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ABSTRACT
THE COMPUTATION OF GALOIS GROUPS

i.ecnard Soicher

We discuss methods of computing invariants of the
conjugacy class of the Galois group of a separable
polynomial f£(x) over K, n = deg(f) > 0. The aim is to
determine the class of Gal(f£/K) in Sn' We concentrate on

the case K = Q and £(x) is irreducible over K.

The main tool discussed is the resolvent polynomial.
For F in K[xl,...,xn], the factorization of a resolvent
polynomial is used to determine the orbit length partition

of {F(x : P in Sn} under the action of Gal(f/K).

lpf...,xnp) .

An important class of resolvent polynomials considered
are the "linear" resolvent polynomials, where F =
elxl+...+erxr, e in K and 0<r<n. The use of linear
resolvents in determining Gal (£/K) is discussed. A new,
practical, exact method of computing linear resolvents is
described, as well as the computer implementation of this

method over the integers.

For every transitive permutation group G of degree up to
7, we have computed a polynomial £(x) such that
Gal(f/Q) = G. We also list many new examples of polynomials

with PSL(3,2) as Galois group over Q.
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NOTATION

the image of t under the mapping S,

the cardinal of the set C,
a field,

the characteristic of K,

the field extension of K obtained by

adjoining VireoerV to K,

n

the polynomials in the indeterminates

XpeeoorXy
a polynomial in K[x}],

the degree of £f£({x),

the discriminant of f(x),

the formal derivative of f(x),

with coefficients in R,

the Galois group of the normal extension N

over K,

the Galois group of f(x) over K,
the field of rational numbers,
the ring of rational integers,

a positive prime,

the field of integers modulo p,

the image of i1 under the natural

homomorphism from Z onto Zp’

F with its coefficients replaced by their

images med p (F a (multivariate)

with coefficients in 2),

polynomial



f mod g the remainder upon division of f£(x) by g(x),

res(f,qg) the resultant of £(x) and g(x) .,

G a group,

Sn the symmetric group on {l,...,n},

A the alternating group on {l1,...,n},

H<G H is a subgroup of G,

* a group action,

rep(G,C,*) the representation of G into S defined by

the action of G by * on the ordered set C,
im(rep(G,C,*)) the image of G under the preceding

representation,

stabG(c) the stabilizer in G of ¢,

[el,...,er] the multiset of elements €lreeer@

mult(e,M) the multiplicity of the element e in the
multiset M,

mult(v,f) the multiplicity of v as a zero of f£(x),

gcd{a,b) the greatest commen divisor of a and b,

alb a divides b,

allb a divides b and gecd{a,b/a) = 1,

a ¢(-- expression the value of a is replaced by the value

of the expression.






CHAPTER 1

INTRODUCTION

Galois theory gives an elegant answer to the question of
whether a polynomial equation, f£({(x) = 0, over a suitable
field K (e.g. the rationals) is solvable by radicals.
"Solvable by radicals" means that the zeros of f(x) can be
expressed as finite expressions in the coefficients of £(x),
where the only permitted operations are the field operations
and the extraction of roots. In Galois theory, to each
polynomial f£(x) over K, there is an associated group G
called the Galois group of f(x) over K. The structure of
this group describes the structure of the smallest field
extension of X containing all the zeros of f£(x), and the
equation f£(x) = 0 is solvable by radicals if and only if G

is a solvable group [VDW,p.173].

In this thesis we study the problem of computing the
Galois group of a given polynomial f(x), with distinct
zeros, over a field K. We are especially interested in the
case K = Q, the field of rational numbers, and when £ (x) is
irreducible over K. The thesis is intended as a
contribution to the domain of symbolic and algebraic

computation,



We assume the reader is familiar with basic-algebra
including group theory, field extension theory and Galois

theory. References for this algebra are [BIR,VDW].

1.1 BASIC DEFINITIONS AND RESULTS

We define our terms and state several useful basic

results.

1.1.1 GROUP ACTIONS

We define the action of a group on a set. This is
fundamental as we will be concerned with determining the

action of the Galois group on various sets.

DEFINITION l.l. Let C be a set and G be a group. We
say that G acts on C (by *), if for each pair (c¢,S) where
¢ in C and S in G, there is defined an element ¢*S in C such
that for all ¢ in C and S,T in G the following axioms hold:
{1) c*lG = ¢, where lG is the identity element of G, and

(2) (c*S)*T = c*(ST).

Let G be a group, C a set, and suppose G acts on C by *,

Let ¢ be in C.

The orbit containing ¢ (under G) is defined by

c*G = {c*S : S in G}.

|c*Gl 1is called the orbit length. The set of orbits of C




under G,

{c¢*G : ¢ in C},

partitions C. This partition of C induces a partition of

|cl, called the orbit length partition of C under G. This

partition of |C|] consists of the lengths of the distinct

orbits of C under G.

The stabilizer of ¢ in G 1is defined by

stabG(c) = {8 in G : c*S = cle.

Let §,T in G, ¢,d in C and H = stabG(c). It is
straightforward to show that the following facts are true
(see [NEU]):

(1) ¢*S = c*7T if and only if HS = HT; that is, iff S and T
are in the same right coset of stabG(c) in G.

(2) stabg(c*s) = s 'us.

(3) Suppose that 1C] = n < o0, and let an ordering of the

elements of C be C = (cl,...,cn). Then there is a natural

permutation representation (homomorphism) :
rep(G,C,*) : G - Sn’

where S --> § under this represention, and S is defined by:
i§ = j if and only if C€;*5 = €4y

for all S in G and 1 in {1,...,n}. The kernel of rep(G,C,*)

is



;%

stab.(¢c.}.

f=1 ¢ *

The subgroup of Sn which is the image of rep(G,C,*) is

denoted by im(rep(G,C,*}).

Let H = im(rep(G,C,*)), and let P be a permutation in

S, e Consider a new ordering of the elements of C:

(:E = (cilpmenpcrn) = (Clpyoecpcnp)z

Then im(rep(G,C',*)) = PHP Y,

1.1.2 THE GALOIS GROUP OF A POLYNOMIAL

aix1 be a polynomial in K[x], an#o,
0

Let £{x} = .

i
n = deg(£f) > 0.

n

DEFINITION 1.2. We say that a field extension N of K is

a splitting field of f£{(x) over K if:

(1) £(x) can be factored into linear factors, f(x)

H

an(x-vl)...(x-vn), in N[x], and

that is, N

(2) N is generated over K by Virseoet Vo,

K(Vl'°""vn)’

We call VireeorVy the zeros of f(x), and we may assume

that f£(x}) is monic (an = 1).

From field-extension theory we know that for the given
field K, and f£(x) in K[x], we can always construct a
splitting field of £(x) over K and this splitting field is

unique up to field isomorphism. Thus we may speak of the



splitting field of £(x) over K.

DEFINITION 1.3. Let L be a field. An automorphism of L

is a l-to-1l mapping, S. of L onto L such that for all

elements a,b in Ly (ab)S = (as) (bsS) and {a+b)S = (aS)+(bS) .

DEFINITION l.4. Let N be the splitting field of £(X%)

over K. The Galois group of N over K, denoted by G{N/K) . is

the group of all the automorphisms of N which fix each

element in K.

Let N be the splitting field of f(x) over K and let G

i

G(N/K). We call £(x) separable if its zeros in N are
distinct. Many of the results of Galois theory apply only
to the splitting fields of separable polynomials {the
so-called normal and separable extensions: 1£ N is the
splitting field of separable £(x) over K, then each element
w in N is a Zzero of a unique separable, monic, irreducible
polynomial over K.) We now assume that f(x) is a separable

polynomial over K.

Let an ordering of the {(distinct) zeros of £(x) be ¥V =
(Vl'°"'vn)' G sends a Zero of f(x) to a zero of E{x) (see
Lemma 2.6) and thus G acts on the set V = {vl,...,vn} by *,
where the action is defined by vi*S = viS for every S in G

and 1 in {1,..,n}. Thus there is the natural representation
rep(G(N/K),y,*) : G(N/R)} -=> Sn

as described in gection l.1l.1. This representation is



faithful since if an element T is in the kernel of
rep{(G(N/K),V,*), then T must fix each of the vy as well as
the elements of K. Since V generates N over K, T must be

the identity element.

DEFINITION 1.5. The Galois group of f£({x) over K,
Gal (£/K), with respect to the ordering v = (vl,...,vn) of

the zeros of f£(x), is defined to bhe im(rep(G(N/K),_\_{,*))o

If we do not fix an ordering of the zeros of f(x), then
Gal (£/K) can be determined at best to within conjugacy in
S This is stronger than to within isomorphism and in this
thesis we are usually not concerned with the problem of
ordering the zeros of £(x). If we do not specify an
ordering of the zeros of f(x) and we state that Gal(f/K) =

G, we mean that for some ordering of the zeros of f(x),

Gal(f/K) = G with respect to that ordering.

l.l.3. THE FUNDAMENTAL THEQREM OF GALOIS THEORY

For later reference, we state the Fundamental Theorem of

Galois Theory (for a detailed discussion see [BIR]) .

THEOREM 1.6. Let G = G(N/K) be the Galois group of the
splitting field N of a separable polynomial f(x) over K.
There is a l-to-1 correspondence between the subgroups H of
G and the subfields L of N which contain K. Given L, the
corresponding subgroup H is the group of all the

automorphisms in G which fix every element in L. Given H,



the corresponding subfield L consists of all the elements of
N left fixed by every automorphism in H. For each L, the
corresponding subgroup H is the Galois group of N over L,

and |H| is the degree of N over L.

in particular, if an element b in N is left fixed by all
automorphisms in G(N/K), then b belongs to the base field K,

the subfield of N corresponding to G(N/K) .

1.1.4 THE FUNDAMENTAL THEOREM ON SYMMETRIC POLYNOMTALS

We state the Fundamental Theorem on gymmetric

polynomials.

THEOREM 1.8. ([VDW,p.81]) Let R be a commutative ring
with identity and let A in R[xl,...,xn] be a symmetric
polynomial (that is, A(xl,...,xn) = A(xlp,...,xnp) for eavery
P in Sn). One can construct a unique polynomial

B in R[xl,...,xn] such that & = B(sl,...,sn), where S; is

the i-th elementary symmetric polynomial (that is, s;

szj veeRy where the sum is taken over all l§j1<...<ji<n).
1 i -

il

n .
1f monic £(x) = E:aixn ! nasg zeros VireesrVpo then a;
i=Q

(~1)lsi(v1,...,vn), for i=l,..+,n. Thus if R is a
commutative ring with identity, then any symmetric
polynomial over R in the zeros of f(x} can be expressed as a

polynomial over R in the coefficients of f(x).



1.1.5 THE RESOLVENT POLYNOMIAL

Let P = F(xl,.n.,xn) be a polynomial in K{xl,...,xn} and

let P be a permutation of {1,...,n}. We define

*p =
F*p F(xlp,e.e,xnpjo

We call F*P a conjugate function of F. 1In this way any

permutation group on {1,...,n} acts on K[xlpoe,,xn} as a

group of ring automorphisms.

DEFINITION 1.9. Let F be in K[xl,so.,xnl, £(x) in K[x],

and n = deg(f) > 0. Let the zeros of f(x) be vl,”n,vno

The resolvent polynomial associated with F and f(x), R(F,f),

is defined by:
k

R(F,f) = ]Tl(x - Fi(VlrocorVn))r
1=

where {Fl""'Fk} = F*s, (F; distinct functions).

