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Abstract

The concept of intersection numbers of order r for t-designs is
generalized to graphs and to block designs which are not necessarily
t-designs. These intersection numbers satisfy certain integer linear
equations involving binomial coefficients, and information on the non-
negative integer solutions to these equations can be obtained using
the block intersection polynomials introduced by P.J. Cameron and
the present author. The theory of block intersection polynomials is
extended, and new applications of these polynomials to the studies of
graphs and block designs are obtained. In particular, we obtain a new
method of bounding the size of a clique in an edge-regular graph with
given parameters, which can improve on the Hoffman bound when
applicable, and a new method for studying the possibility of a graph
with given vertex-degree sequence being an induced subgraph of a
strongly regular graph with given parameters.
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1 Introduction

Consider the linear equations:

s∑
i=0

(
i

j

)
ni = bj (j = 0, . . . , t) (1)

where s, t and the bj are given non-negative integers, with s ≥ t, and suppose
we are interested in solution vectors [n0, . . . , ns] of non-negative integers.
Problems of this form arise in the study of block designs, especially the study
of t-designs (see [13, 8, 15, 1, 2, 5]). In [5], Cameron and the present author
introduce the block intersection polynomial, and show how this polynomial
gives useful information about the solutions to this problem when t is even
and specified non-negative integers m0, . . . ,ms are given for which mi ≤ ni

must hold. They show how to use block intersection polynomials to obtain
a bound on the multiplicity of a block in a t-(v, k, λ) design, and when t is
even, a sometimes better bound for a resolvable t-(v, k, λ) design.

In this paper, we generalize the concept of intersection numbers of or-
der r for t-designs, introduced by Mendelsohn [13] and studied further by
van Trung, Wu and Mesner [15], to graphs and to block designs which are
not necessarily t-designs. We show that these intersection numbers (defined
in Section 2) satisfy equations of the form (1), and so may be studied using
block intersection polynomials, or by methods of linear or integer program-
ming. We then continue the study of block intersection polynomials, and
obtain new applications of these polynomials to the studies of edge-regular
graphs, amply regular graphs, and block designs. For example, we prove the
following:

Theorem 1.1 Let Γ be an edge-regular graph with parameters (v, k, λ), let
r be a positive integer, and suppose that Γ contains a clique S of size s ≥ 2.
Let

B(x) := x(x + 1)

(
v − s

r

)
− 2xs

(
k − s + 1

r

)
+ s(s− 1)

(
λ− s + 2

r

)
. (2)

Then B(m) ≥ 0 for every integer m. Moreover, B(m) = 0 for some integer
m if and only if for every r-set R of vertices, such that R ∩ S = ∅, we have
| ∩ρ∈R Γ(ρ) ∩ S| ∈ {m,m + 1}, in which case m occurs exactly B(m + 1)/2
times.
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We apply this theorem with r = 1 to obtain what appears to be a good
bound on the size of a clique in any edge-regular graph Γ with parameters
(v, k, λ). We have that if Γ has a clique of size s then

m(m + 1)(v − s)− 2ms(k − s + 1) + s(s− 1)(λ− s + 2) ≥ 0 (3)

for every integer m. Then our clique bound is one less than the least integer
s ≥ 2 for which (3) does not hold for some integer m. (Such an s always exists,
for considered as a polynomial in s, the left-hand side of (3) has leading term
−s3. For a fixed s < v, the left-hand side of (3) is a quadratic in m, and so it
is easy to determine whether it is negative for some integer m.) Our bound is
sometimes better than what the Hoffman bound [4, Proposition 1.3.2] gives
when Γ is a strongly regular graph with parameters (v, k, λ, µ).

Our methods may also be applied to the study of induced subgraphs of
amply regular graphs. We shall prove:

Theorem 1.2 Let Γ be an amply regular graph with parameters (v, k, λ, µ),
and suppose ∆ is an induced subgraph of Γ, where ∆ has s ≥ 2 vertices and
vertex-degree sequence [d1, . . . , ds]. Further suppose that ∆ is connected with
diameter at most 2 if Γ is not strongly regular. Let

B(x) := x(x + 1)(v − s)− 2xsk + (2x + λ− µ + 1)
s∑

i=1

di + s(s− 1)µ−
s∑

i=1

d2
i .

Then B(m) ≥ 0 for every integer m. Moreover, B(m) = 0 for some integer
m if and only if each vertex not in ∆ is adjacent to exactly m or m+1 vertices
of ∆, in which case exactly B(m+1)/2 vertices not in ∆ are adjacent to just
m vertices of ∆.

