A (iv) I"A, where A has valency 2. In each of these three cases
G(Sy) is transitive on the three lines of Lo, and Sg is of type Il with stabilizer of order
6/3 = 2. So there exist at most three classes of Sg(Il). But now Ng = 2 and so there are
L’ = 3 external lines. Thus any Sg(Il) has precisely three extensions to an Sg; moreover
one finds that these extensions are one each of types E, I’A and I"A. Consequently there
exists a projectively unique partial spread Sg of type Il.

Finally from an Sy of type X we may remove the unique line A of valency 4 and
thereby deduce that there exists a projectively unique partial spread Ss of type O. In
this case Ng = 0 and so, see table 2, the 7-set 1)(Sg)¢ has L' = 7 internal lines, which
entails that 1(Sg)¢ is a plane, say «. Hence an Sg(O) has precisely seven extensions
Ss(0) U {rv}, v C a, to an Sy, each extension being an Sy(X) since for no other type of
Sy can SoN\{A} be of type O. Since an Sy(X) is projectively unique, note that G(Sg) is
transitive on the seven lines v C «, with “point”-stabilizer G(Sy(X)) of order 24. Hence
|G(Ss)| = 24 x 7 = 168. (For the structure of G(Ss), and also for a different construction
of an Sg(0), see section 6.1 below.) Summarizing:
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Theorem 5.3 Up to equivalence there are precisely mine partial spreads of size § in
PG(4,2), three of type A, listed as VIlec.1, VIlc.2 and VIIIc.3 in table B.2b, and one
each of types O, I, Y, I°L, I"L, F, listed as VIlla, VIIIb, VIllc.4- VIc.7. &

6 Partial spreads S,.(0), r > 5

6.1 The unique partial spreads Ss(0) and S;(0)

In section 5.2 we saw that a partial spread Sg of type O is projectively unique and may
be constructed from an Syg(X) by removing the line of valency 4. In this section we give a
different construction of an Sg(O), and provide full details of its high symmetry (]G(Ss)| =
168). (For further interesting aspects of an Sg(O) see [18].) The less symmetrical Sg(X) is
then constructed from the more symmetrical Sg(O) by adding a line. We also show that
there is a projectively unique S7(O), obtained from an Sg(O) by removing any line, with
stabilizer G(S7) of order 21.

Recalling that a = ¥(Sg(0))° is a plane, let us start out from PG(4,2) as the join of a
line \y € Sg and the plane «. So in vector space terms our construction starts out from a
preferred direct sum decomposition Vs = V5 @ V3, where PV, = A\g and PV3 = a. (It will
later emerge that the seven lines of Sg(O) other than Ay enter on the same democratic
footing as Ag.) We choose a Zz-subgroup (A) of GL(Vj3), and suppose (for the sake of
definiteness) that the generator A of this Singer cyclic subgroup satisfies A% = A + I.
The commutant [A] of A is a field F = {0} U{I, A, ..., A%} isomorphic to GF(8). Let Fy
denote the normalizer of (A) in GL(V3) and let (C') be one out of the seven Z3-subgroups
of Fy. Then Fy = (A) x (C) and (after replacing C' by C~! if necessary) C' satisfies
CAC! = A% and indeed CFC~! = F? for all F € F.

Now there is a unique line 1y C « which is stabilized by C, and we can choose u € v
so that

vy = {u, Au, A*u} and Cu = Au. (6.1)

Observe that from Cu = Au and CAC~! = A? it follows that CA™u = A* ™1y, Let us
also make a choice of linear isomorphism M mapping V5> onto the 2-dimensional vector
space {0} U vy. For the sake of definiteness, put A\g = {a, b, c} and set Ma = u, Mb= Au
and Mc = A3u. If we define Cy € GL(V3) by Cy : a — b +— ¢ +— a, so as to mirror
C :uw Au— A3u +— u, we thereby arrange for M to intertwine Cy with (the restriction
to {0} Uy of) C:

MCy = CM. (6.2)

A general vector v € V5 = V5, @ V3 will be written v = x + y, with z € V;, and y € V3.
For ' € F we define the 2-dimensional subspace Vp C V5 by Vi = {x + FMz : © € V,}
and we denote by Ap C PG(4,2) the corresponding projective line:

Ap={z+FMzx:x € \}; (6.3)

in particular, choosing F' = 0, note that Ay is one of the eight lines thus defined.
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Theorem 6.1 (i) The set of eight lines
Ss={\r: F €T} (6.4)

is a partial spread of type O; moreover 1)(Ss)¢ is the plane o = PVj.
(i1) If S; = Ss\{Ar}, F € F, then S; is of type O and G(S7) < G(Ss).
(111) If Sg = Ss U{v}, v C «, then Sy is of type X and G(Sy) < G(Ss).

Proof. (i) Suppose v = z +y € Ve N Vi, with F # F’. Then FMx = F'Mx, so
(F— F')Mz = 0. But F is a field, and so Mx = 0, whence x = 0. So Ve NV = {0}, that
is A\ N A = ), and Sg is indeed a partial spread of size 8. Since A\r Na = (), and since
|1(Ss)¢| = 7, it follows that 1)(Ss)¢ is precisely a.

Concerning the absence of reguli in Sg, consider the hyperplane o generated by a pair
Apr, Apn of lines of Sg. Now the 7+ (3 + 3 + ... + 3) partition PG(4,2) = o Uper Ap of
the 31(= 7+ 8 x 3) points of PG(4, 2) induces a corresponding partition of the 15 points
of o, from which we obtain

(15 =) |o| = [ana|+ > pep|Ar N al. (6.5)

But a hyperplane in PG(4,2) meets a plane in at least the 3 points of a line, and meets
a line A in at least one point. Since |Ap No| =3 = |A\pr N o], it follows from (6.5) that
laNo| =3 and |ArNo| =1 for each the 6 lines \p with F' # F', ' # F". Hence Ny = 0,
that is Sg is indeed of type O.

(i) Since Sy is of type O, so also is S7. Now ¢(S7)¢ can be expressed as the disjoint
union of a plane and a line in precisely one way, namely as a U A, and so any element
T € G(S;) must stabilize Ar, whence T' € G(Sg).

(iii) Since Ny = 4, any extension Sg = Sg U {v'} of an Sg of type O must be of type X,
with the line v having valency 4. Any element T' € G(Sy) must stabilize the eight lines of
Sy of valency 0, whence T' € G(Sg). =

We now wish to determine the structure of G(Sg(0)). For A,C € GL(V3) and C; €
GL(V3) as before the last theorem, define T'x, Uc € GL(V5) by

Ti=LaA Us=0CdC, (6.6)

and note that T4 and Uy stabilize the line \g and permute the remaining seven lines
Ar, F' # 0, of Sg amongst themselves in the manner:

TA : >\F — )\AF7 UC : )\F = )\F2. (67)

To see the last result, put Cox = 2’ and observe that Ug(x + FMzx) = Cox + CFMx =
2 + F2M2', after using CF = F?C and, see (6.2), CM = MC,. If S; = S\ { )¢} note
therefore that both T4 and Ug lie in G(S;) as well as in G(Sg). Since also UcT4(Ug) ™! =
Toac-1 = T2, we see that via A — T4 and C' — Ugs we inject a copy of Fy; = (A) x (C)
into G(S7) and into G(Ss).

Further, for F' € I, let us define Jr € GL(V5) by

Jp(x+y)=x+y+ FMuz, (6.8)
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and note the properties

JFJF' = JF+F’ = JF’JF; (JF)2 = L
JF . )\F’ = )\F+F’- (69)

Thus J : F — Jr maps the additive group of IF, isomorphic to that of a V3, into a subgroup
J < G(8s), where J =2 (Z,)3. Note also the properties

Tade(Ta)™" = Jar, UcJr(Uc) ™t = Jpe. (6.10)

In particular observe that with the aid of T4 we may generate all the seven involutions
Jp, F' # 0, from just one, for example from J;.

Theorem 6.2 (i) The stabilizer of Ss(O) is of order 168, with structure
G(Ss) = (Z2)° % Far. (6.11)

(i1) For any F € F the stabilizer G(S7) of the partial spread S;(0) = Ss(ON{Ar} is a
subgroup of G(Sg) isomorphic to Fy1. Up to equivalence every Sy of type O is of this kind,
and so is projectively unique.

(i1i) For any line v C « the stabilizer G(Sy) of the partial spread So(X) = Ss(0) U{v}
is a subgroup of G(Sg) isomorphic to Alt(4) X Zs.

Proof. (i) From the lead-in to the theorem it follows that the subgroup (T4, Ug, Jr) <
G(Sg) has the structure (Z,)3 x Fy; and is of order 8 x 21 = 168. Since, see before theorem
5.3, |G(Ss)| = 168, we have

G(Ss) = (J1,Ta, Uc) = (Z2)° x Fi. (6.12)

(ii) Recall that in the case of S; = Ss\{ Ao} we already know that G(S;) contains a
subgroup (T4, Uc) = Fy = (A) x (C). But, see (6.9), Jr(Ss\{ o}) = Ss\{Ar} and so,
forany F' € F, G(Ss\{A\r}) contains a subgroup = F»;. But since J, and therefore G(Ss),
is transitive on the 8 lines of Sg, and since G(S7) < G(Sg), see theorem 6.1(ii), we have
|G(S7)| =|G(Ss)| +~ 8 = 21 for any partial spread S; = Sg(O)N\{Ar}. Hence G(S7) = Fy.

Any S; of type O (indeed any non-maximal S;) can be obtained from an Sy by deleting
two lines. But recall that an Sg is of type X, E or IA; so to obtain an S;(O) from an Sy we
need to start out from an So(X), one deleted line being the line of valency 4. The S;(O)
thus obtained is of the form S; = Sg(O)N\{A}. But an Ss(O) is projectively unique and,
as just noted, its stabilizer G(Sg) is transitive on the lines A € Sg(O). Hence an S;(0) is
projectively unique.