We may take F, = F*Pi (i=l,...,k), where {Pl"“"Pk} is a

set of right coset representatives of stabS (F) in Sn (see
n

Section 1.1.1).

The coefficients of R(F,f) are symmetric polynomials
over K in VireserV, and hence by the Fundamental Theorem on
Symmetric Polynomials, the coefficients of R(F,f) can be
expressed as polynomials over K in the coefficients of f(x).
We also note that R(F,f) is independent of the ordering of

the zeros of f£(x).



An important resolvent polynomial we consider in this

thesis is what we call the linear resolvent polynomial,

DEFINITION 1.10. Let £(x) pbe in K[x], n = deg(£f) > 0,
and let €rrecrr®y be in K, 0<r&n. Let the multiset M =
[el,...,er}. The linear resolvent polynomial associated
with M and £(x), LR(M,£), is defined to be the resolvent
polynomial associated with F and f(x), when F = F(xl,...,xn)

ele+. . .+erxr.

1.1.6 THE DISCRIMINANT

An important symmetric function of the zeros of a

polynomial £(x) is the discriminant of f£(x).

DEFINITION 1.11. Let £(x) be in K{x], n = deg(f) > 1,

and let the zeros of f({x) be VireeerVpe The discriminant of

fF(x), disc(f), is defined by

)2,

disc(f) = 11.(Vi - V.
i< J

We note that disc(f) = 0 if and only if the zeros of

f(x) are not distinct.

The discriminant of monic £(X) can be computed

efficiently using the relationship (see {CHI,p.283-2861):
(1.1)  aisc(f) = (- Zres(s,e),

where res(f,f') is the resultant of f£(x) and its formal



10

derivative £'(x). The resultant and formal derivative are

discussed in Section 3.2.

l.1.7 THE SPECIALIZATION TO Q

Let monic separable f(x) be in Q[x], n = deg(£f) > 0., We
take the splitting field of £(x) over Q0 to be a subfield of
the complex numbers. Secondly, if we wish to compute
Gal(f/Q) we may assume that f£(x) has rational integer
coefficients, for, if not, we may apply the following

transformation to f(x):

Let ¢ be the least common multiple of the denominators

of the coefficients of £(x). Then
g(x) = c"£(x/c)

is a moniec polynomial in Z[x]. If (vl,o.o,vn) are the zeros
of f£(x) then (cvl,...,cvn) are the zeros of g(x), and with

respect to these orderings, Gal(g/Q) = Gal(f/Q).

1.2 CONTENT AND CONTRIBUTICN OF THIS THESIS

Let f(x) be a separable polynomial in K[x], n = deg(f) >

In this thesis we are concerned with the problem of
computing Gal(f/K) when we have a factorization algorithm
for polynomials in K[x]. Although there exists a finite

algorithm for solving this problem (see Section 2.1), from a
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feasible computational viewpoint, finding Gal(f/K) is

difficult.

in this thesis we pay special attention to the case
where K = Q and f(x) is irreducible over K. In this case
Gal (f/K) is transitive (see Proposition 2.7). We note that
for reducible £{x) the most efficient methods of finding
Gal (£/K) would probably include determining the
intersections of the splitting fields of pairs of

irreducible factors of £(x).

We will discuss algorithms which determine invariants of
the conjugacy class of Gal(£f/K), when given £(x). The aim
is to efficiently determine enough information to specify a
representative of the conjugacy class of Gal(f/K). We use
the tables in Appendix 1 of non-conjugate transitive
permutation groups (of degree up to 8), and invariants of
their respective conjugacy classes. These tables were

supplied by G. Butler.

In Chapter 2 we discuss computational methods used to
determine invariants of Gal(f/K), including work done
previously. We discuss in detail the use of resolvent
polynomials and show how the linear resolvent can be used in

determining Gal({f/K}.

In Chapter 3 we describe a new, practlcal, exact
algorithm which uses polynomial resultants to compute linear

resolvent polynomials. Our algorithm requires some
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restrictions on the base field K when char (K)#0.

In Chapter 4, we implement the algorithm of Chapter 3

over K = Z for p sufficiently large, as a modular

pl’
algorithm which computes linear resolvents over Z for monic
polynomials f£(x) in Z[x]. Also in Chapter 4, we include

examples which illustrate methods described in this thesis.,

An extension of this work would be to develop practical

exact methods to compute an arbitrary resolvent polynomial.

For every transitive permutation group G of degree up to
7 we have computed a polynomial £(x} such that Gal(f/Q) = G.
These polynomials appear in Appendix 2., This is the first
such list of which the author is aware. In Appendix 3 we
list new examples of degree 7 polynomials with the simple
group PSL(3,2) as Galois group. These polynomials were
found by computer searching as were many other of our

examples,



CHAPTER 2

METHGCDS OF DETERMINING GALOIS GROUPS

In this chapter we discuss algorithms to determine
properties of the Galois group of a polynomial. The aim is
to determine sufficient properties efficiently to specify
the conjugacy class of the Galois group. We include work
done previously in this chapter, and our discussion centres

on the resolvent polynomial.

For an historical perspective on (computational) Galois

theory see [DEH,MAT,FOU-1],

2.1 DETERMINING THE GALOIS GROUP IN FINITELY MANY STEPS

Let £(x) be in K[x], n = deg(f) > 0, furthermore suppose
f(x) has distinct zeros, ViresesVy, in the splitting field

of £{(x) over K.

If there is an algorithm for factoring multivariate
polynomials over K then one can determine Gal(f/K) in a
finite number of steps using a method detailed in van der
Waerden [VDW,p.189]. We note that such a factoring
algorithm exists when there is an algorithm for factorizing

univariate polynomials over K [VDW,p.135].

13
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This Galois group algorithm proceeds as follows:
Form the expression

o= X, V,+e0 XV _,;

171 nn

where x rece X  are indeterminates. Let tl'tz'”‘°'tn be

1
the distinct expressions obtained from t by applying all the

i

possible permutations to the indices of the X;. Set

F = F(z,xl,..,,xn) = :f? (z = ti).
i=1
F has coefficients symmetric in the vy and hence the
coefficients of F can be expressed in terms of the
coefficients of £(x) and the Xse Let the factorization of F

into irreducible factors over K[z,xl,.,o,xn] be

The permutations of the X4 which leave invariant any factor,

say F form a group G.

lr

THEOREM 2.1 ([VDW,p.189)]) If we assume that the zeros of

f(x) are ordered so that xlv1+.”+xnvn is a zero of F then

lf
Gal(£/K) = G.

This method is clearly impractical from a computational
point of view. However, the result of Theorem 2.1 is used

to prove [VDW,p.l191] a computationally useful result for the

case K = Q. This result is stated in Theorem 2.2.
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2.2 THE DETERMINATION OF CYCLE TYPES IN Gal(£f£/Q)

Let f(x) be a monic separable polynomial in Z[x], n =

deg(f) > 1, and let p be a prime,

We define the cycle type of a permutation P in S, to be

the partition of n induced by the lengths of the disjoint

cycles of P. The factor type of f£(x) mod p is defined to be

the partition of n induced by the degrees of the irreducible
factors of f£{x) mod p over Zp. A useful method to discover
information about Gal(f/Q) is to determine cycle types of
permutations in Gal(£/Q) by factorizing £(x) mod p over Zp
for primes p not dividing disc(f). This method has been
discussed by many authors including van der Waerden [VDW],

Zassenhaus [ZAS-2] and McKay [MCK].

THEOREM 2.2. For any prime p not dividing disc(f), the
factor type of £(x) mod p is the cycle type of some

permutation in Gal (£/Q).

The following result which follows from the density

theorem of Chebotarev may also be used (see [SCH,LAG]).

THEOREM 2.3. Let T be a partition of n. Then as
k =->9%, the proportion of occurrences of T as the factor
type of £({x) mod Pi s i=1,...,k, (pl,...,pk distinct primes)
tends to the proportion of permutations in Gal(f£f/Q) having

the cycle type T.
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We may factorize f£(x) mod p over zp using the algorithm
of Berlekamp [KNU,p.420-429]. However, as we are only
interested in the factor type of f£(x) mod p, we may use the
partial factorization method described by Knuth
[KNU,p.429-430], which provides us with the necessary

information.

Tables 3C,...,8C in Appendix 1 contain the distribution
of permutation cycle types in transitive permutation groups
of degrees 3 to 8 respectively. These tables are used when
applying Theorems 2.2 and 2.3, Applying Theorem 2.2, we can
determine cycle types of permutations in Gal{(f/Q). After
doing this, we exclude permutation groups as candidates for
Gal (f£/Q) which do not contain permutations having these
determined cycle types. Applying Theorem 2.3, we can make
an educated guess as to Gal(f/Q) after factorizing
f(x) mod p for a "sufficient" number of primes p. Note,
however, that there are two distinct groups of even
permutations of degree 8 (T32 and T33) having the same

number of elements of each cycle type.

If Gal(£/Q) = Sn or An then we can usually quickly
determine Gal(£f£/Q) by applying Theorem 2,2 and using the
fact that Gal(f/Q)SAn iff disc(f) is a rational integral

square (see Proposition 2.12).

We now give an example of a polynomial having 86 as

Galois group over Q.
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EXAMPLE 2.4. Let £(x) = xC+2x+2; disc(f) =
~2689.227. f(x) is irreducible over Q using Eisenstein's
criterion with the prime 2. The factor type of £(x) mod 7
is (3,2,1) and the factor type of f£(x) mod 11 is ({(5,1).
Hence Gal(f/Q) is transitive and contains permutations with
cycle types (3,2,1) and (5,1). This implies that Gal(f/Q) =

86 (see Table 6C in Appendix 1).

We now give an example which shows how useful Theorem

2.3 can be to make an educated guess as to Gal(f£/Q).

EXAMPLE 2.5. Let £(X) = X -14x°+56x°-56x+22; disc(f) =

10

67 . £{x) mod p was factored over Zp for the 42 primes p

2
in the interval [2,193] which do not divide disc(f). For
one prime the factor type is (17), for thirty primes the
factor type is (32,1) and for eleven primes it is (7).
Referring to Table 7C in Appendix 1, one feels confident
from this information that Gal(f£/Q) = 7T3, the Frobenius
group of order 21. 1In fact one can show that CGal(£/Q} is
indeed 7T3 (see Section 4.3, Example 4.1). Note that since
disc(f) is a square, Gal(f/Q)£A7. This, together with the
cycle types in Gal(f/Q) we have determined, has narrowed the

candidates for Gal(f/Q) down to 7T3, 775, and 776 (= A7).

Complex conjugation is an automorphism
of the complex numbers. If £(x) is separable over @, then
complex conjugation induces an element in Gal(f/Q) of cycle

type (20,1r), where ¢ is the number of complex conjugate
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pairs of zeros of f£(x) and r is the number of real zeros of
f(x}. The number of real zeros of a polynomial over Q can
be determined by a Sturm polynomial remainder sequence
{BUR,vecl.1,p.198~-203]. We note that the polynomial f£(x) in
Example 2.5 has all zeros real. This is a necessary

condition for |Gal(f/Q)] to be odd.

The preceding factorizations modulo p, discriminants,
and the number of real zeros, were calculated using program

ONEPOLY written by Regener and Rohlicek.

2.3 THE RESOLVENT POLYNOMIAL

Let f(x) be separable over K, n = deg(£f}) > 0, and let an
ordering of the zeros of f(x) be V = (vl,...,vn). Resolvent
polynomials are classical and computationally useful tools
to determine Gal(f/K), and it is the method we concentrate
on. For F in K[xl'°"'xn]' we use the resolvent polynomial
R(F,£) (with distinct zeros) to determine the orbit length

partition of F*Sn under Gal(£/K).