We close the introduction by stating a result on t-designs which we shall
prove using block intersection polynomials in Section 5.

Theorem 1.3 Let t be an even positive integer, let D be a t-(v, k, λ) design,
and for S a block of D, define I(D, S) to be the set of all i for which some
block of D, other than S, meets S in exactly i points. Now suppose that for
some block S of D, I(D, S) is contained in a set of t consecutive integers.
Then for every block T in every t-(v, k, λ) design E, the number of blocks of
E meeting T in exactly i points (0 ≤ i ≤ k) is the same as the number of
blocks of D meeting S in exactly i points.
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2 Intersection numbers of order r for graphs

and block designs

Throughout this paper, all graphs are finite and undirected, with no loops or
multiple edges. For Γ a graph, V (Γ) denotes its vertex-set, and for α ∈ V (Γ),
Γi(α) denotes the set of vertices in Γ at distance i from α, with Γ(α) := Γ1(α),
the set of vertices adjacent to α. A graph Γ is edge-regular with parameters
(v, k, λ) if Γ has exactly v vertices, is regular of degree k, and every pair of
adjacent vertices have exactly λ common neighbours. A graph Γ is amply reg-
ular with parameters (v, k, λ, µ) if it is edge-regular with parameters (v, k, λ)
and every pair of vertices at distance 2 have exactly µ common neighbours.
A graph Γ is strongly regular with parameters (v, k, λ, µ) if it is edge-regular
with parameters (v, k, λ) and every pair of distinct nonadjacent vertices have
exactly µ common neighbours (so in particular, every strongly regular graph
is amply regular). A clique in a graph is a set of pairwise adjacent vertices.

Let Γ be a graph, and let S, Q ⊆ V (Γ). Then for r a positive integer,

the i-th intersection number of order r, denoted n
(r)
i (Γ, S,Q), is defined to

be the number of r-subsets R of Q such that∣∣∣∣∣∣
⋂

ρ∈R

Γ(ρ)
⋂

S

∣∣∣∣∣∣ = i.

In particular, n
(1)
i (Γ, S,Q) is the number of vertices α ∈ Q such that |Γ(α) ∩ S| =

i.
For T any subset of V (Γ), let λT (Γ, Q) be the number of vertices in Q

adjacent to each vertex in T ; that is

λT (Γ, Q) = |{α ∈ Q : T ⊆ Γ(α)}| .

Now, for r a positive integer and 0 ≤ j ≤ s, where s := |S|, define

λ
(r)
j (Γ, S,Q) :=

(
s

j

)−1 ∑
T⊆S,|T |=j

(
λT (Γ, Q)

r

)
. (4)

For example, suppose that Γ is a strongly regular graph with parameters
(v, k, λ, µ), and ∆ is a subgraph of Γ, induced on a vertex-subset S of size
s ≥ 2. Let Q be the set of vertices of Γ not in S. Then λ{}(Γ, Q) =
v − s; if σ ∈ V (∆) then λ{σ}(Γ, Q) = k − |∆(σ)|; if {ρ, σ} is an edge of
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∆ then λ{ρ,σ}(Γ, Q) = λ − |∆(σ) ∩ ∆(ρ)|; if {ρ, σ} is a non-edge of ∆ then
λ{ρ,σ}(Γ, Q) = µ − |∆(σ) ∩ ∆(ρ)|. Thus, we can determine λT (Γ, Q) for all

T ⊆ S with |T | ≤ 2, and hence determine λ
(r)
j (Γ, S,Q) for all r > 0 and

j = 0, 1, 2, using only the parameters of the strongly regular graph Γ and the
isomorphism class of the induced subgraph ∆.

The following result shows how knowledge of certain λ
(r)
j (Γ, S,Q) gives

us integer linear equations of the form (1) which must be satisfied by the

non-negative integers n
(r)
i (Γ, S,Q), i = 0, . . . , |S|.

Theorem 2.1 Let Γ be a graph, let S, Q ⊆ V (Γ), with s := |S|, and let r be
a positive integer. Then if 0 ≤ j ≤ s, we have

s∑
i=0

(
i

j

)
n

(r)
i (Γ, S,Q) =

(
s

j

)
λ

(r)
j (Γ, S,Q). (5)

Proof. We let 0 ≤ j ≤ s, and count in two ways the number Nj of ordered
pairs (R, T ) such that R is an r-subset of Q, and T is a j-subset of both S
and ∩ρ∈RΓ(ρ).