(iii) The group G(Ss), indeed any Z7 subgroup of G(Ss), is transitive on the set of
seven extensions Sg(O) U {v}, v C «, of Ss. Thus the subgroup G(Sy) of G(Ss), see
theorem 6.1(iii), which stabilizes an extension has order 168/7 = 24. Also it suffices to
consider the particular extension So = Sg U {1y}, where, see (6.1), v is that line of «
which is stabilized by our chosen C' € Fy;. Now G(Sy) contains J = (Z,)3 as a subgroup,

40



since each of the involutions Jp fixes the plane «, and in particular 1, pointwise. But
also G(Sg) contains (Ug) = Zs, since C stabilizes vy. Now from (6.10) we see that Jp
commutes with Ug if and only if F' =0 or F' = [. It follows that

G(So) = ((Z2)* % Zs) X Zy = Alt(4) X Zy, (6.13)
where, in this case of Sg = Ss U {10}, the central Z5 is generated by J;. m

Remark 6.3 The constructions in this section using (6.4) can be tied in with spreads and
partial spreads of planes in PG(5,2), see [24, section 3.2.3] and especially [22, section 4.2],
— by taking a PG(4,2) section 7 of a 2-spread Y9 = {av, ..., ar,a} in PG(5,2) such that
a C . (One of the Z7 subgroups in [22, section 4.2] is not relevant in the PG(4,2) set-up,
since it does not preserve the set of lines {\; = TN, }. But the Gy and I'G groups in [22,
eqs. (24), (10)] can be tied in with the groups G(Ss), G(Sy) in (6.11), (6.13) above.)

6.2 Partial spreads Ss of type O

The group Gs = G(Sg) in (6.11), for an Sg of type O, is transitive on the lines of Sg, and
the subgroup G7 in theorem 6.1(ii) which fixes a line of Sg is transitive on the lines of
S7. Hence Gg is 2-transitive on Sg. Since there exist unique classes of partial spreads S;
and Sg of type O it follows that those regulus-free partial spreads Sg which possess an
extension to a regqulus-free S7; form a single class, say VIa.l, whose members are of the
form Sg = Ss(O)\{A, X'} for some unique Sg(O). Note that G = G(S;) is a subgroup of
Gs, and let G, be that subgroup of Gg (and of Gg) which fixes separately the lines A, X.
By 2-transitivity we have |Gg| = 8.7.|G.|, whence |G.| = 3. But there exists an involution
J € Gg which effects the interchange A = )\, whence |Gg| = 6. In fact Gg = Zs. To see
this, consider Sg = Sg(O)\{ o, A\r} with Sg as in (6.4). Then, see (6.7), G. = (Uc) = Z3

and, see (6.9), J; effects \g &= A;. Moreover, see (6.10), U commutes with J;. Hence
G(Sg) = (Uc, Jr) = Zs. (6.14)

(Alternatively, observe that Sg is also of the form Sg = S7(Y)\{r}, where v is the line of
S7(Y) of valency 3; hence G(Sg) = G(S,(Y)) = Zs, see section 4.4.)

Now G(Ss) is seen to be transitive on the six lines € Sg, and hence the partial spread
Se is cyclic, of the form

Sﬁ = {/\17 )\2, ceey )\6}7 with /\i+1 = Ai)\l, (615)

for any choice of line \; € Sg and generator A of G(Ss). There are two classes, 6A and 6B
(see [4, p.70]), of elements of order 6 in GL(5,2). Since an element A € class 6A only has
two 6-cycles in its action upon PG(4,2), see [9, Table 4], it follows that A in (6.15) must
belong to class 6B. If in (6.15) we choose A : e; — €5 — e3 — e4 +— e5 — u — e; and
A1 = {1, 34,134} we obtain the following explicit example of a cyclic Sg(0) = {1, ..., A¢ }:

A= {1,34,134}, A = {2,45,245}, A3 = {3, 5u, 35u = 124},
A= {4,ul,4ul = 235}, A5 = {5,12,512}, A\¢ = {u, 23, u23 = 145} (6.16)
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Here ¢ = 1)(Sg) has for its complement )¢ the disjoint union of a plane o and two lines

AN
Y= aUAUN, where a =< 14,25,135 =, A = {35,13,15}, X'= {2u,4u, 24}, (6.17)

and Sg U {\, N} is an Ss(O). Under the action of Gg = Zg the 20 transversals 7;;; of
S6(0) = {1, ..., A¢} in (6.16) fall into four orbits of lengths 6, 6,6 and 2, with respective
representatives Tyo3 = {134,2,5u}, 795 = {1,2,12}, 724 = {34,245,235} and 735 =
{34,5u,12}. So the points 1,34,134 of A\; lie on 3,4,3 transversals, respectively, and
hence the profile of Sg is (4, 5,4)8.

To justify our assignment of Sg = Sg(O)\{A, X'} to class VIa.l we need to show that
1(Sg) belongs to the orbit VIa in table B.1. To this end let us compute the signature of
the disjoint union « U AU X in (6.17), where « is the plane ¥ (Sg)°. Let the solid (A, \)
meet « in the line v, and so p = {v, A\, '} is a regulus. Then the 13-set « U AU X has 12
lines, namely A, X', the seven lines of « and the three lines of p. The signature of 1)(Ss)¢
is then easily seen to be (13,12, 1)(6%433%)(6°7"), with the 6 points of A U X’ contributing
the 62 and the 3 points of v contributing the 3*. Hence the orbit of 4(Sg) is indeed VIa.

Theorem 6.4 (i) Those partial spreads Sg of type O which possess extensions to an S;(O)
form a single class, listed as VIa.1 in table B.2a. A partial spread S¢ € Vla.1 is cyclic,
with stabilizer G(Sg) = Zg and profile (445)°.

(i1) If S¢(O0) € class Vla.1 then each S5 = Sg(O)N\N{\} is of class Vd.1.

Proof. (i) See the lead-in to the theorem.

(ii) Consider S5 = Sg(O)\{A} with Ss(O) as in (6.16). Because of the cyclic symmetry
we may as well take A\ = \g. The 10 transversals of S5 are a subset of the 20 transversals
of S considered above, see after (6.17), and we see that the profile of Ss is (234)3(333)2,
with Ay and A3 being balanced and A;, Ay and A5 being (2, 3,4)-unbalanced. Hence, see
table B.2a, S5 € class Vd.1. =m

We now construct an example of a partial spread Sg of type O which does not possess
any extensions to an S7(0). Choose an S5 € class Vb.1; so Ss is uniquely of the form
S5 = S, U {)\s}, with profile (333)%(135), where S; = 8,(0) is cyclic and contributes the
(333)%. Let n be the nucleus of the parabolic quadric P4 associated with Sy, and let A
be that line on P, such that S, U {A} is a spread on Py. Since S5 € class Vb.1, A5 is a
nuclear tangent to Py, of the form A5 = {n,p,p + n}, for some p € A\, with the points
n, p, p+n contributing respectively 1, 3,5 to the profile (135) of A5. Consider an extension
S¢ = S5 U {6} of S5. There are 20 choices for A, but under the action of G(S;) = Dy
only one orbit , of length 4, gives rise to a regulus-free Sg. If A\g € Q then Sg = S5 U{ )¢}
is of type O but, by theorem 6.4(ii), it does not belong to the class VIa.l.

In fact S = S5 U {X\¢} = S1 U {5, \¢} is easily seen to have profile (445)%(355)2,
with {As, \¢} contributing the (355)%. So any 7' € G(S,) must stabilize separately Sy
and {5, A¢}. Since |G(S;)|/|2] = 2, there is an involution J € G(S;) which fixes g,
and so G(Sg) contains a subgroup (J) = Z,. A straightforward check in fact shows that
G(Sg) = (J) = Z,. (To carry out this check it helps to use the fact that 7' € G(Sg) must
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permute amongst themselves the four points, one on each line of Sy, responsible for the 5
in the (445)%, and also permute the two points, one on each of A5 and g, responsible for
the 3 in the (355)%.)

The Sg(O) just constructed is listed under class VIb.1 in table B.2a. Let us outline a
proof that the two classes VIa.1 and VIb.1 include all the requlus-free partial spreads of
size 6. Now any Sg of type O arises as an extension S = S5U{ ¢} where S5 is regulus-free.
So we need to consider the five cases (a)-(e) which arise from the five choices Va.1-Ve.1l
of class for the regulus-free Ss. In fact only the four cases (b)-(e) need to be considered,
since an Sj of class Va.l has no regulus-free extensions. The proof now proceeds in two
steps:

Step 1. In the cases (b), (c¢) and (e) one finds that there is only one G(Ss)-orbit for
A¢ which gives rise to a regulus-free Sg, and that in each of these cases Sg has profile
(445)*(355)?, whence Sg is not of class VIa.1. In case (d), where S5 belongs to class Vd.1,
then one finds there exist two G(Ss)-orbits for A¢ which yield a regulus-free Sg. For one
of these Sq is of class VIa.l, in conformity with theorem 6.4(ii), while for A on the other
orbit Sg is not of class VIa.1 since its profile is found to be (445)%(355)2.

Step 2. Thus there are at most four regulus-free classes of Sg other than the class VlIa.l,
the profile in each case (b)-(e) being (445)%(355)2. The proof is completed by checking
for one, and hence for all four, of the cases (b)-(e) that Sg contains partial spreads S5(O)
belonging to each of the classes Vb.1-Ve.l. This check is straightforward but rather
tedious. One finds that the four classes for S5(0) = Sg\{A} arise from the four choices
of G(S4)-orbit for A € S, of lengths 2, 2, 1 and 1. (The check is perhaps most easily
done by starting out from Sg = S5 U {\¢} with S5 € class Ve.l, since one may then use
the cyclic symmetry of S5 to quickly display 10 out of the 20 transversals of Sg.)