2.3.1 THECRETICAL DEVELOPMENT

Let N be the splitting field of f£({(x) over K. Then
G(N/K} acts on N in a natural way as a group of
automorphisms, We now show that each orbit of elements in N
under the action of G(N/K) consists precisely of the zeros

of a monic irreducible polynomial over K. First we prove
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the following:

LEMMA 2.6. Let W = {wl,...,wk} be contained in N (wi

k
distinct), and g{x) = TT (x—wi). Then G(N/K) maps W onto W
i=1

if and only if g(x}) is in K[x}.
Koo
PROOF. Let g(x) = Zaix , w in W, and S in G{(N/K).
i=0

Suppose g(x) is in K{xl. As § is an automorphism of N

fixing K we have:

It

0 g{w) = g(w)s = zzaiS(wi)S

= Zai(wS)i = g(wS).

Thus wS is in W for all w in W and 8 in G(N/K). Hence

G(N/K) maps W onto W.

Conversely, suppose G(N/K)} maps W onto W. Then each
element S in G(N/K) induces a permutation of W. Thus aiS =
a; for each coefficient a; of g(x) because a; is a symmetric

function of WireosrWpe This implies that ay is in K. //

PROPOSITION 2.7. Let G = G(N/K), and w in W =
{wl,...,wk} contained in N (wi distinct). Denote by wG the

set {wS : S in G}. Then W = wG if and only if

k
g{x) = 'TT(x-wi) is an irreducible polynomial over K.
i=1

PROOF. If wG = W, then by the previous lemma, g(x) is
in K[x]. Suppose g(x) is reducible. Then g(x) has a factor
h{x) in K[x] where h(x) = W*T (x~wi), for some I properly

iin I
contained in {1l,...,k}. Then by the previous lemma G maps
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{wi : 1 in I} onto itself, which contradicts the fact that

wG = W.

Conversely suppose that g(x) is a irreducible polynomial
in K{x]. By the previous lemma, we know that G maps W onto
itself. Thus wG is contained in W. Suppose wG =

{wi + 1 in I}, where I is properly contained in {l,....,k}.

Then by the previous lemma, h(x) = ] 1 (x«wi) is in Kix]1.
iin 1
Since h(x) is a proper divisor of g({x), we have arrived at

the desired contradiction. //

We apply the preceding result to determine the
information available from the factorization of a given

resolvent polynomial.

Let F be in K[xl,...,xn]. Recall that the resolvent

polynomial over K associated with F and f£(x) is:
k
R(Frf TT(X'F ))r
i=1

where {Fl"°"Fk} = F*Sn (F; distinct).

For S in G(N/K), let S --> § under the representation of
G(N/K) onto Gal(f/K) discussed in Section l.1.2. First we

show:
LEMMA 2.8. F(V)8S = F*g(y).

PROOF. F(Vl'.-.,vn)s = F(VlS,...,VnS)

= F(VigreeerVpg) = F*§(vl,...,vn). //
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Thus Gal (£/K) acts on polynomials in the zeros of f£(x)

in precisely the same way that G(N/K} dces.

PROPOSITION 2.9, Let t be in I contained in {1,...,k}.

(1) If Ft*Gal(f/K) = {Fi : i in Il and the Fi(y) are

distinct for i1 in I, then

g{x) = 1—T (x - Fi(y)) is an irreducible polynomial
iin I
over K.
(2) If g(x) = ll (x ~ Fi(g)) is a non-repeated
iin I

irreducible factor of R(F,f) then Ft*Gal(f/K) =

{Fi : i in 1}.

PROOF,
(1) Apply Lemma 2.8 and and Proposition 2.7.
{2) As N is separable over K, g{x) must have distinct zeros.
By Proposition 2.7 and Lemma 2.8, {Fi(y) : 1 in I} =
{F*P(V) : P in Gal(f/K)}. As g{x) is a non-repeated factor
of R(F,f), for all i in I and j=1,...,k, F.

and only if i=j., The result follows. //

COROLLARY 2.10. Suppose R(F,f} has distinct zeros.
Then the orbit length partition of F*Sn under Gal(f/K) is
the same as the partition of deg(R(F,£f))} induced by the

degrees of the irreducible factors of R(F,f) over K.

A method of dealing with the occurrence of repeated
zeros of R(F,£f) is the use of an appropriate Tschirnhaus

transformation [BUR,vol.2,p.171~175] applied to f(x).



22

Now suppose R(F,f) has distinct zeros:
F*Pl(X),.,.,F*Pk(E)F where {Pl,...,Pk} is a set of right
coset representatives of stabS (F) in S,+ We see that
Gal (f/K) acts on the zeros of ;(F,f)
in the same way as it acts by right multiplication
on the cosets {étabs (F)Pi}. Gal(R(F,f)/K) is the permu-
tation group inducednby this action. Note that the orbit

length partition of F*Sn under Gal (£/K) depends only on

stab (F) .
Sn

The following result is also of interest:

LEMMA 2.11. Let Ft(X) be a zero of a non-repeated
irreducible factor of the resolvent polynomial R{(F,f). Then
K(Ft(z)) is the fixed field corresponding to H, where

H<G (N/K) maps onto StabGal(f/K)(Ft) under rep(G(N/K),V,*).

PROOF. Now Ft(K)S = Ft(z) for all 8 in H. 1If Ft(z)s =
Ft(y) for some § not in H, then this implies that Ft(E) is a

repeated zeroc of R(F,f), which is a contradiction. //

» 2.3.2 CONSTRUCTION AND FACTORIZATION OF RESOLVENTS

The resolvent polynomial R(F,f) can be constructed by
expanding R(F,f) symbolically in the zeros of f£(x) and then
determining the coefficients of R(F,£f) as pclynomials in the
coefficients of f£({(x). See Lauer [LAU] for methods related
to symmetric polynomials. Unfortunately, unless deg(R(F,f))

is small or f(x) is sparse, this leads to very extensive
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symbolic manipulation. However, if we use this method, we
get an explicit formula for the coefficients of R(F,£f) in
terms of the coefficients of f£(x). Such formulas have been
published for specific resolvent polynomials in

{BER,DEH, ERB,MAT].

In Chapter 3, we describe a new exact algorithm to
construct linear resolvent polynomials. This algorithm does

not expand the resolvent symbolically in the zeros of f(x).

For K = Q, monic £{(x) in Z[x], and F in Z[xl,...,xn], we
note that the coefficients of R(F,f) are algebraic integers
and hence rational integers, Thus if we form R(F,f) using
numerical approximations to the zeros of f£(x) and we know
that the accuracy of these approximations is such that the
coefficients of R(F,f) are calculated to within an absolute
error less than 1/2, then we can determine the coefficients
of R(F,f) exactly by rounding. Stauduhar [8TA-1,8TaA-2] uses

this method (see Section 2.3.4}.

In Section 4.1 we discuss a modular approach to
computing R{F,f}) when f£(x) and F are as in the preceding

paragraph.

We have assumed we havela factorization algorithm over
K[x]. For K = @, factorization algorithms are discussed in
[KNU,p.431-434,SCH,ZAS~1]. In practice, for K = Q, monic
£(x) in Z{x], and F in Z[xl,...,xn], one can determine

candidates for factors of R(F,f) by using numerical
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approximations to the zeros of f£(x).

2.3.3 FUNCTIONS BELONGING TO GROUPS

Let F be in K[xlf""xn] and G = stabs (F). We say that
n
F belongs to G. Note that for P in S,r F*P belongs to
1

P "GP, and in addition, F*P(V) is a zero of R(F,f).

lGP for

Applying Proposition 2.9, we see that if Gal(f/K)<P~
some P in Sn' then R(F,£f) has a linear factor, Conversely,
if R(F,f) has a non~repeated linear factor then Gal(f/K) is

contained some conjugate of G.

Resclvents where a linear factor determines if Gal(f/K)
is contained in a group of interest are discussed in
[BER,FOU~-2,LEF,STA~1,STA~2]. Although linear factors are
easy to find, the linear factor can give information only
about the Galois group's containment in a group and its
conjugates. The complete factorization of a well-chosen
resolvent polynomial often distinguishes Gal(f/K) among many

poséible candidates.

2.3.3.1 THE ALTERNATING FUNCTION

Suppose char (K)#2 and n>l. Then the function

) =TT (%, - x2)

D = D(xl,...,x
i<]

n

belongs to ALy and is called the alternating function. If

P in Sn is a odd permutation, then D*p = -D. Thus
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R(D,£) = x° - (D)2,

If £(%) has distinct zZeros, then R{D,f) has distinct zeros
and R{(D,f) has a linear factor over K if and only if D(I)2 =

disc(f) is a square in K. Thus we have proved:

PROPOSITICON 2.12. Gal(f/K)_gArl if and only if disc(f) is

a square in K.

2.3.4 THE METHOD OF STAUDUHAR

In [STA-1], and in a condensed version [STA-2],
Stauduhar describes an effective method of determining the
Galois group over Q of a monic irreducible polynomial f(x)
over Z. He describes the implementation of this method for
n = deg(f) up to 8, and supplies tables of information
necessary for this implementation. Schnackenberg [SCH]
includes a discussion of Stauduhar's method in his thesis

which surveys techniques to calculate Galois groups.

Stauduhar proceeds as follows:
Let V = (vl,...,vn) be an ordering of the zeros of £({x) and
suppose that with respect to this ordering we know that
Gal (£/Q)<G. (Initially we know that Gal(f/Q)iSn). If G has
no transitive proper subgroups, then Gal(f/Q) = G.
Otherwise we check to see if Gal(£/Q)<H, for each maximal

transitive subgroup H of G.
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For H a maximal transitive subgroup of G, we determine

lHP for some P in G. Choose {(from a table) a

i1f Gal(f/Q)<P~
polynomial F in Z{xl,...,xn] such that stabG(F) = H and

consider the factor of R(F,f):

k
Rg (F,£) = E(x - F. (W),

where Fi = F*Pi (i=1,...,Kk, Fi distinct) , {Pi} a set of
right coset representatives of H in G (obtained from a
table) . Gal(£/Q)<G implies that each element in Gal(£/Q)
induces a permutation of the Fi‘ Hence RG(F,f) has rational
integer coefficients which are determined by expanding
RG(F,E) using high~precision approximations to the zeros of
f(%x) and then rounding the approximate coefficients of
RG(F,f)e If Gal(f/Q) is contained in some conjugate of H in
G, then RG(F,f) has an integral zero., Conversely, if
RG(F,f) has a non-repeated integral zero, then Gal(f/Q) is
contained in some conjugate of H in G. We test each
approximate zero z of RG(F,f) which appears to be integral
to determine if R

(F,f) (round (2)) = 0. Suppose R.(F,f) has

G G(
a non~repeated integral zero, F*P(V), P in G. Then

1

Gal(£/Q)<P "HP. We may reorder the zeros of f(x) by setting

V to (V1P'°°"V and with repect to this ordering,

np! ’
Gal (£/Q)<H.

If Gal(f/Q) is contained in no maximal transitive
subgroup of G, then Gal(f/Qg) = G. Otherwise, we have

determined that Gal(£/Q)<H with respect to the ordering Vv,
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where H is a maximal transitive subgroup of G. We may then

set G to H and repeat the entire process.

In [STA-1] the information available from a quadratic

factor of a resolvent polynomial is discussed.