1. Each j-subset T of S contributes exactly
(

λT (Γ,Q)
r

)
pairs of the form

(∗, T ) to Nj, and so

Nj =
∑

T⊆S,|T |=j

(
λT (Γ, Q)

r

)
=

(
s

j

)
λ

(r)
j (Γ, S,Q).

2. Each r-subset R of Q contributes exactly(∣∣∣⋂ρ∈R Γ(ρ)
⋂

S
∣∣∣

j

)

pairs of the form (R, ∗) to Nj, and so

Nj =
∑

R⊆Q,|R|=r

(∣∣∣⋂ρ∈R Γ(ρ)
⋂

S
∣∣∣

j

)
=

s∑
i=0

(
i

j

)
n

(r)
i (Γ, S,Q).

Hence the result.
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We are often interested in the case where Γ is the incidence graph of a
block design. A block design is an ordered pair (V,B), such that V is a finite
non-empty set, whose elements are called points, and B is a finite non-empty
multiset of subsets of V called blocks. For t a non-negative integer and v, k, λ
positive integers with t ≤ k ≤ v, a t-(v, k, λ) design (or simply a t-design)
is a block design with exactly v points, such that each block has size k and
each t-subset of the point-set is contained in exactly λ blocks. The incidence
graph of a block design D is the graph whose vertices are the points and
blocks of D (including repeated blocks), with {α, β} an edge precisely when
one of α and β is a point and the other is a block containing that point.

Let D be a block design, and S a subset of the point-set of D. Then
for r a positive integer, the i-th intersection number of order r, denoted
n

(r)
i (D, S), is defined to be the number of collections of r blocks of D whose

intersection intersects S in exactly i points. In particular, n
(1)
i (D, S) is the

number of blocks of D (including repeats) intersecting S in exactly i points.
Note that if Γ is the incidence graph of D, and Q is the set of vertices of Γ
corresponding to the blocks of D, then

n
(r)
i (D, S) = n

(r)
i (Γ, S,Q).

For T any subset of the point-set of D, let λT (D) be the number of
blocks of D (including repeats) containing T . Now, for r a positive integer
and 0 ≤ j ≤ s, where s := |S|, define

λ
(r)
j (D, S) :=

(
s

j

)−1 ∑
T⊆S,|T |=j

(
λT (D)

r

)
. (6)

Note that if Γ is the incidence graph of D, and Q is the set of vertices of Γ
corresponding to the blocks of D, then

λ
(r)
j (D, S) = λ

(r)
j (Γ, S,Q).

Note further that if D is a t-(v, k, λ) design and T is any j-subset of S with

j ≤ t, we have λT (D) = cj := λ
(

v−j
t−j

)
/
(

k−j
t−j

)
, and so in this case, for every

j = 0, . . . , t and every r > 0, we have λ
(r)
j (D, S) =

(
cj

r

)
.

We now have the following corollary of Theorem 2.1:
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Corollary 2.2 Let D be a block design, let S be a subset of the point-set of
D, with s := |S|, and let r be a positive integer. Then if 0 ≤ j ≤ s, we have

s∑
i=0

(
i

j

)
n

(r)
i (D, S) =

(
s

j

)
λ

(r)
j (D, S). (7)

We remark that this result is proved for the case when D is a t-design
and S is a block in [13], in general for t-designs in [15], and for the case r = 1
for general block designs in [5] (from which we have adapted our proof of
Theorem 2.1).

3 Block intersection polynomials

The preceding section shows that the intersection numbers of order r for
graphs and for block designs satisfy integer linear equations of the form (1).
These equations can be studied by methods of linear or integer programming,
or by using the block intersection polynomials introduced in [5]. In particular,
we remark that the simplex linear programming package in Maple [10] is
useful in being able to determine whether given equations of the form (1)
have some solution [n0, . . . , ns] with ni a rational number and `i ≤ ni ≤ ui for
given integers `i and ui (i = 0, . . . , s). In this paper, however, we concentrate
on block intersection polynomials, and proceed with their definition.

For k a non-negative integer, define the polynomial

P (x, k) := x(x− 1) · · · (x− k + 1),

and for real number sequences [m0, . . . ,ms], [λ0, . . . , λt], with t ≤ s, define
the block intersection polynomial

B(x, [m0, . . . ,ms], [λ0, . . . , λt]) :=
t∑

j=0

(
t

j

)
P (−x, t−j)[P (s, j)λj−

s∑
i=j

P (i, j)mi].