Theorem 6.5 There are just two equivalence classes VIa.1 and VIb.1 of requlus-free
partial spreads of size 6 in PG(4,2), where the class VIa.1 is as considered in theorem
6.4. A S of class VIb.1 has stabilizer G(Sg) = Zy and profile (445)*(355)%, and does not
extend to an S7(0); moreover an Sg € class VIb.1 can be obtained as an extension of an
S5 belonging to any of the four classes Vb.1-Ve.1. R

7 The remaining classes of partial spreads

In this section we deal with the remaining classes of partial spreads S,, r > 5, namely
those of types (g), [l and I.

7.1 The three maximal partial spreads of size 7

We already know, see corollary 4.8, that a partial spread S; is maximal if and only if it
is of type (g), that is if and only if it is of the form

S = 8i((1)) U Ss(0). (7.1)
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We now show that the maximal partial spreads (7.1) of size 7 fall into three differ-
ent GL(5,2) orbits. Given S; = 84((§)) U S3(0), with 84((§)) = {A1, A2, A3, Ay} and
S3(0) = {p1, o, 3}, let o be the hyperplane containing the lines \; and let 7(C o)
be the transversal of the lines p;. Hence X5 = {\, A2, A3, A4, 7} is a spread for o,
and o is the even hyperplane determined by S3(0). So o comes equipped with a dis-
tinguished null polarity, see sections 3.2 and A.2.1. By lemma A.4 the 56 spreads of lines
in PG(3,2) fall into three Sp(4, 2)-orbits (of lengths 6,20 and 30) consisting of spreads of
the respective polar types (5,0), (3,2) and (1,4). Since 7 is self-polar, the partial spread
Sy = {1, Mg, A3, Ay} for o is of polar type (4,0), (2,2) or (0,4). These three possible polar
types for Sy lead to three different orbits for a maximal S;. We denote a partial spread
in (7.1) by S7((3) (470)),37((;*) (2.2)) O S7((3) (.4)) according as Su((3)) = {1 Aoy Az, A}
contains four, two or no self-polar lines for the null polarity for o determined by S3(0).
If S; = S4 U S; is of the form (7.1) then clearly G(S,) is a subgroup of the group
G(S;) = Sym(4) x Z, considered in lemma 3.1, with the central Z, being generated by
the involution J = J(S3). Now, see egs. (A.3)-(A.11), 7 = A(s23) belongs to precisely
(1) two spreads, X5(7%) and 35(7%), of polar type (5,0),
(ii) two spreads, see eq. (A.11), of polar type (1,4), and
(iii) four spreads, ¥5(23k), k = 1,4, 5, u, of polar type (3,2).
According as Y5 = {1, A2, A3, Ay, 7} belongs to case (i), (ii) or (iii) then S; is of type
(3) (1.0) ;) (0.4) OF (3) (2.2) Since in each case G(S;) acts transitively, the index of G(S,) in
G(S,) is accordingly (i) 2, (ii) 2, and (iii) 4. In cases (i) and (ii), the involution J effects
the interchange of the two spreads; so, since J ¢ G(S.), we must have G(S,) = Sym(4).
In fact one sees that

fdsy s )
g( 7) - 90(83)7 if S7 is of type (g)

(4,0)7

(0,4)°

where Go(S;) = Sym(4) and Go(S;)" = Sym(4) are as in remark 3.2. On the other hand
in the case (iii), where S; is of type (g) (2.2)7 W€ see that J € G(S,), and hence that

G(S,) = Sym(3) x Z,. (In this last case the Z3 subgroup of G(S,) fixes each line of ¥s.)

Theorem 7.1 There are precisely three classes of maximal partial spreads Sy, represented
by 37(@) (470)), S}((g) (074)) and 37((§) (272)) as just described. These three classes are listed
as VIIf.1, VIIf.2 and VIIf.3, respectively, in table B.2b, the stabilizer groups being iso-
morphic to Sym(4), Sym(4) and Sym(3) X Z,, of respective orders 24, 24 and 12. R

Suppose S; = 84((§)) U S3(0) = {A1, A2, Ag, Ay} U {p, po, pig} is as above, of type
(5). For fixed Sg = Sy U {1, po} there are (L' =)4 choices for us, leading therefore to
four different Sp(4,2) geometries for the hyperplane o. It is straightforward to check that
Si = {1, Mg, A3, Ay} is of polar type (4,0),(0,4) and (2,2) for respectively one, one and
two of these choices. Since a partial spread Sg of type (g) is necessarily of the kind
Sg = 87((3))\{;/3}, it follows that there is just one class of partial spread Sg of type (g)

By considering either the case when &7 is of type (g) or the case when Sy is of type

(4,0)
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3
has stabilizer G(Sg) = Ds.

(4) 0. it also follows that G(S;) has index 3 in G(S,) = Sym(4), and hence that 56((3))

Lemma 7.2 There is just one class, VIj.1 in table B.2b, of partial spread Sg of type (g),
with stabilizer isomorphic to Dg. B

7.2 Partial spreads of type Il
7.2.1 The projectively unique S;(Il)

Suppose Sg = p U ' is of type Il, with reguli p = {\1, Ao, A3} and p’ = {4, A5, A6} Then,
with respect to an appropriate basis, we may cast Sg into the form

A = {1,25,125}, Ay = {3,345,45}, A\ = {13,234, 124},
A1 ={2,35,235}, A5 = {4,145,15} \g = {24,134,123}. (7.2)

Here the basis has been chosen such that the ambient hyperplanes o = 0193, 0’ = 0456 Of
the two reguli p = p1a3, p' = puase are o = (1,25,3,45), o' = (15,2,35,4). The quadric
H = (p) = A\ UA2U A3 intersects the plane @ = oMo’ in the conic k = {13,125,345} and
the quadric H' = ¢(p’) = \qUAsUN\g intersects the plane « in the conic £’ = {24,145, 235}.
Note that & = k U k' U {5u}, the point 5u being privileged, since it is the only point of
a not belonging to 1¢(Sg). The pair of points {13,24}, and hence also the pair of lines
{As, A¢}, is distinguished, since 13 is the nucleus of the conic " and 24 is the nucleus of
the conic k. Also note that c = HU pUv and o' = H' U/ UV, where

= {5u,145,235), v = {24, 4u,2u},
p = {5u, 125,345}, V' = {13, 1u, 3u}.

Here pu, 4/ are the external lines of the conics k, k’, and the lines v, 1/ intersect « in the
nuclei 24, 13 of the conics &, &'

Let A be that element of GL(5,2), belonging in fact to class 4C, see [4], which is
defined on the chosen basis by

A:1—2—3—4—1, 55 (and hence u+ u). (7.3)

Then A effects the permutation (A AsA2A5)(AsAg) of the lines of Sg, whence G(S;) contains
(A) = Z4 as a subgroup. In fact G(S;) is no larger:

G(Sg) = (A) = Zu. (7.4)

This can be seen as follows. If T" € G(Sg) then T must fix the privileged point 5u
and also the pair {24,13} of nuclei. If T fixes 13, and hence also 24, then 7" must fix
Tios = {1,3,13} € p°PP and 7456 = {2,4,24} € (p')°*? and so fixes the pairs {1,3} and
{2,4}.. If instead T effects 24 = 13, then T effects 1123 = 7456 and so interchanges {1, 3}
and {2, 4}. In the latter case we quickly see from (7.2) that either T = Aor T = A~ = A3
and in the former case T = A%
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Partial spreads Sg of type Il are classed as VIg.1 in table B.2a. Concerning the profile
of S in (7.2), the distinguished lines A3 and A\¢ each contribute (4,4, 7), with the dis-
tinguished points 13 and 24 each contributing a 7. Each of the remaining four lines has
profile (4,5,6), with the remaining points 125,345, 145,235 on the conics contributing a
6, and the points 1,3,2,4 on the transversals through 13 and 24 contributing a 4. So
profile(Se(I1)) = (4,4,7)%(4,5,6)™.

7.2.2 The three classes of S; of type Il

Consider an extension S; = Sg(Il) U {A}. Under the action of G(Sg) = Zy4, see (7.4), the
L' = 8 choices for A fall into four orbits 2, ', Q” and ", of lengths 4, 1, 1 and 2, with
respective representatives

A7 = {1u, 2u, 12}, Ar = {bu,u,5},
N = 50,135,245}, A = {5u,12, 34}

The extension S = Sg(I1) U {\"'} is seen to be of type F, with {3, Ag, A7} the extra
regulus; it is projectively unique, of class VIle.5, see theorem 4.7. The remaining three
extensions Sy, Sy, S, using A7, Ao, A7, are all of type I, and represent the three classes
VIId.1, VIIc.1, VIIc.2, respectively, in table B.2b. For VIlc.1, VIIc.2, but not for VIId.1,
the line A of zero valency passes through the privileged point (= bu, for Sg(ll) as in the
previous section) of Sg(ll). For S; € VIId.1 the line A is balanced, with profile (6,6, 6),
while for class VIlc.1 and class VIIc.2 the line A is (5,5, 8)-unbalanced. It seems quite
hard to distinguish between the classes VIlc.1 and VIIc.2! One distinction is that for one
of them, say Vllc.1, but not for the other, say VIlc.2, the line A of zero valency is fixed
pointwise by the stabilizer group (the latter being & Z,, as in the next lemma).

