
Using GAP packages for research in graph
theory, design theory, and finite geometry

Leonard H. Soicher
School of Mathematical Sciences
Queen Mary University of London

Mile End Road, London E1 4NS, UK

January 19, 2023

Abstract

The GAP system is a freely available, open-source computer system
for algebra and discrete mathematics, with an emphasis on computa-
tional group theory. This article provides a tutorial introduction to
the GRAPE, DESIGN, and FinInG packages for GAP. The GRAPE pack-
age is used to construct and study graphs related to groups, designs,
and finite geometries. The DESIGN package is used to construct, clas-
sify, partition, and study block designs. The FinInG package has com-
prehensive functionality for many types of finite incidence structures
and their groups of automorphisms, and we focus on its application
to projective spaces and coset geometries. Instructive examples are
given throughout, including some research applications of the author.

1 Introduction

This article is based on selected material from the author’s (online) mini-
course [36] given at the Graphs and Groups, Geometries and GAP (G2G2)
Summer School, Rogla, Slovenia, 2021. Its purpose is to help researchers find
out about and use certain packages of the GAP system [15] in their work on
groups, graphs, designs, and finite geometries, and the fruitful interplay of
these areas.

We will first focus on the GRAPE package [35], to construct and study graphs
related to groups, designs, and finite geometries. Then we will look at the

1

DESIGN package [34], to construct, classify, partition, and study block de-
signs. After that, we will demonstrate certain functionality for projective
spaces and coset geometries of the FinInG package [3] for finite incidence ge-
ometry. Groups play fundamental roles in the construction, classification,
and study of many types of combinatorial structures, and we will see the
heavy involvement of groups in all three packages presented.

We will also see many examples of the use of these packages, including some
extended examples demonstrating research applications of the author. The
given examples come from the log-file of a single continuous GAP computa-
tion (run from a file), which takes a total of about 13 minutes run-time on an
i5 laptop computer running Linux. The research applications include show-
ing that the Haemer’s partial geometry [18] is uniquely determined, up to
isomorphism as a partial linear space, by its point graph and parameters, a
construction of the Moscow-Soicher graph [11, Section 3.2.5], a classification
and study of certain Sylvester designs [1], the determination that the Cohen-
Tits near octagon [7, Section 13.6] has no ovoid, but does have a resolution,
classifications of maximal partial spreads in PG(3, 4), and the construction
and study of a flag-transitive coset geometry for the Hall-Janko sporadic
simple group J2.

1.1 GAP and its packages

The GAP system is an internationally developed computer system for algebra
and discrete mathematics, with an emphasis on computational group theory.
GAP is used in research and teaching for studying groups and their represen-
tations, rings, vector spaces, algebras, graphs, designs, finite geometries, and
more. The GAP system is open source and freely available. It has a kernel
written in the C language, but is mainly written in the higher-level GAP
programming language. GAP has a library of thousands of functions written
in the GAP language, and also provides large data libraries of mathematical
objects. The packages described in this article make extensive use of GAP
functionality, in particular its powerful group-theoretic machinery.

The main GAP website is https://www.gap-system.org, from which you
can download the latest version of GAP to install on your computer. You
will find extensive documentation, including the GAP reference manual, and
learning resources at https://www.gap-system.org/Doc/doc.html.

GAP packages are structured open-source extensions to GAP, usually user-
contributed. They provide extra functionality or data to GAP, usually have
their own separate manual, integrate smoothly with GAP and its help system,
and are distributed with GAP. Package authors get full credit and are usually

2

responsible for the maintenance of their packages. Packages may also be
formally refereed, which has been the case with the DESIGN and FinInG
packages.

The reference manuals for the GAP packages described in this article are
available from their entries in https://www.gap-system.org/Packages/

packages.html, and via online help in GAP. The present author made sig-
nificant use of these manuals in the preparation of this article. In particular,
the descriptions of the data structures and functions of the GRAPE and DE-
SIGN packages that are given here are largely derived from their respective
manuals. The reader should consult the GRAPE, DESIGN, and FinInG manu-
als for thorough documentation of these packages, including further optional
function parameters, and much further functionality not covered here. For
even more in-depth understanding of GAP and its packages, see also their
(open) source code.

1.2 Prerequisites

The author’s G2G2 minicourse lectures and exercises [36] include an intro-
duction to the use of GAP, but for this article, it is assumed that the reader
is already familiar with the GAP system, including basic programming in
GAP, and working with integers, lists, sets, records, user-defined functions,
permutation groups, and group actions. The tutorial [16] included with the
GAP distribution covers all the background in GAP that is needed here, and
more. You may also find the introductory GAP course [22] helpful.

No particular familiarity with the GRAPE, DESIGN, and FinInG packages is
assumed. However, it is assumed that the reader has some basic knowledge
in graph theory and permutation group theory, including the theory of group
actions. A good reference for (algebraic) graph theory is [17], and for permu-
tation groups, [9] is recommended. Some familiarity with design theory and
finite geometry is useful, but not essential. For background in design theory,
see [10], and for finite geometry, see [2] and [26].