Stauduhar's method is straightforward and practical.
However, highly accurate approximations to the zeros of £(X)
are necessary, and one must have much tabulated information
available. Furthermore a search down the subgroup lattice
of Sn is required since if a function F belongs to G, then F

is fixed by the elements of any subgroup of G.

2.3.5 THE USE OF LINEAR RESOLVENT POLYNOMIALS

As usual £(x) is a separable polynomial over K, with
ZEXOS Vyyee. Vo and splitting field N. Let the multiset M =
{el,...,er], where e in K and 0<r<n. We call r the length

of M. We may also write

m m
1 k
M = [al I'“'Iak]l

where the a; are distinct and m;>0 is the multiplicity of a;

in M.

Recall that the linear resolvent polynomial LR(M,f)
associated with M and f(x) is the resclvent polyncmial

R(F,f), where F = elxl+...+e X We treat any zeroc elements

ror’t
of M as symbolic placeholders, The degree of LR(M,f) is the

number of ways of choosing r objects out of n, times the
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number of distinct permutations of the.elements of M. Thus

H

(2.1) deg (LR(M,£)) (’r‘) ri/(mgt...mt)

Il

n!/(mli...mk!(n-r)!)°

Linear resolvents form a general class of useful
resolvent polynomials for f£(x) of any degree. Often the
factorization of linear resolvents of relatively low degree

can be used to determine Gal (£/K) exactly.

2.3.5.1 ACTION ON SETS AND SEQUENCES

A permutation group Gﬁsn acts on the r-sets contained in
{1,...,n} where the action is defined by {il"°°’ir}*p =
{ilP’°"'irP} for all P in G. It is clear that the action
of G on F*Sn, where F = xl+.,.+xr, is equivalent to the
action of G on the r-sets of {l,...,n}l. Thus the
factorization of LR([lr],f) {with distinct zeros) determines
the orbit length partition of {l,...,r}*sn under Gal(f/K).
McKay [MCK], and Erbach, Fischer and McKay [ERB] suggest
using resolvents of this form in order to determine the

transitivity on r-sets of Gal(£/K).

The following remark is of interest: Suppose f(x) is
irreducible (Gal(f/K) is transitive) and n=rs, s an integer,
s#l,n. Then LR([1Y},f) (with distinct zeros) has t
irreducible factors of degree s 1f and only if Gal{f/K) has

t systems of imprimitivity of s blocks of size r.
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A permutation group GSSn acts on the set of r-sequences

(il""’ir)' with ij in {1,...,n} and the ij distinct

(j=l,++.,r). This action is defined by (il,...,ir)*P =
(ilP,...,irP) for all P in G. It is clear that the action
X

of G on F*Sn, where F = ¢ +...+erxr, e, distinct, is

171 i

equivalent to the action of G on r-sequences.

Now suppose LR{M,f) = LR([el,.su,er],f) has distinct
zeros and the e, are distinect, LR(M,f}) is reducible iff

Gal(£f/K) is not r-ply transitive.

There is also a simple field theoretic interpretation to

the factorization of this LR(M,f}. Let z = +aaate v

€1V1p rVrp

be a zero of LR(M,£f) (P in Sn). We see that stabg(N/K)(z)
r

gngtabG(N/K)(viP)' and hence by LEMMA 2.11, K(z) =

K(le""'vrp)‘ The degrees of the irreducible factors of

LR(M,E) correspond to the degrees over K of non-conjugate
subfields of N generated by r-sets of the zeros of £(x). In
particular we note that if r=2 and f(x) is irreducible, then
LR(M,f) has irreducible factors all of degree n if and only
if N = K(Vi) for each zero vy of £(x), since K(vi) = K(vj)
for all i,j=1,+...,n in this case. We also note that if r=n

then LR(M,f) has degree n! and N = K(z) for each zero z of

LR (M, £f) .

Tables 3D to 8D contain the orbit length partitions of

r-sets and 2-sequences under the action of the transitive
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permutation groups of degrees 3 to 8 respectively. For
irreducible f(x), these tables are used to determine
candidates for Gal({£f£/K) given the factorization of a linear
resolvent which determines the orbit lengths of the action

of Gal(£/K) on r-sets or 2-sequences.

2.3.5.2 DIFFERENTIATING ALL TRANSITIVE GROUPS

OF DEGREE UP TO 7

Suppose char(K)#2. If Gal(f/K} is transitive and we
know from disc(f) whether Gal(f/K)sAn, then for n=3,4,5%,7,
the conjugacy class of Gal(£/K) is determined completely by
the orbit lengths of the action of Gal{(f/K) on 2-sets,
3-sets and 2-sequences, with the exception of distinguishing

group 5T3 from 5T5.

Group 5T3 can be distinguished £from 5T5 (= S in the

5)
following way. Let F = (xl+x —x3-x4)2 and note that

2

2

R(F,£) (x?) = LR([1%,-1%],£)(x). We use this linear
resolvent to compute R(F,£). For deg(f) = 5,
deg(R(F,£)) = 15, and the orbit length partition of F*SS

under 573 is (10,5).

For degree 6, all the transitive groups can be
differentiated by disc(f) and the action on 2-sets, 3-sets
and 2-sequences except to distinguish group T8 from T11l, T9
from T13, and T14 from T1l6 (see Table 6D). To distinguish

these groups one can use ad hoc techniques, or Stauduhar's
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methed if K = Q.

We briefly outline a suitable ad hoc technique. We

assume that all polynomials discussed have distinct zeros,

Let D = disc(f) not be a square in K, and d{x) = x2~D.
If we are working over Z we may take D to be the squarefree
part of disc(f). Let r{x) be a monic irreducible factor
over K of a resolvent polynomial R(F,f). Suppose
r(Ft(K)) = 0 for some ordering V of the zeros of f£(x) and Ft
in F*Sn. The following are equivalent:

(1} StabGal(f/K)(Ft)iAn'

1/2

(2) K(F_(V)) centains K(D ).

g ¢
(3 SZ{r(x),d(x)) has a factor over K of degree deg(r)
(see Section 3.2.5 for an explanation of SZ, and also

see [VDW,p.l126-1271).
Now suppose n = 6,

Suppose Gal(f/K) = T8 or Tll. Let r(x) be the monic
irreducible factor (over K) of degree 12 of LR([lB],f).
Then Gal(£/K) = T8 if and only if SZ(r({x),d{(x)) has a factor

(over K) of degree 12.

Suppose Gal(f£/K) = T9 or T13. Let r(x) be the monic
irreducible factor of degree 2 of LR([13],E). Then
Gal(f/K) = T9 if and only if S8Z(r(x),d(x)) has a factor of

degree 2.
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Suppose Gal(f/K) = T14 or Tl6. Let r(x) = LR([13],f)o
Then Gal(f£/K) = Tl14 if and only if Sz{(r(x),d(x)) has a

factor of degree 20.



CHAPTER 3

LINEAR RESOLVENT POLYNOMIAL CONSTRUCTION

In this chapter we describe an algorithm to construct
any linear resolvent polynomial over a field K subject to
the restrictions in Section 3.1. The algorithm is exact,
uses polynomial resultants and does not expand the resolvent
symbolically in the zeros of £(x}). This approach was
inspired by Trager [TRA], who used polynomial resultants in
a similar manner to factorize polynomials over algebraic

extension fields.

The usefulness of the linear resolvent in computing
Gal(£/K) when we have a factorization algorithm over K{x]

has been discussed in Section 2.3.5.

3.1 RESTRICTIONS ON THE FIELD

The linear resolvent algorithm is designed to work over

an arbitrary field K, except for the following restrictions:

If char(K)#0 then we require that char(K)>D, where D is
the maximum degree of any polynomial used or constructed by
the malin algorithm or any sub-algorithm. If char(K)#0, then

char (K) is a prime, and char(K)>D if and only if char(X)}tD!.

33
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If K is finite, we need K large enough to construct
required polynomials by interpolation. For this
requirement, [K|>2D is sufficient., We note that our
interest is not in finding the Galois group of a polynomial
over a finite field (such a Galois group is always cyclic),
but we may use resolvent polynomials over finite fields in a

modular algorithm (see Chapter 4).

3.2 POLYNOMIAL OPERATIONS

In this section we describe our basic operations on
polynomials over K. We use these operations for the linear

resolvent algorithm.

3.2.,1 THE GREATEST COMMON DIVISOR

Let £ = £(X), g = g{(x) be polynomials in K[{x]. We

assume that f(x) and g(x) are not both the zero polynomial.

DEFINITION 3.1. The greatest common divisor of f({x) and

g{x), denoted gcd(f,g), is defined to be the monic
polynomial in K[{x] of largest degree dividing both £(x) and

g(x) .

If deg(g)>0, by the polynomial division algorithm there
exist q(x), r(x) in K[x] such that f(x) = g{x)g{x) + r(x),
0<deg{r)<deg(g). We denote this r{x) by £ mod g. As any
common divisor of £ and g divides f mod g, we may use the

following recursive formulation of the gcd to compute
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ged(£f,qg):
If g(x) is the zero polynomial,
then gecd(£f,g) = f£(x)/(leading coefficient of £(x));
else, if deg(g) = 0, then gcd(f,g) = 1;

else, gecd(f,g) = gcd(g,f mod g).

Let e be a non-negative integer, and let N be the
splitting field of £(x) over K. We say that £(x) has a zero

v of multiplicity e, if (x—v)ellf(x) in N[x}]. We write

e = mult(v,f).

We note that gcd(f,g) over any extension L of K is the
same as gcd(f,g) over K. This is because the gcd
calculation is carried out exactly the same way over L., In
particular, for L the splitting field of f(x)g(x), the zeros
of ged(f,g) are the common zeros of £ and g, and if v is a
zero of gcd(f,q), then mult(v,gcd(f,g)) =

min{mult(v,£),mult(v,qg)}.

3.2.2 THE RESULTANT

Let £ = £(x), g = g(x) be polynomials in K[x]. Let f(x)
= a(x—vl)...(x-vn) and g(x) = b(x—wl)...(x—wm) over the
splitting field of f(x)g(x). Furthermore assume that n =

deg(f) > 0, and m = deg({(g).

We treat the resultant in a similar manner as Childs

{CHI,p.283]. ©See also Collins [COL].
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DEFINITION 3.2. The resultant of £(x) and g(x),

n m ,
res(f,g) = a"b" T TT (vy - W) ol
i:lj:l J N

The resultant is a symmetric function of both the vy and
Wj’ and hence res(f,g) is an element of K. The following
facts are immediate consequences of Definition 3.2.
(1) res(f,9) = (-1)""res(g,f).
n
amnﬂ'g(vi)n
i=1

(3) If m = 0, then res(f,q) = b, (For our purposes it
g

(2) res(f,q)

is convenient to assume the degree of the zero
polynomial is zero, so that here we do not exclude the

possibility that b = 0.)
We use (1) and (2) to prove the following lemma.

LEMMA 3.3. Suppose m>0, and let r(x) = f mod ¢g. Then

mnbn~deg(r)

res(f,g) = (-1) res{g,r}.

mn

PROCF. res(f,qg) = (~1) res{q,£f)

m
c-1>m“b“]1;(q(wi)q<wi) + r(w;))
1=

m
= (-1)m“b”gz;rcwi)

]

(_l)mnbn-deg(r)

res{g,r). //

Combining (3) and Lemma 3.3, we have a recursive
formulation of res(f,g) similar to the recursive formulation
of ged(£f,9). This formulation is used to compute res(f,g)

efficiently. One can also compute the resultant or gcd
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non-recursively by using a polynomial remainder sequence.