Lemma 7.3 Up to equivalence, there exist precisely three partial spreads S7 of requlus type
I, listed as VIlc.1, VIIc.2 and VIId.1 in table B.2b. For VIlc.1 andVIle.2, G(S7) = Za,
while for VIId.1, G(Sy) is trivial.

Proof. Since any S; of type Il is of the form Sg(Il) U {\}, and since there is only one
class of Sg(I), we have already proved the first part of the lemma. Let classes VIId.1,
VIlc.1 and VIIc.2 be represented by Sz, S7, and S7, as in the lead-in to the lemma.
Since || = 4 the order of G(S7) is |G(Sg)| + 4 = 1, and since || = [Q”| = 1, we have
G(57) =G(57) =G(Ss) =24 m

7.3 Partial spreads of type |
7.3.1 The seven classes of partial spreads S of type |

If Sg is of type | then it has a unique decomposition of the form

Ss = S(1) U S,(0). (7.5)
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Let o denote the ambient hyperplane of the regulus p = Ss(l), and so 0 = HUv U/,
where v, ' are the external lines of the quadric H = ¢(p) C 0. Let 7 denote the unique
transversal of the three lines of S3(0). Two cases arise

Case (a): 7 C o; Case (b): 7 meets ¢ in a point p. (7.6)

If case (a) holds then o is the even hyperplane of S3(O) and comes along equipped with
a distinguished null polarity, see section 3.2. Four possibilities arise, according as the three
lines of p are of polar type (see section A.2.2 of the appendix) (3,0), (2,1), (1,2) or (0, 3).
The corresponding four classes of Sg(l) are listed in table B.2a as VId.2, VIc.2, VId.1,
and Vle.1, respectively, and representatives will be denoted Sg(1)(3,0), Se(1)(2,1), Se(1)(1,2)
and Sg(I)(0,3)- These four classes can just as well be arrived at by removing a line from
the Sy((5 )) 1n the maximal Sy in eq. (7.1) and theorem 7.1:

Vied = Ss(Dos = Si((3) 04))\{)\1} Vic.2: Sg(1)2,1) = S7((3) (2,2))\{)\110“"01“},

VId.1: Ss(N = 57(()22))\{Aselfpolar}, VId.2: Sﬁ(l)(&o)287(@)(4’0))\{)\1}.
(7.7)

Incidentally, see lemma A.10, every extension of a parabolic S5(O) is of class VIc.2.

Concerning the stabilizer groups of these four classes of Sg(1), recall the discussion of
the stabilizers of maximal spreads S7((3)) in the lead-in to theorem 7.1. First of all let
us deal with classes VIc.2 and VId.1 in (7.7). If S3(O) in (7.5) is as in eq. (3.2) then, cf.
¥5(234) in eq. (A.10), the spread X5 in o defined by

25 - {T; )\(524), )\(S34), v, V/} = {T} U S4<(§))7 where
T = )\(Sgg) = {12, 34, 51,6}, VvV = )\135 = {13, 15, 35}, V/ = >\24u = {24, 2u,4u},

is of polar type (3,2). So an Sg = p U S3(0) of the kind Sg(1)(2,1) may be realized by the
choice p = {A(s24), A(s34), '}, and of the kind Sg(I)(1,2) by the ch01ce p = {\(s34),1,V'}.
Now the Z3 subgroup of the stabilizer G(S,) = Sym(3) x Z» of S7((; )(2 2) ) = Su((3) US;(0)
is generated by A; = (3,4,5,u, 1), since A;, as in eq. (3.6), not only stabilizes S3(0) but
also fixes each line of ¥5. Moreover the element L = (3,4, 1,2,5) of G(S3(0)) fixes v/ and
effects the interchange A(sq4) &= A(s34), while L' = (4,3,2,1,u) fixes A\(s34) and effects
the interchange v = v/. So, since J ¢ G(S;), the stabilizer of Sg(l)(2,1) is seen to be
(A1, L) = Sym(3), and the stabilizer of S(1)(1,2) is (A1, L) = Sym(3). The classes VIc.1
and VId.2 are dealt with more simply. The stabilizer G(S,) = Sym(4) of either S( (g) ( 470))
or S((3) (. 4)) effects all permutations of the four lines of Sy((3)), and on removing one,
say A1, of these lines the resulting Se(1)(3,0) or Sg(l)(0,3) has stabilizer G(S;) = Sym(3)
effecting all permutations of the three lines of the regulus p = 84(( ))\{)\1} So for all
four classes in (7.7) we have G(S4) = Sym(3).

Suppose now that case (b) holds in (7.6). Let the three lines of S3(O) intersect o in
points pq, ps and ps. Because 7 does not lie inside o, these points are not collinear; so we
may as well label things so that p; € v and ps, p3 € /. Two subcases arise: (by): p = p;
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and (bg): p = pa (say). Subcase (by) yields the class VIf.1 in table B.2a, with stabilizer
G(Sg¢) = Z, which effects the interchange p, & ps. Subcase (by) yields the classes Vle.1
and VIe.2 in table B.2a. For either of these classes there are so many distinguished points
that one finds that the stabilizer is trivial. The classes VIe.1 and VIe.2 are quite hard to
distinguish. One distinction is as follows: in the labelling with p = ps, let A be the line
of p which contains the point p; + po; then profile(A) = (5,5,5) for one class, say Vle.1,
and profile(\) = (4,5,6) for the other class Vle.2.

Lemma 7.4 There exist precisely seven equivalence classes of partial spreads Sg of regulus
type I. Each of the four classes Vic.1, VIc.2, VId.1 and VId.2, see table B.2a, has stabilizer
G(Ss) = Sym(3). For class VIf.1, G(Ss) = Zs, while for both of the classes Vle.1 and
VIe.2, G(Se) is trivial. B

7.3.2 The three classes of partial spreads S; of type |

Any non-maximal S7 can be expressed in the form S; = So\{A, \'}. In order for S; to be
of type | then Sy must be of type E or IA, with at least one of A\, \" of valency 2; hence,
if A has valency 2, note that Sg = So\{A} is of type Il. But recall from section 5.2 that
there is a unique class of partial spreads Sg(Il). Hence any S; = S7(I) can be expressed in
the form

S7 = So(E)NAN N} for suitable A\, \" € So(E). (7.8)

Without loss of generality we may suppose that So(E) is as in theorem 5.1, with regu-
lus pattern Ria3, Riss5, Raoe7, R3s9. Then under the action of G(S,) = (E) = Z, where
E = (2u, 45,5, 1u, 35) effects the permutation (A;AzA2) (AsAsA7AsA9Ng), the relevant pairs
{A\, X'} of lines of Sy(E) fall into just three orbits €21, 25 and Qj, of lengths 3, 6 and 6,
with representatives

() {A, A2k, (G) {A, Aok, (i) {A, A7)

We now show that the resulting three partial spreads S}, Si and Si of type | are inequiv-
alent, and so conclude that there are precisely three classes of partial spreads S; of type
|. These are listed as VIIb.1, VIIb.2 and VIIb.3 in table B.2b.

For each of the choices (i), (ii) and (iii), S; = Sz(I) is of the form S3(1) U S4(0O); in
each case let us denote by v, v/ the two lines such that S3(I) U {v, '} is a spread in the
ambient hyperplane o of the regulus Ss(l). In the case (i), Si = So(E)\ {1, X2}, we see
that S4(O) is cyclic and that its four lines meet the lines v, v/ in a 2 4+ 2 pattern. In
contrast, for each of the choices (ii) and (iii) we find that S4(O) is non-cyclic and that its
four lines meet the lines v, v/ in a 3+ 1 pattern. So, for both choices (ii) and (iii), we have
S54(0) = S3(0) U{p}, where the transversal 7 of S3(0) is (say) v and the even hyperplane
of 8§3(0) is o, and where p, meeting ' in a point, is one of the unbalanced members of
S4(0). Moreover Si and S share the same profile (5, 5, 8)(5,6,7)%(6,6,6)(6,7,7)3, with
S;(1) contributing in each case the (6,7, 7)3. Nevertheless Si' and Si' are inequivalent. To
see this let us, in each of the two cases, make use of the null polarity induced in the even
hyperplane o of S3(0) to examine the polar type of the regulus Ss(1):
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for SI = So(E)N\{\1, Xo}, the regulus pogr is of polar type (1,2);
for S = Sy (E)\{ A1, A7}, the regulus psgg is of polar type (3,0).

For each of the partial spreads Si, Si and SI one finds that the stabilizer is of order
2. In the case of S& = So(E)\{ A1, A2}, with Sg(E) is as in theorem 5.1, the stabilizer is
(E3) = Z,. A quick way to see that class VIIb.3 has stabilizer of order 2 is to represent
the class by S; = So(IPA)N{ A1, A7}, with So(IPA) as in theorem 4.5, when one sees that
the stabilizer is (K), where K = (2,1,34,4,5).

7.4 Conclusion

All classes of partial spreads of lines in PG(4,2) have now been found, and are as listed
in tables B.2a and B.2b. In particular there are precisely eight classes of maximal partial
spreads, namely

Vi.l; VIIEL, VIIf2, VIIE3; IXa.l, IXa.2, IXa.3, IXa.4.

A Appendix: Aspects of Sym(6), Sp(4,2) and O(5, 2)
In this appendix we treat the well-known group isomorphisms
(i) Sp(4,2) = Sym(6), (ii)) O(5,2) = Sym(6), (A1)

stressing those features which are relevant to the main body of the paper.