2 The GRAPE package

The GRAPE package for GAP provides functionality for graphs, and is de-
signed primarily for applications in algebraic graph theory, permutation group
theory, design theory, and finite geometry.
Within GAP, a package is loaded using the LoadPackage command. For
example:

3

gap> LoadPackage("grape",false);

true

The (optional) second parameter of the LoadPackage command was set to
false to suppress the printing of the package banner. The return value of
true indicates that the package was loaded correctly.

In general, GRAPE deals with finite directed graphs, which may have loops,
but have no multiple edges. For the mathematical purposes of GRAPE, a
graph consists of a finite set of vertices, together with a set of ordered
pairs of vertices called edges. An edge [x, y] in a graph is a loop if x = y. A
graph is simple if it has no loops and whenever [x, y] is an edge, then so is
[y, x]. A simple graph can thus be considered to be a finite undirected graph
having no loops and no multiple edges. Some GRAPE functions only work
for simple graphs, but these functions will check if an input graph is simple.

Graphs Γ and ∆ are isomorphic if there is an isomorphism from Γ to ∆,
that is, a bijection ϕ from the vertex-set of Γ to that of ∆, such that, if v, w
are vertices of Γ then [v, w] is an edge of Γ if and only if [vϕ, wϕ] is an edge of
∆. An automorphism of a graph Γ is an isomorphism from Γ to itself. The
set of all automorphisms of Γ forms a group of permutations of the vertices
of Γ, called the automorphism group of Γ.

In GRAPE, a graph always comes together with an associated group of auto-
morphisms. This is an important and fundamental feature of GRAPE. This
group is set by GRAPE when the graph is constructed. It is used by GRAPE
to store the graph compactly, to speed up computations with the graph, and
can affect the output of certain GRAPE functions. Often, but not always, this
group is the full automorphism group of the graph. To have a new group (of
automorphisms) associated with a graph in GRAPE, the user should construct
a new graph with the new group, using the function NewGroupGraph.

2.1 The structure of a graph in GRAPE

In GRAPE, a graph gamma is stored as a record, with mandatory com-
ponents isGraph, order, group, schreierVector, representatives, and
adjacencies. Usually, the user need not be aware of this record structure,
and is strongly advised only to use GRAPE functions to construct and modify
graphs.

The isGraph component is set to true to specify that the record is a GRAPE
graph. The order component gives the number of vertices of gamma.

The vertices of gamma are always {1, 2, . . . , gamma.order}, but they may
also be given names, either by a user (using AssignVertexNames) or by a

4

function constructing a graph (e.g. Graph, InducedSubgraph, CayleyGraph,
QuotientGraph). The names component, if present, records these names,
with gamma.names[i] being the name of vertex i. If the names component
is not present, then the names are taken to be 1, 2, . . . , gamma.order.

The group component records the GAP permutation group associated with
gamma. This group must be a subgroup of the automorphism group of
gamma.

The representatives component records a set of orbit representatives for
the action of gamma.group on the vertices of gamma, with gamma.adjacencies[i]
being the set of vertices (out)adjacent to gamma.representatives[i].

GeneratorsOfGroup(gamma.group), together with the schreierVector and
adjacencies components, are used to compute the (out)adjacency-set of a
given vertex of gamma when needed. See [30] for details on how this is done,
as well as other insights into the algorithms used by GRAPE.

The only mandatory component which may change once a graph is initially
constructed is adjacencies (when an edge-orbit of gamma.group is added
to, or removed from, gamma). A graph record may also have some additional
optional components which record information about that graph.

Here is a very simple example of the use of GRAPE, in which we construct the
famous Petersen graph and compute some of its properties. More explanation
of the functions used will be given later.

gap> Petersen := Graph(SymmetricGroup([1..5]),

> Combinations([1..5],2), OnSets,

> function(x,y) return Intersection(x,y)=[]; end,

> true);

rec(adjacencies := [[8, 9, 10]],

group := Group([(1,5,8,10,4)(2,6,9,3,7), (2,5)(3,6)(4,7)]),

isGraph := true,

names := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3],

[2, 4], [2, 5], [3, 4], [3, 5], [4, 5]],

order := 10, representatives := [1],

schreierVector := [-1, 2, 2, 1, 1, 1, 2, 1, 1, 1])

gap> Vertices(Petersen);

[1 .. 10]

gap> VertexNames(Petersen);

[[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4],

[2, 5], [3, 4], [3, 5], [4, 5]]

gap> DirectedEdges(Petersen);

[[1, 8], [1, 9], [1, 10], [2, 6], [2, 7], [2, 10],

[3, 5], [3, 7], [3, 9], [4, 5], [4, 6], [4, 8],

[5, 3], [5, 4], [5, 10], [6, 2], [6, 4], [6, 9],

[7, 2], [7, 3], [7, 8], [8, 1], [8, 4], [8, 7],

[9, 1], [9, 3], [9, 6], [10, 1], [10, 2], [10, 5]]

5

gap> UndirectedEdges(Petersen);