(8)
The following theorem shows how we may use block intersection poly-

nomials to obtain information about the ni satisfying the linear equations
(1). Without loss of generality (and to maintain compatibility with [5]), we

write bj in the form
(

s
j

)
λj. The assertions of this theorem, after the first, can

be translated directly into results, formulae and bounds for the intersection
numbers of order r of both graphs and block designs, using Theorem 2.1 for
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graphs and Corollary 2.2 for block designs. We shall perform some of these
translations explicitly in Corollary 3.2. In the case of block designs, this
corollary extends and generalizes Theorem 4.1 of [5].

Theorem 3.1 Let s and t be non-negative integers, with s ≥ t, let n0, . . . , ns,
m0, . . . ,ms, and λ0, . . . , λt be real numbers, such that

s∑
i=0

(
i

j

)
ni =

(
s

j

)
λj (j = 0, . . . , t), (9)

and let B(x) be the block intersection polynomial B(x, [m0, . . . ,ms], [λ0, . . . , λt]),
defined in (8).

Then the following hold:

1. B(x) =
∑s

i=0 P (i− x, t)(ni −mi).

2. If ni and mi are integers for all i then B(x) is a polynomial over the
integers, and if ni = mi for all i then B(x) ≡ 0.

3. Suppose that mi ≤ ni for all i or mi ≥ ni for all i. Then if mi 6= ni for
some i, B(x) is a non-zero polynomial of degree t.

4. For every ` = 0, . . . , s and every integer m with ` 6∈ {m, m+1, . . . ,m+
t− 1}, we have:

n` = m` +
B(m)−∑

i6∈{`,m,m+1,...,m+t−1} P (i−m, t)(ni −mi)

P (`−m, t)
. (10)

5. Suppose that mi ≤ ni for all i or mi ≥ ni for all i, and that t is even.
Then for every ` = 0, . . . , s and every integer m with ` 6∈ {m, m +
1, . . . ,m + t− 1}, we have:

• n` ≤ m` + B(m)/P (`−m, t) if mi ≤ ni for all i,

• n` ≥ m` + B(m)/P (`−m, t) if mi ≥ ni for all i, and

• n` = m` + B(m)/P (` − m, t) if and only if mi = ni for all i 6∈
{`, m, m+1, . . . ,m+t−1}, in which case the sequence [n0, . . . , ns]
is uniquely determined by [m0, . . . ,ms] and [λ0, . . . , λt].

6. Suppose that mi ≤ ni for all i or mi ≥ ni for all i, and that t is even.
Then for every integer m, we have:
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• B(m) ≥ 0 if mi ≤ ni for all i,

• B(m) ≤ 0 if mi ≥ ni for all i, and

• B(m) = 0 if and only if mi = ni for all i 6∈ {m,m+1, . . . ,m+ t−
1}, in which case the sequence [n0, . . . , ns] is uniquely determined
by [m0, . . . ,ms] and [λ0, . . . , λt].

Proof.

1. This is Theorem 3.2 of [5].

2. These follow from part 1.

3. First, note that P (i−x, t) is a polynomial (in x) of degree t, with leading
coefficient (−1)t. Then, applying part 1, we have that B(x) is a polyno-
mial of degree at most t, the coefficient of xt being (−1)t∑s

i=0(ni−mi).
This coefficient is non-zero if we have mi ≤ ni for all i or mi ≥ ni for
all i, and also mi 6= ni for some i.

4. This follows from part 1, and the fact that P (i − m, t) = 0 precisely
when i ∈ {m, m + 1, . . . ,m + t− 1}.

5. Suppose m is an integer and ` ∈ {0, . . . , s} \ {m, m + 1, . . . ,m + t− 1}.
Since t is even, P (i − m, t) is a product of evenly many consecutive
integers, and so is non-negative, with P (i−m, t) > 0 when i 6∈ {m,m+
1, . . . ,m + t− 1}. In particular, P (`−m, t) > 0.

Now let q :=
∑

i6∈{`,m,m+1,...,m+t−1} P (i−m, t)(ni −mi), so by part 4,

n` = m` + (B(m)− q)/P (`−m, t).

If mi ≤ ni for all i, we have q ≥ 0, in which case n` ≤ m`+B(m)/P (`−
m, t). If mi ≥ ni for all i, we have q ≤ 0, in which case n` ≥ m` +
B(m)/P (`−m, t). In either case, we have n` = m` +B(m)/P (`−m, t)
if and only if q = 0, which holds if and only if mi = ni for all i 6∈
{`, m, m + 1, . . . ,m + t− 1}.
Now suppose that n` = m` + B(m)/P (` − m, t), and so, in addition,
mi = ni for all i 6∈ {`, m, m + 1, . . . ,m + t − 1}. We show how to
(uniquely) determine the remaining ni.