A.1 Aspects of Sym(6)
A.1.1 Synthemes, totals and near-totals

Consider the symmetric group Sym(6) on the six symbols {1,2,3,4,5,6}, and let ijklmn
denote any permutation of 123456. From the six symbols we may form not only fifteen
duads 1j but also fifteen synthemes ij kl mn. Just as each syntheme contains three duads,
each duad is contained in three synthemes. From the six symbols we may also form six
totals. (A total is defined to be a set of five synthemes such that each duad occurs in one
syntheme of the total — just as a symbol i could be interpreted as a pentad {ij : j # i}
of five duads such that each syntheme contains one of the duads of the pentad.) That
there exist precisely six totals was noticed by Sylvester [28] in 1861, and he pointed out
that any two totals overlap in precisely one syntheme (just as any two symbols are shared
by one duad). The six totals are displayed in the following symmetric 6 x 6 array, the
1th total T} consisting of the five synthemes in the ith row, equally the ¢th column, of the
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array.

T1 T2 T3 T4 T5 T6
Ty — 152346 143526 132456 124536 253416
15 152346 — 123456 142536 243516 134526 (A.2)
T3 143526 123456 — 234516 132546 152436 '
T 132456 142536 234516 — 153426 123546
15 124536 243516 132546 153426 — 142356

Tk 253416 134526 152436 123546 142356 —

Observe therefore that the synthemes can be given a duadic labelling, with s;;(= sj;)
denoting that syntheme, in the ij entry of the array (A.2), which is contained in the two
totals

T, ={si : k #i} and T, ={sy:k#j} (A.3)

Remark A.1 We ought to point out that the numbers 1,2,3,4,5,6 labelling the six totals
can be assigned in a quite arbitrary manner. In the array (A.2) we chose to number the
totals so as to satisfy 16 € s;g, for 1 =1,2,3,4,5. In fact our array has the property that
ab € sqq if and only if cd € squ; here ¢, d are not necessarily distinct from a, b.

If from a total T; we remove a syntheme s;; the resulting set 7; ; = T;\{s;;} = {su :
k # i,k # j} of four synthemes will be referred to as a near-total. If D denotes the set of
15 duads, consider the subset D;; = D\ s;; of 12 duads obtained by removing from D the
three duads in the syntheme s;;. Then observe that the 12-set D;; = D;; can be partitioned
as a near-total in precisely two ways, namely as 7; ; and as Tj;. Consequently the 12-set
D;; may be conveniently exhibited as a double-four array, with the four synthemes of
T; ; in the four columns and the four synthemes of 7}, in the four rows. For example,
in the numbering scheme (A.2) for which sz = {14,23, 56}, we may exhibit Dss as the
double-four array
— 16 25 34
45 — 13 26
36 24 — 15
12 35 46 -—

D56 = (A4)

A.1.2 An outer automorphism 6 of Sym(6)

As is well-known, the group Sym(6), alone amongst the symmetric groups Sym(n), pos-
sesses outer automorphisms. There are 6! of these, and they map, see lemma A.2, proof
(1), one class of six Sym(5) subgroups of Sym(6) on to another class of six Sym(5) sub-
groups. (The existence of outer automorphisms lies behind the duality, hinted at in the
opening paragraph of section A.1.1, between on the one hand the 6 symbols/pentads and
15 duads, and on the other the 6 totals and 15 synthemes: in particular, see (A.6) below,
outer automorphisms map the class of 15 involutions of the kind (ij) to the class of 15
involutions of the kind (ij)(kl)(mn).) A particular outer automorphism 6, arising from
our particular numbering of the totals in (A.2), is obtained as follows. Each permutation
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7 € Sym(6) acts, via ij — 7(i)m(j), on the fifteen duads, hence on the fifteen synthemes,
and hence induces a permutation of the 6 totals T}, Ts, ... Tg. Consequently there exists
an automorphism 6 of Sym(6) which maps 7 € Sym(6) onto §(7) = p, where p € Sym(6)
is that permutation such that

m(T3) = Ty, and hence  7(8;5) = Sp(i)p()) - (A.5)
The effect of § on the transpositions (ab) € Sym(6) is as follows:
if s ={ij, kI, mn} then 6O(ab) = (ij)(kl)(mn), (A.6)

this last result confirming that ¢ is indeed outer. Using (A.6) one can show that 6 is
involutory: 6% = id. (See ([20]) for further details and references.)

Lemma A.2 (i) The subgroup of Sym(6) which stabilizes a total is = Sym(5).
(i1) The subgroup which stabilizes a syntheme is = Sym(4) X Zs.
(1i1) The subgroup which stabilizes a near-total is = Sym(4).

Proof. (i) stab(7;) = 6(stab{i}), and stab{i} = Sym(5).

(ii) stab(sq3) = O(stab{2,3}), and stab{2,3} = Sym({1,4,5,6}) x ((23)).

(iii) In part (ii) the Sym(4) subgroup of stab(ses) stabilizes the near-totals 75 3 and
T35 but the Zy subgroup effects 753 = T5,. =

Remark A.3 Just as stab{i} effects all 5! permutations of the five symbols # i, so
stab(T;) effects all 5! permutations of the five totals # T;. Similarly both stab(s;;) =
stab(D;;) and stab(T; ;) effect all 4! permutations of the four totals Ty, k # i,k # j.

A.2 Aspects of Sym(6) and Sp(4, 2)
A.2.1 Sp(4,2) geometry in even hyperplanes

Let the 6-set B* = {p1, ...,ps} be a “hyperbasis” (= 6-arc) for V5 = V(5,2). That is,
the only non-trivial linear relation satisfied by the p; is ¥;p; = 0; so, for each of the six
choices of u € B*, we have a decomposition B* = BU{u} where B = {ey, ..., e5} is a basis
and u = ¥2_,e; is the “all-one” vector (projectively, the unit point) in that basis. Setting
pij = pi +p; and piji = p; + p; + pk, take note that p;jr = pim, holds for any permutation
ijklmn of 123456. Observe further that, in the projective space PG(4,2) = PVjs, the 15
points o = {p;;}, of even weight in a(ny) basis B = B*\{u}, constitute a PG(3,2), to be
referred to as the even hyperplane o of B*, or of B.

For 7 € Sym(6) we may define an element A(m) of GL(5,2) by A(m)pi = pxq)
and thereby embed Sym(6) as a subgroup {A(w) : 7 € Sym(6)} of GL(5,2). Under
the action A of Sym(6) the 31 points of PG(4,2) split into the three orbits B*, ¢ and
Q = {pijr} = o\B*, of respective lengths 6, 15 and 10. Now the hyperbasis B* gives
rise to a distinguished Sp(4,2) geometry for the even subspace Vy = o U{0} of Vs, namely
that determined by the scalar product z.y on V; which satisfies

Dij-Pik = 1, Dij-Pri = 0, (A7)
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whenever i, j, k, | are distinct. If B(7) : p;j — Dr@)=(;) denotes the restriction of A(7) to
the invariant subspace V; of Vs, then note that = — B(7) embeds Sym(6) as a subgroup
of GL(V,) = GL(4,2) which preserves the scalar product (A.7). Since Sym(6) has the
same order 720 = 6! as Sp(4, 2), we thus arrive at the isomorphism (i) in (A.1).

In projective terms the even hyperplane ¢ of B* thus comes equipped with a distin-
guished null polarity. Of the 35 lines of the polar space o, fifteen are self-polar (At = \)
and the remaining twenty are nonpolar (A N\ = ()), with the latter comprising ten polar
pairs {\, \*}. Explicitly the self-polar and nonpolar lines are of the respective forms

(1) Nijrtmn = {0ij» Prts Pmn} and (i) Nije = {pijs Pir, it} = Niwn) ™ (A.8)

the former being labelled by one of the 15 synthemes 5 k£l mn, and the latter by one of the
20 triples ijk. Relative to our choice of scheme (A.2), take note that the fifteen self-polar
lines may just as well be written A, and so labelled by the fifteen duads ij rather than
by the fifteen synthemes.

A.2.2 Symplectic classification of spreads in PG(3,2)

There are precisely 56 spreads of lines in PG(3,2), all equivalent under the action of
GL(4,2), see [11, Section 17.1]. However, for our present purposes, we need to know the
split of this single GL(4, 2)-orbit into Sp(4, 2)-orbits. To this end, for a given choice of
symplectic geometry, let us say that a spread X5 in PG(3,2) is of polar type (n,n’) if n
lines of Y5 are self-polar and n/(= 5 — n) lines are nonpolar. (The polar type (n,r —n) of
an S, in PG(3,2) is similarly defined for r < 5.) Clearly spreads of different type belong
to different Sp(4, 2)-orbits.

Since there exist precisely six totals, from (A.81) there must exist precisely six spreads
of polar type (5,0), namely >5(7;), i = 1, ..., 6, where

S5(T3) = sy 1 £ ). (A.9)

Moreover, by use of the isomorphism Sp(4,2) = Sym(6), we see that these six spreads
belong to the same Sp(4, 2)-orbit.

Next there exist precisely (g) = 20 spreads of polar type (3,2), namely those of the
form X5(ijk), for some choice of triple 7jk, where

25(Z]k) = {)‘Sijv)‘siw)‘sj'm:uv V}; (AlO)

here the lines {u, v} are determined uniquely by the requirement that they extend the
three self-polar lines Sz = {\;,;, As,,; As,, } to a spread for PG(3,2). Observe that the lines
of &3 are indeed pairwise skew; for example A, is skew to Ay, since s;; and s, belong
to the same total T;. Moreover the lines j,v are necessarily nonpolar, since a fourth self-
polar line would not be skew to at least one member of Sz, for example Ay, meets A
since s;; and s;;, do not lie in a common total. Also one sees that v = .