3.2.3 THE FORMAL DERIVATIVE AND ITS ZEROS

The formal derivative of a polynomial over a field K is
gsimilar to the usual derivative of a real polynomial, and

shares many common properties.

n .
DEFINITION 3.4. Let f(x) = §zaaix1 be a polynomial over
i=0
K. We define the formal derivative of f(x}, denoted f' or

£'{x), by

it i-1
£' = f£'(x) = Ziaix ,
i=1

where iai means ai+...+ai (i times).

There is a important relationship between the
multiplicity of zeros of f(x) and the zeros of £'{(x), which

we state in the following proposition.

PROPOSITION 3.5. Suppose f(x) has a zero v of

multiplicity e>0. Then if char (K)fe, mult(v,£') = e-1,.

PROOF. Let £(x) = (x-v)°h(x).
Then f£'(x) = e(x—v)e—lh(x) + (x-v)%h'(x). Thus
mult(v,£')>e-1, Now if (x—v)eif'(x), then (x-v)|leh(x}.
This cannot happen as char(K}fe implies that e#0 and by the

definition of multiplicity, x-v cannot divide h(x). //

COROLLARY 3.6. Suppose char(K)>n. For each zero v of

f(x) of multiplicity e>1, v is a zero of gcd(f,£') of
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multiplicity e~1, and ged(£,£') has no other zeros.

3.2.4 "MULTIPLY ZEROS"

Let £(x) be a monic polynomial over K, n = deg(f), and
let the zeros of f(x) be VireesrVpe Let d be an element of
K. We want to calculate a monic polynomial of degree n
having the zeros dvl,oa,,dvn. The required polynomial is

denoted MZ(d,f) (Multiply Zeros) and is computed as follows:

MZ(d,£) = a"F(x/d), if d#0; x™, if 4=0.

3.2.5 "SUM ZEROS"

Let £ = £(x}), g = g(x) be monic polynomials in K[x].
Let £(x) = (x-vl).o.(x-vn) and g(x) = (x~w1)a..(x-wm) over

the splitting field of f(x)g(x).

We need to calculate the monic polynomial in K[x] of
degree mn with zeros vi+wj, (i=l,.eo,n, J=1,...,m). ‘This
polynomial is denoted by SZ(f,g) (Sum Zeros) and we note
that equality (3.1} holds as the left~hand side and the
right-hand side are both degree mn monic polynomials having

the same zeros.
n

(3.1)  sz2(£,9) = Tlg(x-v;).
i=1

Thus for any element y in K we know the value of SZ(f,q9) (y).

It is:
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(3.2) Sz(f,9)(y) = res(£(x),9{y~x)).

If K is sufficiently large (and we assume it is), we can
calculate z; = SZ(f,g)(yi), using {(3.2), for i=1,2,...,mn+l
and Y in K distinct. Then we can determine SZ(f,g) by
interpolation, That is, we find the polynomial t(x) (=

SZ(f,q)) of degree at most mn such that t(yi) = Z for

il
i=1,2,...,mn+l. For interpolation algorithms, sece

[KNU,COL].

3.2.6 "POLYNOMIAL ROOT"

Finally, we need an algorithm to solve the following
problem. Let k be a positive integer and let u(x) be a
monic polynomial in K[x], deg(u) > 0. Suppose we know that
u(x) = r(x)k for some unknown monic r(x) in K[x]. Denote
this unique r(x) by PR(k,u) {(Polynomial Root). We compute
PR(k,u) using the algorithm POLYROOT, which follows., We

assume char (K)>deg{u) or char(K)=0.
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Algorithm POLYROOT;

Input: positive integer k and monic polynomial u(x) in K[x],

deg (u) >0, such that u({x) = r(x)k for some unknown monic

r(x) in K[x]. We assume char (K)>deg(u) or char(K)=0.

Returns : PR{(k,u) ( = r(x) ).

(1)
(2)

{u?

(3)

(4)

{In

(5}

are

if k=1 then return(u(x)), and stop.

set t(x) <=~ u(x)/ged(u,u’);

is the formal derivative of u(x). t{x) is separable, and

the zeros of t(x) are precisely the distinct zeros of

u(x) (recall Corollary 3.6).}

set r(x) <-- t(x}), and s(x) <-- u(x);

while deg(r} < deg(u)/k, execute steps (4.1),400,(4.3):

{(4.1) set s(x) <=~ s(x)/t(x)k;

(4.2) set t(x) <~- gcd(s,t);

the i-th iteration of this loop, at this point, the
zeros of t(x) are precisely the distinct zeros v of
u{x) such that mult(v,u)>i.}

(4.3) set r(x) <-- t(x)r{x);

return(r(x}), and stop.

MULTISET OPERATIONS

We define the operations + and - for multisets. They

similar respectively to union and difference for sets,

except that multiplicities are counted. We use these

operations in the proof following and in the linear

resolvent algorithm. mult(e,M) denotes the multiplicity of



the element e in the multiset M,

Let M and N be multisets and let e an element of the
"universal" set from which M and N draw their elements.
Then M + N is a multiset, and mult(e,M + N) = mult({e,M) +
mult{e,N). M - N is a multiset énd mult{e,M -~ N) =
mult{e,M) - mult(e,N) if mult(e,M) > mult{e,N}), and

mult{(e,M - N} = 0 otherwise.

3.4 CONSTRUCTIVE PROOF

Let XK be a field satisfying the restrictions described
in Section 3.,1. Let f(x) be a monic polynomial in K[x], n =
deg(f) > 0, and let the zeros of f(x) be VisseesV e Let
Cirecere, be in K, 0<r<n, and let M = {el,...,er]. We now

prove:

PROPOSITION 3.7. The linear resolvent polynomial
LR(M,f) can be constructed over K using only the operations

MZ, SZ, and PR discussed in Section 3.2.
PROOF. By induction on r, the length of M.

If r = 1 then LR(M,Ef) = Mz(el,f).

_ my my
Now suppose r>l. Let M = [el,...,er_l] = [al reeerdy 1.

where a,,...,a, are distinct and m; = mult(a;,M) > 0 for

i=l,...,k. By the inductive hypothesis we can compute

t(x) = SZ( LR(M,f), MZ(er,f) ) .
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For each zero w of LR{M,f), t(x) has precisely the zeros
w+erv1,aeo,w+ervn. Thus we see that
k €3 C
t(x) = (TT LR(M;,£) ")LR(M,f)
i=1
where Mi = (M - [ai}) + [ai+er],
¢y = mideg(LR(ﬁ,f))/deg(LR(Miff)),

and ¢ = (n-r+l)deg(LR(M,£))/deg(LR(M,£)).

We can compute ¢,

i and ¢ using the expression (2.1) for the

degree of a linear resolvent polynomial. In fact, by
straightforward calculation involving these expressions, one

sees that c; = mult(ai+er,Mi) and that ¢ = mult(er,M)e

By hypothesis we can construct
k ci
S (X) TTLR(M .
Then the desired linear resolvent poelynomial can be computed

by:

R(M,£) = PR(c,t(x)/s(x)). //

3.5 ALGORITHM LINRESOLV

Let K be a field satisfying the restrictions stated in
Section 3.1. Let f£(x) be a monic polynomial in K[x], n =

deg(f) > 0. Let €1revese be in K, 0<r<n, and let the

r
multiset M = [el,...,er].
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The inductive proof of the preceding section motivates
our recursive algorithm to construct LR(M,£f), the linear
‘resolvent associated with M and f(x). Changes from the
method of the proof have been made for considerations of
efficiency. The algorithm is called LINRESOLV and is

detailed below.

Algorithm LINRESQOLV;
Input: a monic polynomial f({x) in K{x] of degree n > 0, and

a multiset M = {el,...,e ], 0<r<n, where €lresere, in K.

r
We assume K satisfies the restrictions stated in Section
3.1.

Output: LR(M,f), the linear resolvent polynomial associated
with M and f£(x).

(1) {If any of the elements in M equals 0 (the additive
identity of K) then these zeros are significant as
symbolic place holders. However, this step allows

LR(M,f) to be calculated by considering just the maximal

submultiset of M which contains only non-zero elements.}

(1.1) set m <-- mult(0,M};

{(1.2) if m = 0 then go to step (2);

{(1.3) if m = r then set t(x) <-- "x",
and go to step (1.6);

(1.4) set T <-— M - [0™];

(1.5) set t(x) <-- LR{(M,f);

{recursive application of this algorithm}
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(n«r+m) d

m
(2) if r = 1 then return(MZ(el,f)), and stop.

{1.6) set d <~— ¢ return(t(x)”), and stop.
{3) Arrange the elements of M so that mult(er,M)Smult(ei,M),
for i=1l,...,1;
{This ensures that the degree of the polynomial constructed
in step (4.2) is as small as possible.}
(4)
(4.1) Set M <""" [elpeue;erwl]
m My L
(= [al reeosdy 1. where Byyreocesd) are distinct and me >
0 for izl'nocfko):

(4.2) set u(x) <-— LR(M,f);

{using this algorithm recursively}

k C.
(5) set s(x) <-- TTLR(M,,£) t
i=1
(where M; = M ~ la;1) + [a;+e ], and c; =

mult(ai+er,mi) ) ;
{using this algorithm recursively}
(6)
(6.1) set ¢ <{~~ mult(er,M), g(x) <= MZ(er,f);
(6.2) set d to be a positive integer such that for all b
= ac, for some a in K,
(i) ad is unique in K, for all solutions a in K of

b = ac, and

{ii}) we can efficiently compute this ad.
{We may always take d=c. However, it is most efficient to

choose d as small as possible. For example, when K = Q3

if ¢ is odd then let d=1, and ad is the unique c-th root



in Q of b; if ¢ is even then let d=2, and a“ is the
unique positive (c¢/2)~th root in Q of b.}
(6.3) set m K d(deg(u)deg(g)~deg(s))/c+l;

{m = deg(LR(M,f)d)+l}
(6.4) for m distinct ' in K (i=1,..,m) such that
s(y;)#0, set z; <-- res(u(x),g(y;-x))/s(y;);

{This is where we need to assume that |K| is "large enough"}

{z; = 82(u,9) (v;)/s(y;) = (LR(M,£) (y;))°}
(6.5) For each Z;, We know that z; = a? for some
ay in K.
{a; = LR(M,£) (y)) ]
. d
FOI’ 1=lfooc,m Set Zi <"""‘ ai;
{We can do this due to the choice of d as explained in step
(6.2} .}
(7) set t(xXx) to be the polynomial of degree m-1 such that
t(yi) = Zis for i=1,...,m;

{using an interpolation algorithm}

{8) return(PR{d,t)), and stop.

3.6 REMARKS

As r increases, the efficiency of Algorithm LINRESOLV
decreases markedly. However in practice, r is usually quite
small; often r<3. For a given field K, empirical
observations can be made to determine the practical range

for r and n. For example, using the implementation
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described in Chapter 4 over K = 210000139 and f£{x) a degree
11 polynomial with no zero coefficients, to compute
LR({1%],£) for r=2,3,4,5, it took respectively 3,13,129,426

CPU seconds.

When Algorithm LINRESOLV computes one resolvent
polynomial, it must usually compute other resolvents

recursively. 1If these "byproduct® resoclvents are useful

3

they should be saved. For example, to compute LR{[17},f),

LINRESOLV must also compute LR([lz},f) and LR([1,2],f).