Let M := {0, . . . , s}∩{m, m+1, . . . ,m+t−1}. Then M is a set of con-
secutive integers, say M = {a, a + 1, . . . , b}. Then na, na+1, . . . , nb are
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uniquely determined by applying (10) successively with that formula’s
(`, m) taking the values (a, a + 1), (a + 1, a + 2), . . . , (b, b + 1) in turn.
Note that at each such application, all the required ni in the right-
hand side have been determined, we do not divide by zero, and that
the block intersection polynomial B(x) depends only on [m0, . . . ,ms]
and [λ0, . . . , λt].

6. Suppose t is even and m is an integer. Then P (i − m, t) is a product
of evenly many consecutive integers, and so is non-negative. It then
follows from part 1 that if mi ≤ ni for all i we have B(m) ≥ 0, and if
mi ≥ ni for all i we have B(m) ≤ 0.

Now suppose mi = ni for all i 6∈ {m, m + 1, . . . ,m + t − 1}. Since
P (i − m, t) = 0 if i ∈ {m, m + 1, . . . ,m + t − 1}, we conclude that
B(m) =

∑s
i=0 P (i−m, t)(ni −mi) = 0.

Conversely, suppose B(m) = 0. Since P (i − m, t) > 0 unless i ∈
{m, m + 1, . . . ,m + t − 1}, we conclude that since B(m) = 0 and the
ni − mi are all non-negative or all non-positive, then we must have
mi = ni for all i 6∈ {m, m + 1, . . . ,m + t − 1}. In this case, we can
uniquely determine the remaining ni as in part 5.

Corollary 3.2 Let r be a positive integer, and let s and t be non-negative
integers, with t even and t ≤ s, and suppose that either:

1. Γ is a graph, and S, Q ⊆ V (Γ), with S of size s, ni := n
(r)
i (Γ, S,Q)

(i = 0, . . . , s), and λj := λ
(r)
j (Γ, S,Q) (j = 0, . . . , t); or

2. D is a block design, S is a subset of size s of the point-set of D, ni :=
n

(r)
i (D, S) (i = 0, . . . , s), and λj := λ

(r)
j (D, S) (j = 0, . . . , t).

In either case, let m0, . . . ,ms be non-negative integers with either mi ≤ ni

for all i or mi ≥ ni for all i, and let

B(x) := B(x, [m0, . . . ,ms], [λ0, . . . , λt]).

Then B(x) ≡ 0 if and only if mi = ni for all i; otherwise, B(x) is a degree t
polynomial with integer coefficients. Furthermore, B(m) ≥ 0 for every inte-
ger m if mi ≤ ni for all i, and B(m) ≤ 0 for every integer m if mi ≥ ni
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for all i. Moreover, B(m) = 0 for some integer m if and only if mi = ni

for all i 6∈ {m, m + 1, . . . ,m + t − 1}, in which case [n0, . . . , ns] is uniquely
determined by [m0, . . . ,ms] and [λ0, . . . , λt].

Proof. Apply Theorem 3.1 to the integer linear equations described in
Theorem 2.1 and Corollary 2.2, satisfied by the (non-negative) intersection
numbers of order r of graphs and blocks designs, respectively.

We remark that algorithms to construct and analyse block intersection
polynomials are implemented in the freely available DESIGN package [14]
for GAP [7]. For example, you can use GAP and DESIGN to construct a
block intersection polynomial B(x), determine the integer zeros of B(x), and
determine whether there is any integer m for which B(m) < 0. The methods
used for this last test are described in [5].

4 Applications to edge-regular and amply reg-

ular graphs

Here we apply block intersection polynomials to the study of cliques in
edge-regular graphs and to the study of induced subgraphs of amply reg-
ular graphs. In particular, we prove Theorems 1.1 and 1.2.

4.1 Cliques in edge-regular graphs

When studying edge-regular graphs Γ with parameters (v, k, λ), we may wish
to consider the possibility of the existence of a clique S in Γ of some given size
s ≥ 2. Where r is a positive integer and Q := V (Γ) \ S, we may determine

λ
(r)
j (Γ, S,Q) for j = 0, 1, 2, and so can use block intersection polynomials

(or linear or integer programming) to obtain information on the numbers

n
(r)
i (Γ, S,Q) (i = 0, . . . , s). Applying block intersection polynomials in the

case r = 1 appears to provide a good bound on the size of cliques in an
edge-regular graph with given parameters. We shall give an example of this,
after proving Theorem 1.1.