If instead we start out from one of the 15 self-polar lines and seek extensions using

only nonpolar lines, then it is easy to see there are precisely two such extensions, leading

Sjk>
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to a Sp(4, 2)-orbit of 15 x 2 = 30 spreads of type (1,4). For example the self-polar line
A(12 34 56) belongs to just the following two spreads of type (1,4):

{/\12 3456, /\1357 /\1467 )‘236a )\245}, {)\12 3456 )\2467 /\2357 /\1457 )\136}- (All)

It is easy to check directly that there are no further spreads in PG(4,2). Alternatively
the 6 + 20 + 30 spreads just described already account for the known total number 56 of
spreads. So we have proved the following lemma:

Lemma A.4 Under the action of Sp(4,2) the 56 spreads of lines in PG(3,2) fall into
three orbits of lengths 6,20 and 30, which consist of spreads of the respective polar types
(5,0),(3,2) and (1,4). &

A.3 Aspects of Sym(6) and O(5, 2)
A.3.1 O(5,2) geometry and subspaces

Let us start from a 6-dimensional symplectic space Vg and choose, cf. [21], a basis
{a1, ..., as} whose vectors are pairwise non-perpendicular, satisfying that is a;.a; = 1
for i # j. Set Vs =< n =1, where n = a; + ... + ag, so that Vs consists of those vectors
of Vg of even weight in the chosen basis. The 31 points of the associated projective space
PG(4,2) are then: 15 points a;;(= aj;), 15 points v;;(= v;;) and n, where we define, for
i
aij :ai—i—aj, Uij:TL—FGij.

Using z.y for the scalar product on V5 (whose kernel is < n =), observe that the a;; enjoy
the metrical properties

Q5. Qi = 1, Q5.1 = O, n.a;; = O, (A12)

whence we also have a;;.v;, = 1 = v;;.05, and ;5.0 = 0 = v.04.

Let @ be that quadratic form on V5 such that Q(x) = 1 for = a vector of the basis
{a16, agg, ..., as6} and whose associated alternating form is z.y. It follows that Q(a;;) =
1, Qn) =1, Qvy) = 0. Thus Q = 0 is the equation of a parabolic quadric P
in PG(4,2), whose points are the 15 points {v;j, i # j}, whose nucleus is n and whose
invariance group is O(5,2). Now the symmetric group Sym(6) acts linearly upon the space
Vs via m +— C(m), where C(m)a; = ar(;), and upon restriction to the invariant subspace
V5 we obtain a monomorphism Sym(6) — O(5,2) : m +— D(m), where D(7)a;; = Gr(iyr(s)-
Since O(5,2) has the same order 720 as Sym(6), we thus arrive at the isomorphism (ii) in

(A.1).

Remark A.5 We have encountered two subgroups of GL(5,2) which are isomorphic to
Sym(6), namely the subgroup {A(m) : m € Sym(6)} of section A.2.1 and the subgroup
{D(m) : m € Sym(6)} of the present section. These two subgroups are not conjugate in
GL(5,2), since, when acting on Vs\{0}, the former has orbits of lengths 6,15 and 10,
while the latter has, see the next lemma, orbits of lengths 15,15 and 1. (By using E(w) =
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B(m)® I on Vs =V, & Vi we obtain a third subgroup {E(w) : m € Sym(6)} = Sym(6) of
GL(5,2); this is not conjugate to either of the previous two subgroups, since unlike them
it has a decomposable action on Vs.)

By using the foregoing 6-dimensional notation for the points, and by appealing to the
isomorphism O(5,2) = Sym(6), it is an easy matter, [20], [21], to classify, and list quite
explicitly, all subspaces of the orthogonal space (Vs, Q). Let ijklmn denote, as usual, an
arbitrary permutation of 123456, and let us adopt projective language. Then, restricting
our attention to the points and lines of PG(4,2), we have:

Lemma A.6 Under the action of O(5,2) = Sym(6) the 31 points of PG(4,2) fall into
the three orbits of lengths 15, 1 and 15, namely the 15 points {v;;} on the quadric Py, the
nucleus {n} of Py and the remaining 15 points {a;;} off Ps. The 155 lines of PG(4,2) fall
into the five orbits

Ay o the 15 lines on Py, namely A(ij klmn) = {vij, Vgi, Vpn

Ay the 15 nuclear tangents to Py, namely A(ij) = {n,vij, a;; };

A3 : the 45 other tangents to Py, namely \(ij, kl) = {aij, agi, Vmn };
Ay o the 20 external lines N(ijk) = {aij, a, ;i };

A5 : the 60 bisecants \(i, jk) = {vij, vik, aji }- |

A.3.2 The six spreads on a parabolic quadric P,

Since the 15 internal lines A; of P, are labelled by the 15 synthemes ij kIl mn, we can
immediately deduce features of P4 from the Sym(6) material of section A.1.1. Since a
spread S5 on a Py is, by definition, a partition of the 15 points of Py into five skew lines,
and since each duad belongs to precisely three synthemes, we deduce:

Lemma A.7 There exist precisely six spreads on a Py, each Ss having profile (3,3, 3)°,
the five lines A(ij klmn) = {vij, Vi1, Umn} of the rth spread having their synthemic labels
ij klmn drawn from the rth total T, in the array (A.2). FEach of the 15 lines \ on
Py belongs to precisely two of these spreads, the 12-set v = P, = P, \\ being a non-
degenerate double-four, see section 3.3.1, partitioning in precisely two ways to yield partial
spreads Sy and S;'", each of profile (2,2,2)*, on P,. R

Thus if S5 = {A(sis) : @ # 6} is the spread on P, which uses the total Ty in the array
(A.2), and if Sy = SsN\{A(s56)}, then, see (A.4), 14 = 1(Sy) is the double-four

— U1 V25 7U34

Vg — V13 U2
L= A3
v U3g V24 — Uis ( )

V12 Uss V4s —

whose rows are the lines A(si), ¢ = 1,2,3,4, of Sy and whose columns are the lines
/\(S5j), j = 1, 2, 3, 47Of Szpp.
Also from lemma A.2 and remark A.3 we obtain:
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Lemma A.8 If S5, ¢y and S, are as in the preceding paragraph, then
(1) G(S5) = Sym(5) (i) G(vp,) = Sym(4) x Zy (i) G(S,) = Sym(4).

Moreover G(Sy), G(S,) effect all permutations of the lines of Ss, Su, respectively, and in
particular both Ss and Sy are cyclic. B

(Incidentally there are three kinds of cyclic Sss in PG(4,2), the other two belong-
ing to classes Ve.l and Vj.1.) Let S5 = {1, A2, A3, A1, A5} again be that spread on P,
corresponding to the total Tj in (A.2):

A1 = A(253416), Ao = A(134526), A3 = A(152436),
A = A(123546), As = A(14 23 56). (A.14)
Then for the 5-cycle m = (12345)(6) the element D(w) € O(5,2) effects the cyclic permu-
tation (A;A2A3A4A5) of the lines of Ss. If we set e; = a;6 then {eq, ...,e5} is a basis with
u = n, and D(m) effects (ejezezeqes). In this basis the five lines of S5 in (A.14) are, in
abbreviated notation,
A= {134,125, Tu}, Ay = {245,231, 2u}, \; = {351,342, 3u},
A = {412,453, 4u}, A5 = {523,514, 5u)}, (A.15)

and the double-four ¥, = P2\ \5 in (A.13) is

1w 134 125
931 — 245 2u

Va=| 34 351 - 342 (A.16)
453 412 du

Starting from this 4 x 4 array we may recover A5, and the nucleus n = u, with the aid
of lemma 3.4. By taking advantage of the Zs-symmetry of S5 in (A.15), we see that the
equations f,s = 0 of the hyperplanes o,; = (A, \s) are given by the ten linear forms:

fr’/‘-l—l = Tp + Tpy1 + Tpys, frr+2 =Ty + Tpy1 + Try2, <A17)

where the coordinates x1, ..., x5 are relative to the chosen basis, and where r runs through
1,2,3,4,5 mod 5.

Lemma A.9 A partial spread Ss in PG(4,2) which is a spread on a Py is necessarily of
type O (and hence so is Sy = SsN{\}).

Proof. The ten f,, in (A.17) are distinct, whence so are the ten hyperplanes (A, \s) .
[

(Alternative proof: if one regulus exists then, by the cyclic symmetry, at least five
exist; but, from (1.5) or theorem 1.6(b), N5 > 4 implies N5 = 10, which only occurs when
Ss is a spread in a hyperplane.)
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A.3.3 Extending an S5 on a P, to an §*

Let ijklmn be any permutation of 123456. Then take note that the twenty lines A(ijk) =
{aij, ai, a;i} external to Py, see lemma A.6, partition into ten pairs of the kind {A, A*},
where for A = A\(ijk) we define \* = A(lmn). In the coordinates z;, 1 < i < 5, used in
eq. (A.17), let the hyperplane o,; = (\,, \s) have equation x; + z; + 25, = 0, and observe
that the ten equations (A.17) make use of all ten linear forms which are of weight 3 in
the coordinates. Also note that o,, contains precisely two of the twenty lines which are
external to Py, namely A(ijk) = {ij, ik, jk} and A(Im6) = {l, m,Im}. So we have part (i)
of the next lemma.

Lemma A.10 (i) For an S5 on a Py each hyperplane o.s = (\., \s) contains precisely
two lines which are external to Py. The two lines form a pair {\, \*}, with all ten such
pairs arising from the ten hyperplanes o,.

(11) Every extension Sg of S5 is of class Viec.2.