CHAPTER 4

IMPLEMENTATION AND EXAMPLES

Throughout this chapter the fcllowing holds:
n .
£(x) = x4 Ejaixn'l is in Z[x], with zeros VireoosV
i=1

{el,...,er], with ey in Z and 0<r<n.

n* M=

We discuss our modular algorithm to compute LR(M,f), and
the computer implementation of this algorithm. We give
examples of the determination of Galois groups over @, using

this implementation.

4,1 A MODULAR APPROACH TO COMPUTING RESOLVENTS

Let S(xl,...,xn) be a symmetric polynomial over Z., By
the Fundamental Theorem on Symmetric Polynomials,
S = T(sl,...,sn), for a unique T in Z{xl,...,xnl and S; is

the i-th elementary symmetric polynomial.

n .
Let f(x) mod p = xn+ZEixn"1 have zeros Vl,...,vn, and S, T
i=1
be respectively S mod p, T mod p. Then over Z_:

P

S(VyreeesVy) = T(=37,3,, .00, (-1 ).

Thus

(4-1) S(Vl,...,Vn) mOd ng(_‘;l'ooo,vn)o

47
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We see that for any F in Z[xlggoofxn] such that

stabs (F) = stabs (F mod p):
n n

(4.2) R{(F,f) med p = R(F mod p,f mod p),

where the latter resolvent is calculated over Zpa To

compute R(F,£) over Z, we can compute R(F,f) mod Py {using

(4.2)) for distinct primes Py such that TTPi>2C, where C is
an upper bound on the magnitude of the coefficients of
R{(F;f). R(F,f) is then built up over Z using the Chinese

Remainder Algorithm [KNU,p.268-276].

We calculate C by bounding the magnitude of the zeros of
£(x), which allows us to calculate a bound on the magnitude
cf the zeros of R{(F,f). If B is an upper bound on the

magnitude of the zeros of R(F,f) and 4 = deg(R(F,f)), then

c = max{(?)Bl : 1<i<d}
is an upper bound on the magnitude of the coefficients of

R(F,f).

4.1.1 BOUNDING THE ZEROS OF f (x)

We need to compute a bound A such that Azlvii for all

Zeros v, of £(x). Zassenhaus [ZAS-1] suggested

A =max{la,/(H 11721y ¢ 1cicn).
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We suggest the following method of computing a suitable
bound. Let g(x) = x' - é% lai]xn*i, and let R>0 be a strict
upper bound on the magniiiée of the real zeros of g{x). (By
Descartes rule of signs, g{(x) has at most one positive real
zero (counting multiplicities), so we may take R to be the
least positive integer such that g(R}>0.) Now note that for

any complex number 2z such that |z|>R:
Lf£¢(z)|1 > g(lzl) > g(R) > 0.
Thus R>Fvi! for each zero vy of £{(x}.

We have found this bound to be often much better than
that of Zassenhaus, and we use our bound for the examples of

Section 4.3.

4,2 THE IMPLEMENTATION

We have programmed algorithm LINRESOLV over K = Zp’ in
the language PASCAL on the Concordia University CDC Cyber
170-800 computer. This program is used to compute

LR{M,£)} mod ?i for distinct primes Py - LR(M,f) 1is built up
over Z using the Chinese Remainder Algorithm, and then
LR{M,£f) is factorized using Hensel factorization
[KNU,SCH,ZAS-1]. For these two operations we use programs
written by D. Ford in the language ALGEB, on the PDP-11/34
computer. The language ALGEB was designed by D. Ford, and

it allows computation with integers of arbitrary size.
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4.2.1 LINRESOLV OVER K = Zp

Zp satisfies the restrictions of Section 3.1 if p>2D,
where D is the maximum degree of any polynomial used in the

o

program. In practice we choose p such that p2 is nearly

7 24

equal to the largest integer we can operate on (10 '<p<2 in

our implementation).

Addition, subtraction, and multiplication over Zp is
implemented by doing these operations over the integers and
then applying the PASCAL mod operator to the result. To
divide we need multiplicitive inverses in zp, Given a in Z,
pfa, we need to determine b in Z such that ab mod p = 1. We

know
1 = ged(a,p) = ab + tp,

for some b,t in Z. b can be computed using the (half)

extended Euclidean algecrithm [KNU,p.325].

The main problem which is dependent on the base field in
the implementation of LINRESOLV is the choice of 4 in
step (6.2). Using the notation of step (6) of Algorithm
LINRESOLV, we claim that d = gcd{(c,p-1) is appropriate.

Note that

d = ged(c,p~1l) = sc + t(p-1),

for some s,t in Z., Let b = a® for some a in Z_. Then

1%
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This is because yp-l =1, for any v#0 in Zp. Now we nheed to

show that yd = zd for any y,z in Zp such that b = yc = 2%,
We have
yc = ZC = yCS = ZCS =5 yd = zd.

When we use algorithm LINRESOLV over Zp in order to
i

compute LR(M,f) over Z we choose primes Pj such that
jX(pi~l) for j=3,..,n. In this case d is never greater than

2 in step (6.2).

4.3 EXAMPLES

5 3

EXAMPLE 4.1. Let f£({x}) = x7~14x +56x~-56x+22 {(discussed
in Example 2.5). We compute and facterize L(x) = LR({13],f)
of degree 35 to prove that Gal(f£/Q) is group 7T3, the

Frobenius group of order 21.

An upper bound on the magnitude of the zeros of f(x) is
5, and hence 15 is an upper bound on the magnitude of the
zeros of L(x}. An upper bound on the magnitude of the
coefficients of L{(x) is (1/2)1042. L{x) mod P; is computed
for six primes pi>107. This step requires 10 CPU seconds on

the CDC Cyber. L(x) is constructed over Z using the Chinese

Remainder Algorithm. Factorizing L(x) into irreducible

factors over Q, we find L{x) = Ll(x)Lz(x)L3(x), where
Lo (x) = ¥/ -28x°+224%7-448x+94,
5 3

x7-28x

Lz(x) +224x"-448%x+192, and
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Ly(x) = x21o8ax%42436x1 7-31136% 1 P+6358x1 4

+203840x 38430712 11 10

~988064x°~1652036x ' +1138368x°+986496%x°-620928x"

—284032%°+137984%%+27104x~10648.

9

~733824%x77+420728x" "+1480192x

This factorization takes 12 minutes of CPU time on the

PDP-11/34.

L{x} has distinct zeros and its factorization shows that
the orbit length partition of 3-sets under Gal{£f/Q) is
(72,21). From Table 7D in Appendix 1, we see that Gal(f/Q)

is 77T3.

EXAMPLE 4.2. Let £(x) = x°+15x+12; disc(f) =

21034559 f(x) is irreducible over Q, and since disc{f) is
not a square, from Table 5A in Appendix 1 we see that
Gal (£/Q) = 5T3 (the Frobenius group of order 20} or 5T5

(55)°

Let F = (xl+x2~x3~x4}2, We compute and factorize R(x) =
R(F,f) of degree 15 to distinguish between the two
candidates for Gal(£/Q) (R(F,f)(x%) = LR([1%,-1%1,£) (x); see

Section 2.3.5.2).

An upper bound con the magnitude of the zeros of f£(x) is
3, and hence 144 is an upper bound on the magnitude of the
zeros of R(x). An upper bound on the magnitude of the

coefficients of R(x) is 1033.
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R(x) mod p; is computed for five primes pi>107. This
step regquires 11 CPU seconds on the CDC Cyber. R(x) is
constructed over Z using the Chinese Remainder BAlgorithm.
Factoring R{x) into irreducible factors, we find

R(x) = Rl(x)Rz(x), where deg (R = 5 and deg(Rz) = 10,

1)

This factorization takes 2 minutes of CPU time on the

PDP-11/34.

R(x) has distinct zeros and its factorization shows that

Gal (f/Q) acts intransitively on F*g and hence Gal(f£/Q) is

5'
5T3.
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APPENDIX 1

TABLES OF TRANSITIVE GROUPS OF DEGREE UP TO 8

(SUPPLIED BY G. BUTLER)

56



For each degree we present the information about the
transitive groups of that degree in a set of tables., The
groups are named Tl, T2, etc..., for convenience, and if
there may be confusion about the degree of the group we

write nTi to mean the i-th group of degree n.

In Table A we list the order of the grocup, whether it
contains only even permutations, the number of inequivalent
minimal sets of imprimitivity of each possible type, and the
number of conjugacy classes of elements. If the group has a
faithful representation of smaller degree this is given in
the column headed 'Other Representation’', and if the group
is known by a common name this name is given in the column

headed 'Name’'.
In Table B we give a set of generators for each group.

Table C sets out the number of elements of each group

with each cycle type.

Table D gives the orbit length partitions of r-sets and
2~sequences {with distinct elements) under the action of

each group.

The notation for the group names is as follows: n
denotes the cyclic group of order n; prl denotes an
elementary abelian group of order p", where p is a prime; Dn
denotes the dihedral group of order n; Qg is the quaternion

group of order 8; An is the alternating group of degree n;
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. is the symmetric group of degree n., If A and B are nhames

for groups then A.B denotes a group with a normal subgroup
isomorphic to A such that (A+B)/A is isomorphic to B; while

AXB denotes the direct product.



Table 3A: groups of degree 3

59

Group Ordey Even Number of ‘Name
. : ‘ classes S
Ti 3 + 3 Ag
T2 - 6 3 23
Table 3B: group generators
a = (1,2,3) b= (1,2)
Tl = <a> T2 = <a,b>

Table 3C: cycle type distribution

—ud

]3
T1 1
T2 1
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Table 3D

Orbit length partitions of sets and sequences under G

2~sets 2-Sequences
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Table 4A: groups of degree 4
Group Order Even Imprim;tive Number of Name
] classes
T 4 v 4 4
T2 4 + v 4 22
T3 8 4 5 Dg
T4 12 + 4 Ay
TS 24 5 s
Table 4B: group generators
a = {1,3,4) c = (2,4)
b = (1,3) d = (1,2)(3,4)
T = <ac> T4 = <a,d>
12 = <bc,d> T5 = <ac,d>
T3 = <ac,bc>
Table 4C: cycle type distribution
2 3
4 12 22 ] 4
T 1 2
T2 1 3
T3 1 2 3 >
T4 1 Q
T5 1 6 8 6
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Tablie 4D

Orbit length partitions cof sets and sequences under G

2-sets 2-sequences
4

23 43

6 12
4

2,4 43

2'4 4,8

6 12
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Table 5A: groups of degree 5
Group Order Even Number of Classes Name
Ti 5 + 5
T2 10 + D1o
T3 20 5.4
T4 60 + Ag
T5 120 Z5
Table 5B: group generators
a = (1329334:5) c o= (_2,3,5,4)_
b=1(1,2)
11 = <ay T4 = <a,bab>
72 = <a,cz> 15 = <a,b>
T3 = <a,c>
JTable 5C: cycle type distribution
3 22 3 3 4
] 1 1T o2 12 4
T 11 4
T3 11 5 10 4
75 11 10 15 20 20 30 24
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Table 5D

Orbit length partitions of sets and sequences under G

G 2-sets 2=-sequences
G<A,

T1 52 54

T2 52 102

T4 10 20

G£AS

T3 10 20

T5 10 20



Table 6A: groups of degree 6
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Group Order Even Imprimitive Number of Qther Name
1[23] [32] Classes’ Representations