Proof. (of Theorem 1.1) Let Γ be an edge-regular graph with parame-
ters (v, k, λ), let r be a positive integer, and suppose that Γ contains a clique
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S of size s ≥ 2. Let Q := V (Γ) \S, and for j = 0, 1, 2, let λj := λ
(r)
j (Γ, S,Q).

We have

λ0 =

(
|Q|
r

)
=

(
v − s

r

)
,

λ1 =

(
k − s + 1

r

)
,

λ2 =

(
λ− s + 2

r

)
.

Let
B(x) := B(x, [0s+1], [λ0, λ1, λ2]).

Applying (8), we have

B(x) = x(x + 1)

(
v − s

r

)
− 2xs

(
k − s + 1

r

)
+ s(s− 1)

(
λ− s + 2

r

)
.

Now applying Corollary 3.2, we have that B(m) ≥ 0 for every integer m,

and that B(m) = 0 for some integer m if and only if n
(r)
i (Γ, S,Q) = 0 for

all i 6∈ {m, m + 1}. In this case, we may apply formula (10), substituting
the values m,m + 1 respectively for that formula’s `, m, to determine that
n(r)

m (Γ, S,Q) = 0 + B(m + 1)/P (−1, 2) = B(m + 1)/2.

Example 1 Consider the strongly regular graphs with parameters (37, 18, 8, 9).
The Paley graph Paley(37) is one such graph, and it happens to have a maxi-
mum clique of size 4. In [12], McKay and Spence describe a computer search
which found 6760 pairwise non-isomorphic such graphs. A list of these graphs
was downloaded from [11], and it turned out that the first graph on this list
has a maximum clique of size 5. It is not known whether there are more
strongly regular graphs with these parameters.

The complement of a strongly regular graph with parameters (37, 18, 8, 9)
(and such a graph) has least eigenvalue τ ≈ −3.541, and so the Hoffman
bound gives an upper bound of 6 = b37/(1− 18/τ)c on the size of a clique.

Now let Γ be any edge-regular graph with parameters (37, 18, 8), and
suppose that Γ has a clique S of size 6. Let Q := V (Γ)\S, and for j = 0, 1, 2,

let λj := λ
(1)
j (Γ, S,Q). We have λ0 = 31, λ1 = 13, and λ2 = 4. We calculate

B(x) := B(x, [07], [31, 13, 4]) = 31x2 − 125x + 120,

and find that B(2) = −6. Hence Γ can have no clique of size 6.
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4.2 Induced subgraphs of amply regular graphs

When studying strongly regular graphs Γ with parameters (v, k, λ, µ), we may
wish to consider the possibility of a given graph ∆ being an induced subgraph
of such a Γ. As noted in Section 2, where S := V (∆) and Q := V (Γ)\S, using
only the parameters of Γ and the isomorphism type of ∆, we can compute
λ

(r)
j (Γ, S,Q) for all r > 0 and j = 0, 1, 2, and so can use block intersection

polynomials (or linear or integer programming) to obtain information on the

numbers n
(r)
i (Γ, S,Q) (i = 0, . . . , s), and may be able to prove that Γ can

have no induced subgraph isomorphic to ∆. This may be useful to eliminate
search subtrees when performing a computer backtrack search to find or
classify strongly regular graphs with given parameters if we build up such
graphs via induced subgraphs. We need only the vertex-degree sequence of
∆ to compute λ

(1)
j (Γ, S,Q) for j = 0, 1, 2, as shown in the proof below of

Theorem 1.2.
Proof. (of Theorem 1.2) Let Γ be an amply regular graph with param-
eters (v, k, λ, µ), and suppose ∆ is an induced subgraph of Γ, where ∆ has
s ≥ 2 vertices and vertex-degree sequence [d1, . . . , ds]. Further suppose that
∆ is connected with diameter at most 2 if Γ is not strongly regular.

Let Q := V (Γ) \ V (∆), and for j = 0, 1, 2, let λj := λ
(1)
j (Γ, S,Q). We

have
λ0 = |Q| = v − s

and

λ1 = s−1
s∑

i=1

(k − di) = k − s−1
s∑

i=1

di.

Let e be the number of edges of ∆, n the number of non-edges of ∆, and p
the number of simple undirected paths of length 2 in ∆. Then

λ2 =

(
s

2

)−1

(eλ + nµ− p) . (11)

Now e = 1
2

∑s
i=1 di, n =

(
s
2

)
− e =

(
s
2

)
− 1

2

∑s
i=1 di, and p =

∑s
i=1

(
di

2

)
.