Proof. (ii) Consider the extensions S¢ = S; U {\;jx} and S = S5 U {Aime} of
Ss. Both extensions are of the form Ss(l) U S3(0) where, see the lead-in to the lemma,
S3(0) = S5\ { A, As} and S;(1) is a regulus in the hyperplane o,s = (A, As); here Ss(I) =
{\ry As, A(ijk)} for Sg and Ss(l) = {\, A\s, A\(Im6)} for Sf. Observe that {\., As, A(ijk),
A(lm6), 7} is a spread for 0,5 whose fifth member 7 can only be the transversal of the
non-regulus S3(0). Consequently Sg and S are of type | and moreover case (a) of (7.6)
applies. Upon inspection we see that, for the null polarity induced in the even hyperplane
0,5 of S3(0), both A, and A, are self-polar, and both A(ijk) and A\(Im6) are nonpolar lines.
Since for both Sg and S the regulus S;(1) is thus of polar type (2, 1), each extension is,
see section 7.3.1, of class VIc.2. m

If S5 is a spread on a Py then the 16-set (¢5)° complementary to 15 = ¢(S5) consists
of the nucleus n of P, and the remaining 15 points a;; off Py. If S, = S5y = Ss U S, is
an extension of Sy then S; must consist of mutually skew lines chosen from the 20 lines
A(ijk). external to Py. If S, is maximal then two cases arise: either (i) ¢ = 2, or else (ii)
t = 4. In the former case it is easily seen that Sy must be one of the ten pairs {\, \*} just
described.

So let us consider the possibilities for S, in case (ii), where we deal with an extension
Sg = S5US; of Ss. The 4-set (1hg)¢ complementary to g = 1(Sy) consists of the nucleus n
of P, together with three of the points a;;, these three being of the form {a;;, a, am,} for
some syntheme ij kl mn. Observe that the 4-set (19)¢ is thus of the form a\\(ij kl mn)
where « is a plane — in conformity with lemma 1.2(iii). Two subcases arise:

(ila) A(zj klmn) € S, (iib) A(ij klmn) ¢ Ss. (A.18)

Without loss of generality we may suppose that S5 = {A\(s) : @ # 6} is the spread on
P, which uses the total Tg in the array (A.2). Since G(S;) is transitive both on the five
lines of S5 and on the ten other internal lines A1\ S5, we may also suppose that the two
subcases to consider are:

(a) (¥9)° = a\Als16),  (b) (1hg)" = A\ A(s23)- (A.19)
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Consider 14 = 1(S4) = g\ Ps. Since A(s15) = A(253416), if (A.19a) holds we see that
g = {a;j hr<icj<6 \{a25, ass, a16} has the double-four structure

— Q12 Q23 ai3
as6 — Q36 35
Yy = . (A.20)
Qg5 A14 — Q15
Qg6 A24 QA26 —

Consequently the spread Ss on P, has precisely two extensions to an Sy such that (A.19a)
holds, namely Sy = S5 U Sy and 8§ = S5 U S, where

Sy= {A(123), A\(356), A(145), A(246)}, SOPP= {A(456), A(124), A(234), A\(135)} (A.21)

are given by the rows and columns of the double-four array (A.20), and so are both of
class IVa.l. Since there are five choices for A € S5 in (A.18a), case (iia) gives rise to ten
extensions of S5 to an Sy. Similarly, since A(s23) = A(123456), if (A.19b) holds we see
that 14 = {a;j }1<icj<6 \{a12, @34, as6} has a double-four structure and that the spread S;
on P4 has precisely two extensions to an Sy such that (A.19b) holds, namely Sy = S5 US,
and 8§ = S5 US,™, where

Sy= {A\(135), A(146), A(236), A(245)},  SSP= {A(246), A(235), A(145), A(136)} (A.22)

are of class IVa.l. Since there are ten choices for A ¢ S5 in (A.18b), case (iib) gives rise
to twenty extensions of S5 to an Sy.

Theorem A.11 If S5 is a spread on a parabolic quadric Py then its extensions to a
mazimal partial spread are precisely those listed below:

(i) there are ten extensions of S5 to an S7'**, each of class VIIf.3;

(iia) there are ten extensions of Sy to an Sg(X);

(1ib) there are twenty extensions of S5 to an Se(IFA).

Proof. This follows from our lead-in upon noting the following.

(i) Consider the extension Sy*** = S5 U{A(123), A\(456)}, and recall the proof of lemma
A.10. We have SFP* = 84((§)) U S3(0) where S5(0) = {Aa, \g, A5} and where 84((§)) =
{A1, A3, A(123), A(456)} is of polar type (2,2). Hence, see theorem 7.1, S** is of class
VII£.3.

(iia) If Sg = S;US, with S, as in (A.21) then the four reguli of Sg are, by use of (A.17),
seen to be {A1, A2, A(356)}, {A1, A3, A(123)}, { A1, Ay, A(145)} and {1, A5, A(246)}, and so
Sy is of type X. By lemma A.10(i), the same regulus pattern holds if each A\(ijk) € Sy is
replaced by A(ijk)* € S, and so ) = S5 U S, with §;™ as in (A.21), is also of type
X.

(iib) If Sg = S5 U Sy with Sy as in (A.22) then the four reguli of Sy are, by use of
(A.17), seen to be {9, A3, A(146) }, {1, A(236), As}, { A4, A(245), A5} and {5, A(135), A1},
and so, see section 4.3, Sy is seen to be of type I"A. Again the same regulus pattern holds
if each A(ijk) € Sy is replaced by A\(ijk)* € S, and so ) = S U S, with S;™" as in
(A.22), is also seen to be of type I"A. =
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B Appendix: Tables of results

B.1 Point-set orbits

Table B.1: the orbits of (

Sr), 1<r<9

O(v)
Ia

ITa

IIIa
IITb
IVa
IVb
IVc
IvVd

Via
VIb
Vic
VId
Ve
VIf
Vig
VIh
VIi
VIj
VIla
VIIb
Vlilc
VIId
Vlle
VIIf

VIlIa
VIIIb
Vlllc

IXa

G(¥)]
64512

1152

48
1152
48

6

24
9216
720
16
48

6

10

8

4

48
384
322560

48
16
36
48
4
16
32
8
144
192

1008
32
16
48
48
720

64512
768
144

9216

Signature ()
(3,1,0)(3")(3°)
(6,2,0)(6)(6°)
(9,4,0)(6! )( %)
(9,6,0)(9)(9°)
(12,8,0)(122)(12°)
(12,8,0)(3 6233)(120)
(12,10, 0)(2326314)(12°)
(12,16,0)(12%)(12°)
(15,15,0)(153)(15%)
(15,15,0)(111331°)(15°)
(15,15,0)(153)(15%)
(15,15,0)(32933%)(15%)
(15,15, 0)(5%5%5%)(15°)
(15,17,0)(22636415)(159)
(15,17,1)(1122436425)(8°71)
(15,19,1)(936°)(8°71)
(15,23,4)(2112517)(201221%)
(15,35,15)(157)(157)
(18,26, 0)(12465)(18°)
(18,26, 0)(23848%)(18°)

(
(
(18,28,2)(23646545)(7°8132)
(18,28, 2)(4313517)(7°8132%)
(18,30, 4)(84454527)(8110%)
(18,30,3
(18,32,
(18,34, 8)(438%67)(4%14%)
(21,42, 0)(21%)(219)

(21,44, 4)(4°868718)(8°12214)
(21,46, 7)(2°808738)(21225325)
(21,46, 8)(15%68)(1°1228%)
(21,48,9)(6512738)(6212339)
(21, 50,15)(6°15%)(6°157)
(24,64, 0)(24%)(24)

(24, 68,16)(18%610)(201668)
(24,70, 21)(9%129319)(9412739)
(27,101, 54)(2411313)(2413322)

0)
)
)
)
)
)
)
)
)
)
)
15
|
18,28, 0)(3%15%)(18°)
)
)
)
)
)(1
3)(15537)(3%12133)
)
)
)
)
)(1
)
5
)

(
(
(
(
(
(
(
(
(1
(
(
)
(
o
18,28, 0)(6412%)(18%)
(
(
(
(
(
(4
(
(
(
(
(
)
(
)
)

344854617)(3°1014213)

Signature (1)°)
(28,112, 64)(2812)(2819)
(25,78, 24)(167910)(16598)
(22,52, 8)(4512768)(1626*)
(22,50, 8)(16%6%)(16%6%)
(19,33,4)(1315%37)(1313233)
(19, 33,2)(39°7%)(6°12112)
(19,31, 2)(2364652637)(8°8132)
(19, 25,4)(1633%)(16'3%)

(16, 20, 0)(10154)(160)

(16,20, 0)(2214%)(16°)

(16,20, 2)(3212415)(3°12112)
(16,20, 1)(73643%)(9°71)
(16,20,0)(5310%1%)(16°)
(16,18, 1)(4263342516)(9071)
(16, 18,0)(32635%2%)(16°)
(16,16,0)(1°629%)(16°)

(16,12 0)(2012226)(160)
(16,0,0)(16%)(16°)
(13,12, 1)(62433%)(6°71)
(13,12,0)(428314)(13%)
(13,10, 0)(19923%)(139)
(13,10,1)(61433%)(6°74)
(13,10,0)(21624314)(139)
(13,10 0)(11224)(130)

( (4!
( (1
( (
( (
( (
( (
( (
( (
( (
( (
(
(
(
(4,

13,8,0)(418214)(13%)
13,8,0 0414243)(130)
13,6,0)(4°92)(13%)

)
g
13,4,0)(4°8114)(139)
10,8, 1)(3173)(3°7h)
10,6,0)(414223)(10%)
10, 4,0)(2°4142)(10%)
10,4, 0)
)
)
(
(6
(4
(

9'1%)(10°)
10,2,0)(4%1)(10%)
10,0,0)(10°)(10%)
7,7, 1)(7)(7)
7,3,0)(6113)(79)
7,1,0)(4°31)(79)
4,0,0)(4°)(4°)