Tl o Y Y 6 6
T2 ) Y Y 3 372 23
T3 12 Y v 6 D}2
T4 12 + Y 4 4T4 A4
T5 18 v 9 3><Z3
T6 24 y 8 2xA4
T7 24 ¥ / 5 475 1,/2°
18 24 Y 5 475 E4/4
79 36 v 9 32,22
o | 36 + v 6 3.4
T11 48 v 10 ZXZ4
T12 60 + 5 5T4 L{2,5)
T3 | 72 v 9 3%.Dg
T14 120 7 5T5 PGL(2,5)
T15 360 + 7 A6
T16 720 1 26
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Table 6B: group generators

a = (1,2,3) i= (1,3)(2,4)

b = (1,4)(2.5)(3.6) 3= (1,6)(2,6)(3.4)
¢ = {1,5,2,4)(3,6) . k = {1,2,3,4,5)

d = ab 1= (1,6)(2,5)

e = bet m= {2,3,5,4)

= (1,2)

g=(1,3,5)(2.4,6)

h = fgfg®

Tl = <d> T11 = <f,g,1>
T2 = <e,j> T12 = <k,1>
T3 = <d,e> T13 = <a,b,c>
T4 = <g,h> T14 = <k,1,m>
T5 = <a,b> T15 = <¢, k>
T6 = <g,f> T16 = <d,k>
T7 = <g,h,i>

T8 = <g,h,j>

T9 = <é,b,e>

T10 = <a,c>



Table 6C: cyc]e typg distribution
3
Z o2 3 2 4 5

189 2, ] 13 16
IR A 1 2 2
T2 11 3 . 2
T3 | 1 3 4 2 2
T4 {1 3 8
T5 | 1 3 4 4 6
T6 | 1 3 3 1 8 8
T7 | 1 9 8 6
8 | 1 3 6 8 6
T9 {1 9 6 4 4 12
TI031 9 4 4 18
T 3 9 7 8 6 6 8
T2} 1 15 20 24
T3} 1 6 9 6 4 12 4 18 12
T4} 7 15 10 20 30 24 20
TI5]1 45 40 40 80 144
TI6 ] 1 15 45 15 40 120 40 90 90 144 120
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Table 6D

Orbit length partitions of sets and sequences under G

G 2-sets 3-sets 2~-sequences
G<A,

74 3,12 4% ,6° 6,12°
77 3,12 42,12 6,24
T10 6,9 2,18 12,18
712 15 102 30
T15 15 20 30
GLA,

T1 3,6% 2,6° 6°

T2 2,6 2,63 6°

T3 3,62 2,6,12 6,122
T5 6,9 2,18 62,18
T6 3,12 62,8 6,122
T8 3,12 8,12 6,24
T9 6,9 2,18 12,18
T11 3,12 8,12 6,24
T13 6,9 2,18 12,18
T14 15 20 30

T16 15 20 30



Table 7A: groups of degree 7

69

e

Group Order ‘Even Number of Name
Classes
Ti 7 + 7
T2 14 5 Di4
T3 21 +. 5 7-3
T4 42 7 76
T5 168 + 6 L(3,2)
T6 2520 + 9 A7
T7 5040 15 27
Table 7B: group generators
a=(1,2,3,4,5,6,7) c = (2,3){(4,7)
b= (2,4,3,7,5,6) d=(1,2,3)
T1 = <a> T6 = <a,d>
2 = <a,b% T7 = <b,d>
T3 = <a,bbs
T4 = <a,b>
T5 = <a,c>
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Table 7C:

cycle type distribution

3 4
2 2 22 3 2 3 3 4 2 4 5 5 6

7 i 1 1 1 2 1 1 T3 1 2 17
T ﬁ c n Q : ° 0 . .. “ .. 6
T2 Q o 7 , u o c 9 . . .. 6
13 . e . e . . 14 .. ., . L . 6
T4 n , 7 n_ o . : . n .6
T5 .2 : : n . 56 . S . .. 48
T6 . 105 .70 . 210 280 . 630 . 504 .. 720
7 21 105 105 70 420 210 280 210 630 420 504 504 840 720




Orbit length partitions of sets and sequences under G

2~-gets

21

21

21

21

21

71

Table 7D

3-sets

77,14
14,21

35

2-sequences

21
42

42

14
42

42



Table 8A: groups of degree 8

72

Group Order Even Imprimitive Number .of ther Name
[24] [42] {lasses Representations

T1 8 Vv Y 8 8

T2 8 + 3 v 8 2x4

T3 8 + 7 v 8 23

T4 8 + 5 v 5 4T3 [)8

T3 8 + 4 4 5 Q8

T6 16 v 4 7

T7 16 vy v 10

18 16 v Y 7

T? 16 + 3 Y 10

T10 16 + 3 v 10

T 16 + oY 10

712 24 + v 7 S1.(2,3)

T13 24 + v v 8 676 2xA,

T4 24 + Y v 5 475 2‘4

T15 32 4 4 11

Ti6 32 A I 11

T17 32 v Y 14

T18 32 + 4 Y 14

T19 32 + vy |V 11

T20 32 + % 4 11

T21 32 4 Y 1i

T22 32 + v y 17

T23 48 Y 8

T24 48 + v v 10 6711 2% 24
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Table 84 (continued)
Group Order tven Imprimitive Number of Other Name
[24] [42] Classes Representation

125 56 + 8 2.7

T26 64 4 v 16

T27 64 /Y 13

T28 64 4 Y 13

T29 64 + v Y 16

T30 64 Yy | v 13

T31 64 Y Y 16

T32 96 + v 11

733 96 + v 10

T34 96 + v 10

T35 128 v " 20

136 168 + 8 23.(7-3)
137 168 + 6 775 L(2,7)
T38 192 v 16

T39 182 + v 13

T40 192 v 13

T41 192 + V. 14

T42 288 + Y 14

T43 336 g PEL(2,7)
T44 384 v 20

T45 576 + v 16

T46 576 y 13

T47 1152 4 20

143 | 1384 + 1 23.1(3,2)
T49 20160 + 13 AS

150 40320 22 Lg
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Table 8B: group generators

= (1,4,6,8,2,3,5,7) q = (1,6,2,5)(3,7)(4.8)
b= (1,3,5,7)(2,4,6,8) r = (5,6)
¢ = (1,6)(2,5)(3,8)(4,7) s = (1,3)(2.4)
d = (1,8){(2,7)(3,6)(4,5) t=(1,2)
e = (1,7)(2,8)(3,5)(4,6)  u = (1,5)(2,6)
f=(1,7)(2,8)(3,6)(4,5) v = (3,4)
g=(1,7,2,8)(3,5,4,6) w= (1,3)(2,4)(7,8)
h=(3,4)(7,8) x = (2,4,3)(6,8,7}
i=(1,60{(2,5)(3,4) y = (1,8)(2,5)(3,6)(4,7)
J = (1,6)(2,5)(3,7)(4,8)  z = (6.8,7)
k = (1,6)(2,5) A= (1,2,3,4,5,6,7)
T = (1,3)(2,4)(5,8)(6,7) B = (2,4,3,7,5,6)
m= (1,5)(2,6)(3,7)(4,8) € = (2,3)(4,7)
n=(3,5,7)(4,6,8) D= (1,8)(2,4)(3,7)(5,6)
o= (1,4)(2,3)(5,6)(7,8) E = (1,8}(2,7)(3,4)(5,6)
p=(1,2)(7,8) F=(1,7,3,5)(2,8,4,6)
T1 = <a> . T26 = <a,f,b2>
T2 = <b,c> T27 = <a,t>
T3 = <b®,e,c> T28 = <a,u>
T4 = <b,d> 729 = <b,e,f>
T5 = <a%,g> T30 = <b,p,iku>
T6 = <a,f> 731 = <g.e,t>
17 = <a,h> T32 = <e,j.n>
T8 = <a,i> T33 = <F,x>

T9 = <b,e,c> T34 = <ysv,X,y>



Table 8B

o
T]I
T2
T13
T14
T15
716
7
718
T19
T20
T21
T2z
T23
T4
T25

H

ui

n

(continued)
<b;j>
<a2,b2,]>
<g,n>
<hj,n>
<n,0>
<a,f,h>
<a,b2>
<a,e>
<b,e,ji>
<b,f>

<b,p>

<q,e>
<a2,b2,j,e>
<N ,W>

<C ’n ,S>

<A,D>

75

T35
T36
T37
138
139
T40
T4
T42
T43
T44
T45
T46
T47
T48
T4S
T50

<a,f,t>

<A,D,B%>

<A,BZ,E>
<V,e,n>
<j,n,s>
<j,n,shv>
<F,x,y>
<§5,Z,m>
<A,B,E>
<t,b,s>
<5,2,M,y>
<$,2,0>
<vsxz“19t,m>
<A,C,D>
<pA,z>

<a,t>
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Table 8C: cycle type distribution
3 3
2 3 2 28 4

18 it /AR LI E S T L2 2
TT 1 1
T2 1 3
T3 1 7
4 1 5
™1 1
T6 1 5
T7 1 2 1
T8 1 1
79 1 2 9
710 1 2 5
TI1T 1 2
T2 1 1 8
T3 1 8
T4 1 8
TI5 1 2 5
Ti6 1 6 5
T17 1 2 5 4
T8 1 6 13
T19 1 2 9
T20 1 6 5
T21 1 5 16
T22 1 6 13
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Table 8C  ({continued)
3 4
2 22 P 3 22 2 3 2 4
I L S PSSR R L 2
23 1 121 8 :
T24 1 6 13 8
T25 1 7 ,
T26 1 6 8 13 4 4
T7 1 4 6 4 5 8
28 1 10 9 8 16
T29 1 10 17 8
T30 1 6 8 5 4 20
1 4 6§ 4 13 24
T32 1 6 13 32
T33 1 6 13 32
T34 1 6 21 32 ,
T35 1 4 10 12 17 4 8 28
T36 1 7 56
37 1 2] 56
T8 1T 4 6 4 13 32 32 24
T39 1 18 25 3 24
T40 1 6 20 13 32 12 12
T4 1 18 25 32 24
T42 1 6 21 16 18 64
T43 1 28 21 56
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Table 8C ({continued)

3 3 4

2 22 53 3 2 2% ¥ 32 4,y

R L L A LA C AN R LA S L I

T4 1 4 18 28 25 . . . 32 32 12 24 36
45 1 . 42 . 33 16 . 48 6 . . 72

46 1 . 42 . 9 16 . 48 64 . . 72 144

T47 1 12 42 36 33 16 9% 48 6 . 12 72 180
TA8 1 . 42 . 49 . . . 24 . . 168
TA9 1 . 210 . 105 112 . 1680 1120 . . 2520

TS0 1 28 210 420 105 112 1120 1680 1120 1120 420 2520 1260



Table 8C

(continued)

Ti
T2

T4
15
T6
T7
T8
T9
Ti0
™
Ti2

T13 ;

T14
Ti5

Ti7
T18
T19
T20 -
T21
T2

(=2 T o« SR« « BEER -  « - T — N o\ N« S N

xR S o O

12
12
20

12.