Substituting these into (11), and sinplifying, we obtain

λ2 =
1

s(s− 1)

(
(λ− µ + 1)

s∑
i=1

di + s(s− 1)µ−
s∑

i=1

d2
i

)
.

Let
B(x) := B(x, [0s+1], [λ0, λ1, λ2]).

13



Applying (8), we have

B(x) = x(x + 1)(v − s)− 2xsk + (2x + λ− µ + 1)
s∑

i=1

di + s(s− 1)µ−
s∑

i=1

d2
i .

Now applying Corollary 3.2, we have that B(m) ≥ 0 for every integer m, and
that B(m) = 0 for some integer m if and only if each vertex in Q is adjacent
to exactly m or m + 1 vertices of S. In this case, we may apply formula
(10), substituting the values m,m+1 respectively for that formula’s `, m, to
determine that the number of vertices in Q adjacent to just m vertices of S
must be 0 + B(m + 1)/P (−1, 2) = B(m + 1)/2.

Example 2 Let Γ be a strongly regular graph with parameters (76, 30, 8, 14).
It is unknown (to the author) whether such a graph exists, although these
are “feasible” parameters for a strongly regular graph (see [3]).

Now suppose Γ contains an induced subgraph ∆ isomorphic to (the 1-
skeleton of) an octahedron, i.e. the strongly regular graph with parameters
(6, 4, 2, 4). Let S := V (∆), Q := V (Γ) \ S, and for j = 0, 1, 2, let λj :=

λ
(1)
j (Γ, S,Q). We have λ0 = 70, λ1 = 26, and λ2 = 34/5. We calculate

B(x) := B(x, [07], [70, 26, 34/5]) = 70(x− 2)(x− 51/35),

so in particular, B(2) = 0. Hence, exactly B(3)/2 = 54 vertices not in ∆ are
joined to exactly 2 vertices of ∆, and the remaining 16 vertices not in ∆ are
joined to exactly 3 vertices of ∆.

5 Applications to block designs

Some applications of block intersection polynomials to block designs were
given in [5]. Here we give further applications, and start with the proof of
Theorem 1.3.
Proof. (of Theorem 1.3) Let t be an even positive integer, let D be a

t-(v, k, λ) design, let S be a block of D, and let ni := n
(1)
i (D, S). Then ni

is the number of blocks of D meeting S in exactly i points. Now suppose
that I(D, S) ⊆ {m, m + 1, . . . ,m + t− 1} for some integer m, and let m0 =
. . . = mk−1 = 0 and mk = 1. Then mi ≤ ni for all i, and mi = ni for all
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i 6∈ {m, m+1, . . . ,m+ t− 1}, and so, where cj := λ
(1)
j (D, S) = λ

(
v−j
t−j

)
/
(

k−j
t−j

)
(j = 0, . . . , t), and

B(x) := B(x, [0k, 1], [c0, . . . , ct]),

we have, by Corollary 3.2, that B(m) = 0.
Now let E be any t-(v, k, λ) design, and let T be any block of E. Then

mi ≤ n
(1)
i (E, T ) for i = 0, . . . , k and λ

(1)
j (E, T ) = cj for j = 0, . . . , t, and

since B(m) = 0, by Corollary 3.2, we have that

[n
(1)
0 (E, T ), . . . , n

(1)
k (E, T )] = [n0, . . . , nk] = f([0k, 1], [c0, . . . , ct]),

for some function f .

In some sense, this result is best possible, for consider the 2-(8, 4, 3) design
with points 1, . . . , 8, and blocks (with commas and set brackets omitted):

1234, 1238, 1256, 1357, 1458, 1467, 1678, 2367, 2457, 2468, 2578, 3456, 3478, 3568.

The sizes of the intersections of the block 1234 with the other blocks are
the three consecutive integers 1, 2, 3, and the sizes of the intersections of the
block 1357 with the other blocks are the two nonconsecutive integers 0, 2.

We now give a somewhat similar application to arbitrary block designs.

Theorem 5.1 Let D = (V,B) be a block design, let S be an s-subset of V ,
and let r and t be positive integers, with t even, t ≤ s, such that the set of
those i for which n

(r)
i (D, S) > 0 is contained in a set of t consecutive integers.

Suppose E = (W, C) is a block design, with S ′ ⊆ W and |S ′| = s. Then

n
(r)
i (E, S ′) = n

(r)
i (D, S) for i = 0, . . . , s if and only if λ

(r)
j (E, S ′) = λ

(r)
j (D, S)

for j = 0, . . . , t.