58



B.2 Partial spread orbits

Table B.2a: the classes of partial spreads S,, 1 <r <6
©(S,) N, Type G(S,) profile(S;) Notes
lal 0 O 64512 (111) 26:(Ly(2)x L3(2))
Mal 0 O 1152 (111)2 {24:(La(2) x La(2))}.2
IMa.1 0 O Sym(4) x Zo (112)3 §3.2, non-regulus, cyclic
Iib.1 1 I 576 (222)3 §3.1, regulus, cyclic
IVa.l 0 O Sym(4) (222)4 §3.3.1, cyclic
IVb.1 0 O Sym(3) (123)3(222) §3.3.2
IVel 1 | Sym(3) x Zy (233)3(114) §3.1, §3.5, eq. (3.28)
IVd1l 4 (3 1152 (444)* §3.1, cyclic
Val 0 O Sym(5) (333)5 §3.4, §A.3.2, cyclic
Vbl 0 O Dg (333)4(135) §3.4
Vel 0 O Sym(3) x Zo (333)5 §3.4
vdl 0 O Z3 (234)3(333)2 §3.4
Vel 0 O Zs (234)° §3.4, cyclic
Vil 1 | Zs (344)2(335).(234)? §3.5
Vgl 1 | Z (344)3.(135)(225) §3.5
Vh.l 2 L Ds (355).(335)* §3.5, lemma 4.1
Vil 4 (3 Sym(4) x Z» (555)%.(117) §3.1
Vil 10 (E) 24T L(2,4)  (777)° §3.1, maximal, cyclic
Vlal 0 O Zs (445)° §6.2, cyclic
VIb.i 0 O Z (355)2(445)* §6.2
Vil 1 | Sym(3) (555)3.(355)3 §7.3.1
Vic2 1 | Sym(3) (555)3.(355)3 §7.3.1
VId.l 1 | Sym(3) (555)3.(445)3 §7.3.1
Vid.2 1 | Sym(3) (555)3.(445)3 §7.3.1
Viel 1 | 1 (456)%(555).(346)2(445) §7.3.1
Vie2 1 | 1 (456)2(555).(346)2(445) §7.3.1
VIE1 1 | Zy (555)3. (355)2(337) §7.3.1
Vigl 2 |l Zy 2 x (456)%(447) §7.2.1
VIh.1 2 L 1 (566).(456)%(447)(555).(355)  §4.2, lemma 4.2
VIh.2 2 L Zs (557).(456)%.(355) §4.2, lemma 4.2
VIi.i 3 A Sym(3) (557)3.(555)3 §4.2, lemma 4.3
VIj1 4 (3 Ds (667)*.(337)? §7.1, lemma 7.2
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Table B.2b: the classes of partial spreads S,, r > 6

©(S;) N, Type G(S,) proﬁle(S,«) Notes

VIlal 0 O 7:3 (666)7 §6.1, cyclic

Vilb.l 1 | Zy (668)(677) (567)4 §7.3.2

Vilb.2 1 | Zs (677)3.(558)(567)%(666)  §7.3.2

Vilb.3 1 | Zy (677)3. (558)(567)2(66 ) §7.3.2

Vilel 2 1l Zy {2 x (668)(677)2}.(558)  §7.2.2, lemma 7.3

Vile.2 2 |l Z4 {2 x (668)(677)}.(558)  §7.2.2, lemma 7.3

Vile3 2 L Zs (778).(668)%(677)2.(567)%  §4.4

Vilc4 2 L Zy (778).(668)%(677)2.(567)%  §4.4

Vile5 2 L 1 (778).(668)%(677)2.(567)%  §4.4

Vile6 2 L 1 (778).(668)%(677)2.(567)%  §4.4

vildl 2 1l 1 (668)5.(666) §7.2.2, lemma 7.3

Vilel 3 A Sym(3) (778)3.(677)3.(666) §4.3, theorem 4.5

Vile.2 3 A Z3 (778)3.(677)3.(666) §4.3, theorem 4.5

Vile3 3 A Zs (778)3.(677)3.(666) §4.3, theorem 4.5

Viled 3 Y Zg (888).(677)¢ §4.4

Vlle5 3 F Zs (778)2.(668)(677)* §4.4

VIIEL 4 (%) (a0 Sym(4) (888)%.(558)3 §7.1, maximal

VIE2 4 (5)g, Sym(4) (888)*.(558)° §7.1, maximal

VIIE3 4 (3) (22 Sym(3)x Zy (888)%.(558)° §7.1, maximal

VIlla.l 0 O 23: Foy (888)8 §6.1, transitive

VIIIb.1 2 1l Zs (88t)°.(888)2 §5.2

Ville.l 3 A Sym(3) (99t)3.(899)3.(888)? §4.3, thm 4.5, §5.2

Villc2 3 A Z3 (99t)3.(899)3.(888)2 §4.3, thm 4.5, §5.2

Ville.3 3 A Z (99t)3.(899)3.(888)2 §4.3, thm 4.5, §5.2

VIllc4 3 Y Z3 (ttt).(899)6.(888) §5.2

VIIIc.5 3 I°L Zs (99t).(899)2(88t)2|(899)%  §5.2

VIllc.6 3 I5L Z (99t).(899)%(88t)2%((899)%  §5.2

VIIc.7 3 F 1 (99t)2.(888)(899)%.(888)  §5.2

IXal 4 X Alt(4) x Zo  (13,13,13).(11,11,11)8  §5.1, thms 5.1, 6.2, maximal

IXa.2 4 IPA Sym(3) (11,11,13)3.(11,11,11)¢  §5.1, thm 5.1, maximal

IXa.3 4 I*A Sym(3) (11,11,13)3.(11,11,11)¢  §5.1, thm 5.1, maximal

IXa4d 4 E Zg (11,11,13)3.(11,11,11)¢  §5.1, thm 5.1, maximal
B.3 Notes to the tables

B.3.1 Table B.1

(i) By appeal to table B.1, the GL(5, 2)-orbit of the underlying set ¢ = ¥(S

) of a given

partial spread S, can be found as follows. Compute either signature(¢) or signature(¢°),
whichever is easiest, and then, with one exception, the orbit may be read off from ta-
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ble B.1. The one exception is of orbits Va and Ve, both of which have signature(y)) =
(15,15,0)(15%)(15°); but these two orbits are still distinguished by ¢ having different
signatures.

(ii) A point-set ¥(S,) defines uniquely a homogeneous polynomial f of reduced degree
< 3 in the coordinates 1, ..., x5 such that if r is odd then ¢ has equation f(x) = 0,
while if r is even then ¢° has equation f(z) = 0; see [23], [19]. In [7], all point-sets ¢
defined in terms of a homogeneous polynomial f of reduced degree < 3 were classified into
GL(5, 2)-orbits; also for each orbit the signature, along with a representative polynomial
f, was computed. From [7, Table 8.4.6] it is seen that, even for these more general point-
sets 1, the pair {signature(v), signature(y°)} suffices to distinguish between the various
GL(5,2)-orbits. (It should be mentioned that most of the computations in [7] were carried
out using a combination of specially written Pascal code and Mathematica [29]; for details,
see [7, Section 8.4] and [8].)

For [1| = 24 there are three orbits, all being represented by a 1 of the form v (Ssg), for
|| = 21 there are seven orbits, all but one being represented by a ¢ of the form ¥ (S7),
and for [¢)| = 18 there are twelve orbits, all but two being represented by a v of the form
1 (Sg). (Of the eighteen orbits in [7] for |1)| = 15, eight do not arise from a (Ss), and of
the twelve orbits for |¢| = 12, eight do not arise from a 1(S;).)

B.3.2 Tables B.2a and B.2b

A profile (1,2, 3)3(2,2,2), see section 1.1, is written (123)3(222). We use t as an abbrevia-
tion for 10. Dots are used to separate groups of lines of the same valency, with the valencies
occurring in descending order. Thus for an Sg of type L a profile (557).(456)*.(355) con-
veys the information that the line of valency 2 has profile (5,5,7), each of the four lines
of valency 1 has profile (4,5,6) and the line of valency 0 has profile (3,5,5). The entry
2% (456)%(447) for the profile of class VIg.1, of type I, indicates that both reguli contribute
(4,5,6)%(4,4,7) to the overall profile.

VIle.5. There are five lines of valency 1, and one of these forms a regulus with the
two lines of valency 2; it is this line which has profile (6,6, 8), and the other four which
have profile (6,7,7).

VIIIc.7. A similar remark applies concerning the line of valency 1 and profile (8,8, 8).

VIIIc.5, c.6. In the case of an Sg of type IL the 7 lines of valency 1 have a natural 4+ 3
split, with the 3 forming the stand-alone regulus. A vertical line | is used to separate the
profile of the 4 from that of the 3.

Reguli reversals. If a partial spread S, contains a regulus p then we may obtain another
partial spread S, by reversing the regulus p, that is by replacing p by p°?. Since S, and
S! share the same point-set 1(S,) = (S)), it follows from eq. (1.4) that reguli reversals
do not change the number of requli: N(S,) = N(S]). Moreover in the cases r < 5 the
partial spreads S, and S/ necessarily belong to the same class since, as pointed out in
section 2.1, the orbit ©(1)) of the underlying point-set 1(S,) suffices to distinguish the
classes of S, if » < 5. For r > 5 some reguli reversals p = p°® do result in S, and S,
belonging to different classes. Examples include the following pairs of classes which are
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interchanged under a (suitable) regulus reversal:

Type I: VIc.1 & VIc.2; VId.1 & VId.2; VIe.l & VIe.2; VIIb.2 & VIIb.3.
Type L: VIh.1 & VIh.2. Type Il: VIIc.1 & VIlec.2.

Type IL: VIIIc.5 & VIIIc.6. Type IA: IXa.2 & IXa.3.

Types X & E: IXa.l & IXa.4.
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