16



Tabie 8C

(continued)

80

, 5 6 § 7 .
I ] 2 1 8
123 6 8 12
T24 12 8
T25 48
T26 12 16
127 20 16
128 4 16
129 28
T30 20
131 12 .
732 12 3
133 12 32
T34 36
T35 28 16
T36 56 48
T37 42 48
T38 12 2 3
T39 60 32
T40 12 32 48
T41 60 . 3
T42 36 96
143 42 56 48 84
T44 60 2 32 48
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Table 8C (continued)

5
3 5 2 6 6 7
I CINE L A 12 1 8
145 . 108 . . . . 192
T46 . 36 . . ) ,, . . 144
T47 9% 108 . . . L1922 L a4
T48 . 252 ) . .. 224 384
T49 . 1260 1344 . 2688 . 3360 5760

T50 3360 1260 1344 4032 2688 3360 3360 5760 5040



G
G<A
T2

T3

T4

TS

T9

T10
Tl
T12
T13
T14
T18
T19
T20
T22
T24
T25
T29
T32
T33
T34
T36

T37

2-sets

¢ 16

82

Table 8D

3-sets

8,16°
8,16,32

3

87,32

83,32
8,24
56

8,16,32

24,32

4-sets

.8

2,83,162

3 2

27,4

2,43,83,16

3,84,162

2 2

2

6,8 ,24

2 2

2,67,8,24

2,62 2

3

2,43,83,32

2,4,8%,16,32

2,4,8%,16°

2

r 16

23,82, 163

2,6%,8,242

14,56

2,4,8%,16,32

6,82,48

2,12,24,32

2,123, 32

14,56

142,42

8,127,224

Orbit length partitions of sets and sequences under G

2-sequences

8,16, 32
8,163



Table 8D (continued)

G 2-sets 3-sets
G<A,

T39 4,24 24,32
T41 12,16 8,48
T42 12,16 8,48
T45 12,16 8,48
T48 28 56

T4S 28 56

83

4-sets

2,12,24,32
2,32,36
2,32,36
14,56

70

2-sequences



Table 8D (continued)

G 2-sets 3-sets
GLA,

71 4,83 g’

76 4,8° 83,162
77 4,8,16 83,162
T8  4,8,16 83,162
T1S 4,8,16 8,16°
T16 4,8,16 83,32
T17 4,8,16 8,16, 32
T21 4,83 83,32
723 4,24 8,24°
726 4,8,16 8,16, 32
727 4,8,16 83,32
728 4,8,16 8,16, 32
730 4,8,16 8,16, 32
T31 4,83 83,32
T35 4,8,16 8,16, 32
T38 4,24 24,32
T40 4,24 24,32
143 28 56

T44 4,24 24,32
T46 12,16 8,48
747 12,16 8,48

T50 28 56

84

d-sets

2,4,88

2,4,8%,16%

2

2,4,8%,163

2

2,4,82,163

2,4,8%,16,32

2,4,164
2,4,16%,32
23,16%
6,16,24°
2,4,162,32
2,4,16%
2,4,162,32
2,4,162,32

3 4

27,16

2,4,16%,32
6,16,48
6,16,48
28,42
6,16,48
2,32,36
2,32,36

70

2-segquences

8,16, 32
8,16, 32
8,167
8,16,32
8,48
8,48

56



APPENDIX 2

POLYNOMIALS WITH GIVEN TRANSITIVE GALOIS GROUPS

OVER Q OF DEGREE UP TO 7

It is an unsolved problem whether any permutation group
can appear as the Galois group of a polynomial over Q. For
each solvable group G it is known that there exists a
polynomial f£(x) in Q[x] such that Gal(f/Q) = G {see [SHA]);
however there does not appear to be a published general

method of constructing this f£(x) given any solvable G.

For each transitive permutation group G of degree 3 to
7, we have computed a polynomial f(x) such that Gal(f£/Q) =
G. These polynomials appear in Table A2.1. The notation
nTi means group Ti of degree n. The splitting field of f(x)
over Q is denoted by spl(f) and 2, denotes a primitive n-th

root of 1.

For each polynomial f(x) in Table A2.1, we proved that
Gal (£/Q) is the group indicated. Many of the polynomials
f(x) are constructed so that spl(f) is contained in some
known field. The methods of doing this include constructing
£(x) to be a resolvent polynomial, constructing f(x) to be a
composite polynomial, or if Gal(f/Q) is to be cyclic, by
constructing f£(x) such that spl{(f) is contained in Q(zp), P

prime (see [VDW,p.163-168]). This knowledge about spl(f) is

85
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used to reduce or eliminate the work necessary to determine
Gal(f/Q). 1In fact, the only polynomials whose Galois groups
are determined using other information than the splitting
field, cycle types or discriminant are those f£(x) with
Gal(f/Q) = 5T2, 772, 7T3, or 7T5. These exceptions are
proved to have the group indicated by using the

factorization of specific linear resolvents.

Given G, to find monic f£(x) in Z[x] such that Gal(f/Q) =
G, where it is non-trivial to construct an appropriate
splitting field, we do computer searching. If it is
required that disc(f) 1is a square we proceed in the

following way:

Let p be an odd prime. disc(f) a square implies disc(f)
is a quadratic residue (square) mod p or disc(f) mod p = 0.
({p-1)/2 elements in Zp are guadratic residues.) Note that
disc(f£) mod p = disc(f mod p), where disc{f mod p) is
calculated over Zp (see Section 4.1). We can calculate
disc(f mod p) efficiently using equation (l.l); and for
non-zero d in Zp, we use Euler's criterion {LON,p.l1l1] that

d is a quadratic residue 1If and only if d(pwl)/2 = 1.

We search over all polynomials in a given set, and
return those f{(x} such that disc(f mod pi) = ( or
disc(f mod pi) is a quadratic residue, for all (small,
consecutive) odd primes Pj in a given set §. In practice

30§|Sl§40. The discriminants over Z of the found
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polynomials f(x) are then calculated as well as Gal(f/Q).

The above search method to find polynomials with square
discriminants is faster than a method which forms the
complete discriminant over Z for every polynomial f£(x)
tested, because f(x) can be rejected as soon as
disc(f mod p) is found to be a non-residue for some odd
prime p. Also, working mod p allows us to perform this
search using a very limited integer size. For example, this
search has been implemented on the PDP-11/34 in the language

PASCAL; using only 16 bits to represent an integer.

One can also search for monic £(x) in Z[x] such that
disc(f mod P;) = 0 or the factor type of f(x) mod p; 1is the
cycle type of some permutation in the required group of f(x)
(for all (small, consecutive) primes P; in a fixed set).
McKay and Rohlicek use this technique, and in this way they

found the polynomial in Table A2.1 with Galois group 7T2.



G disc (£)
Degree 3

1 7%

12 -2233
Degree 4

1 53

2 28

T3 ~-21l
T4 21234
TS 229
Degree 5

r1 114

2 21259
73 2%5°
T4 21656
5 19.151

88

Table A2.1

£{x)

x3+x2-2x-l

x3+2

x4+x3+x2+x+1

x4+8x+12

x4+x+1

x5+x4—4x3—3x2+3x+l

X2 -5g+12

x5+2

X2 +20%+16

x5~x+1

Polynomials £(x) such that Gal(f/Q) = G.

Remarks

spl(f)=Q(z7+z;l)

spl(£)=Q(zy)

spl (£)=Q(zy)

spl(f)=Q(zll+z;%)
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Table A2.1 {(continued)

G disc(f) fi{x)

Degree 6

T1 ~75 x6+x5+x4+x3+x2+x+l
2 -216321 x®+108

T3 —21136 x6+2

T4 2638 x6*3x2-1

75 -3ll x0+3%7+3

76  ~2638 x0-3%2+1

17 262292 x0-ax2-1

T8 2293 x0-3x9+6x% -7x3+2x%4x-4
T9 2839 x6+2x3~2

T10 2103654 x%+6x%+2x3+9x2 +6x-4
711 -2115%2 x®+2x2+2

712 23658 x0+10x°+55x%+140%3 2
13 -28733 x®+2xdt2x3+x242x42
14 52401931513 46410x5+55x44140%3 2
715 2163650 x®+24%-20

716 -2989.227 xO42x42

Degree 7

1 29%17%2  xTaxB-12x5-7x%428x3414x%-9x+1
2 -3%7° x +7%3+7x247x-1

3 26710 x/-14x°+56%°-56x+22
T4 -2%77 7 +2

s 78172 x =733 +14%2 -7x41

76 3578 2 +7x %4 1ax+3

17 -255.233.787  x7+2x+2

+175x7+170%+25 spl{

spl(f)=Q(229+z +

Remarks

spl(f)=Q(z,)
spl(f)=sp1(x3+2)

4

spl (f)=spl (x +8x+12)

Gal(x3-3x+l/Q)=A3

spl(f)xspl(x4+x+l)

spl(f)=spl (x +x+1)

2

£ (%)= (x3+3x+1) 2=5

£)=spl (x°+20%+16)

£{X)=(x34+x+1)2+1

+175%%-3019x+25 spl (£)=spl (x -x+1)

12, -1, -12
29TZ59%2997)



APPENDIX 3

POLYNOMIALS WITH PSL(3,2) A5 GALOIS GROUP OVER OQ

Polynomials f£(x) such that Gal(f/Q) = PSL(3,2) (group T5
in Table 7A of Appendix 1) have attracted interest over many
years ([ERB,LAM,TRI] and their references). Recently,
LaMacchia [LAM] has constructed an infinite family of

polynomials with PSL(3,2) as Galois group over Q.

In Table A3.1 we list integral £(x) such that Gal(f/Q) =
PSL(3,2). We found these f(x) by searching for polynomials
with square discriminants as described in Appendix 2. Aall

polynomials searched are of the form:
7, 9. i
f(x) = x +;Z:aix ,
i=0

where 7Iai and laiEiM for i=1,...,5; and 1<£a,<2M. The sets

0

of polynomials searched are:

(1) {£(x) : M 14},

I

(2) {£(x) = M = 0},
(3) {£(x)

8cr8y,8 is in {O,i237 : 0<3j<3} }.

28, and a4,a2

M = 56, Ayrdy = 0, and each of

*e

We know of no monic £{x) in Z{x] such that Gal(f£/Q} =

PSL(3,2) and disc(f) < 7°5172.

We did some similar searching in an effort to find

degree 11 polynomials £(x) such that Gal(f/Q) = PSL(2,11l) or

80
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Gal(f/Q) = Mll' the sporadic simple group of Mathieu of
order 7920. No such f(x) was found.

Table A3.1

Polynomials £(x) such that Gal(£f/Q) = PSL{(3,2)

disc () £(x)
2636548 x7-1ax-14x%+14x3-14x2+2
36783127932 x ' -14x2-7x%+7x3-7x%411
22078 x7—7x5*14x4-7x3-7x+2

78172 % ~7x2-7x4+7x3 41 ax2 47542
263448 x7=7x2-7x%47x3414x%47x+3
2698132192 % =-7x7-7x%414x3+14%2 -1 ax+6
210528 x 7 =7x547x3<7x+4
2128532 x =72+ 73 +14x% -1 4x+8
21458 x7=7%2+14x3-14x+8
21278172 x 7% +7x4 =73 +7x2 47
26710,32 % =7x5+7x %4 7x3-14x247x+13
265648 x=7x9+7x%414x3-14x% -1 4x+6
2648144 x 7 =7x2+7x % 14x3-14x2 41 4x42
265678592 x -14x%-7%3+14x%+14
2165248 x7~1ax%+14x3+4
28786432 x-14x3-14x%+7x+22

78172 x =73 414x%-7x+1

8.8 7

377 X' ~7x+3 (example of Trinks [TRI])
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Table A3.1 (continued)

disc(f)

5278132772

365278

4.8

134172

3478132192412

21252487492

31278472

20 84572

2124811256992

f{x)

w +7x3=7x3-7x2+14%+3

% +14x%-7x3-14x%~14%+13

x +14x°-7x4=7x3-7x% <1 4x+17

%/ ~28%3+28%x+20

x7~21x3+7x+27

x/-14%°-28%3+28%+16

% -56%3+28x+44