Proof. Let λj := λ
(r)
j (D, S) for j = 0, . . . , t, and let

B(x) := B(x, [0s+1], [λ0, . . . , λt]).

Then, by Corollary 3.2, applied with mi = 0 ≤ n
(r)
i (D, S) for i = 0, . . . , s, we

have that B(m) = 0 for some integer m.

Suppose now that n
(r)
i (E, S ′) = n

(r)
i (D, S) for i = 0, . . . , s. Then, by

Corollary 2.2, we have λ
(r)
j (E, S ′) = λj for j = 0, . . . , t.
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Conversely, suppose that for j = 0, . . . , t we have λ
(r)
j (E, S ′) = λj. Then,

since B(m) = 0, by Corollary 3.2, we have that

[n
(r)
0 (E, S ′), . . . , n(r)

s (E, S ′)] = [n
(r)
0 (D, S), . . . , n(r)

s (D, S)] = f([0s+1], [λ0, . . . , λt]),

for some function f .

This theorem certainly applies when S = V , the point-set of the block
design D = (V,B). Now n

(1)
i (D, V ) is the number of blocks of D of size i,

and more generally, n
(r)
i (D, V ) is the number of collections of r blocks of D

whose intersection has size i. Such numbers were studied for t-designs in
[1, 2], and were found to be useful isomorphism-class invariants. Note that
D is the dual of a r-wise balanced design if and only if there is just one i for
which n

(r)
i (D, V ) > 0.

5.1 An application to design search

Here we give an example illustrating how a block intersection polynomial can
give useful information to aid in the search for a block design with certain
given properties.

In [6], Dobcsányi, Preece and Soicher study the problem of when a 2-
(v, k, λ) design can have a repeated block, and they present a summary of
their catalogue of 2-(v, k, λ) designs with repeated blocks and having param-
eters (v, b, r, k, λ) satisfying

r ≤ 20, 3 ≤ k ≤ v/2, gcd(b, r, λ) = 1, (12)

where r = λ(v − 1)/(k − 1) is the number of blocks containing a given point
and b = vr/k is the number of blocks.

There was just one parameter list in [6] satisfying (12) for which the ex-
istence of a 2-design with repeated blocks was unknown, but this has now
been settled by Vedran Krc̆adinac [9], who found a 2-(31, 5, 2) design with
exactly four pairs of repeated blocks, making use of an assumed group of
automorphisms of order 5 with just one fixed point, and tactical decompo-
sitions. Examining further the catalogue in [6], we find just two parameter
lists satisfying (12) for which there is a 2-design with repeated blocks, but no
design is given meeting the block multiplicity bound given in [5], the open
cases being whether there is a 2-(20, 5, 4) design with a block of multiplicity 3
and whether there is a 2-(17, 5, 5) design also with a block of multiplicity 3.
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We thus want to find a 2-(20, 5, 4) design D with at least one block having
multiplicity 3, and we start by assuming a group G of automorphisms of order
10, generated by

(1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15)(16, 17, 18, 19, 20)

and
(2, 5)(3, 4)(7, 10)(8, 9)(12, 15)(13, 14)(17, 20)(18, 19).

Since D will have 76 blocks, it is reasonable to assume that D will have two
disjoint G-invariant blocks, B1 := {1, 2, 3, 4, 5} and B2 := {6, 7, 8, 9, 10}, say,
each with multiplicity 3. Now we calculate the block intersection polynomial

B(x) := B(x, [3, 04, 3], [76, 19, 4]) = 70(x− 1)(x− 2/7).

Since B(1) = 0, we have that a block of multiplicity 3 disjoint from three
blocks must meet every further block in exactly 1 or 2 points, and so any
block not having the same underlying set as B1 or B2 must meet each of B1

and B2 in exactly 1 or 2 points. This provides restrictions on the possible
G-orbits of the other blocks of D, and using the function BlockDesigns in
the DESIGN package [14], we find a set of blocks that complete B3

1 and B3
2

to the block multiset of a 2-(20, 5, 4) design. This set is the union of the
G-orbits of {1, 2, 6, 7, 14}, {1, 3, 6, 8, 17}, {1, 7, 11, 12, 14}, {1, 7, 11, 16, 17},
{1, 7, 15, 18, 19}, {1, 8, 12, 16, 19}, {1, 8, 13, 14, 20}, {1, 8, 15, 18, 20}.

In a similar way, we have found a 2-(17, 5, 5) design having one block of
multiplicity 3, and no other repeated blocks.
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