[[1, 8], [1, 9], [1, 10], [2, 6], [2, 7], [2, 10],

[3, 5], [3, 7], [3, 9], [4, 5], [4, 6], [4, 8],

[5, 10], [6, 9], [7, 8]]

gap> Adjacency(Petersen,5); # for example

[3, 4, 10]

gap> Diameter(Petersen);

2

gap> Girth(Petersen);

5

gap> autgrp:=AutomorphismGroup(Petersen);

Group([(3,4)(6,7)(8,9), (2,3)(5,6)(9,10), (2,5)(3,6)(4,7), (1,2)(6,8)

(7,9)])

gap> Size(autgrp);

120

gap> CliqueNumber(Petersen);

2

gap> MaximumClique(Petersen);

[1, 8]

gap> ChromaticNumber(Petersen);

3

gap> MinimumVertexColouring(Petersen);

[1, 1, 2, 3, 1, 2, 3, 2, 3, 2]

2.2 The function Graph in GRAPE

This is the most general and useful way of constructing a graph in GRAPE.
If you learn just one GRAPE function to construct graphs, this is it!

A basic call to this function has the form

Graph(G, L, act, rel).

The parameter L should be a list of elements of a set S on which the group
G acts, with the action given by the function act. The parameter rel should
be a boolean function defining a G-invariant relation on S (so that for g in
G, x, y in S, rel(x, y) if and only if rel(act(x, g), act(y, g))).

Then the function Graph returns a graph gamma which has as vertex-names
(an immutable copy of)

Concatenation(Orbits(G, L, act)),

and for vertices v, w of gamma, [v, w] is a (directed) edge if and only if

rel(VertexName(gamma, v), VertexName(gamma, w)).

6

There is an additional optional (boolean) parameter, invt (default: false),
which if set to true, asserts that L is a duplicate-free list invariant (setwise)
under G with respect to action act, and then the function Graph behaves as
above, except that the vertex-names of gamma become (an immutable copy
of) L. In particular, this allows a user to specify the ordering of the vertices
in the returned graph, as GAP makes no guarantees about the order of the
orbits returned by the function Orbits, nor about the order of the elements
within these orbits.

The group associated with the graph gamma returned is the image of the
action homomorphism for G acting via act on VertexNames(gamma).

We now present Peter Cameron’s construction of the Hoffman-Singleton
graph using the function Graph, closely following [9, Section 3.6]. The ver-
tices consist of the 35 3-subsets of {1, . . . , 7}, together with one orbit of 15
projective planes of order 2 on the points {1, . . . , 7}, under the action of
the alternating group A7. The adjacencies are described by the function
HoffmanSingletonAdjacency below.

gap> projectiveplane:=Set(Orbit(Group((1,2,3,4,5,6,7)),[1,2,4],OnSets));

[[1, 2, 4], [1, 3, 7], [1, 5, 6], [2, 3, 5], [2, 6, 7],

[3, 4, 6], [4, 5, 7]]

gap> #

gap> # Now projectiveplane is (the set of lines of) a projective plane

gap> # of order 2.

gap> #

gap> HoffmanSingletonAction:=function(x,g)

> #

> # This function gives the action of AlternatingGroup([1..7])

> # on the vertices of the Hoffman-Singleton graph, in

> # Peter Cameron’s construction.

> #

> if Size(x)=3 then # x is a 3-set

> return OnSets(x,g);

> else # x is a projective plane

> return OnSetsSets(x,g);

> fi;

> end;;

gap> HoffmanSingletonAdjacency:=function(x,y)

> #

> # This boolean function returns true iff vertices x and y

> # are adjacent in the Hoffman-Singleton graph, in

> # Peter Cameron’s construction.

> #

> if Size(x)=3 then # x is a 3-set

> if Size(y)=3 then # y is a 3-set

> return Intersection(x,y)=[]; # join iff x and y disjoint

7

> else # y is a projective plane

> return x in y; # join iff x is a line of y

> fi;

> else # x is a projective plane

> if Size(y)=3 then # y is a 3-set

> return y in x; # join iff y is a line of x

> else # y is a projective plane

> return false; # don’t join

> fi;

> fi;

> end;;

gap> HoffmanSingleton:=Graph(AlternatingGroup([1..7]),

> [[1,2,3], projectiveplane],

> HoffmanSingletonAction,

> HoffmanSingletonAdjacency);;

gap> IsSimpleGraph(HoffmanSingleton);

true

gap> OrderGraph(HoffmanSingleton); # number of vertices

50

gap> VertexDegrees(HoffmanSingleton); # set of vertex degrees

[7]

gap> Diameter(HoffmanSingleton);

2

gap> Girth(HoffmanSingleton);

5

gap> Size(HoffmanSingleton.group);

2520

gap> autgrp:=AutomorphismGroup(HoffmanSingleton);;

gap> Size(autgrp);

252000

gap> HoffmanSingleton:=NewGroupGraph(autgrp,HoffmanSingleton);;

gap> # So now the group associated with HoffmanSingleton is its

gap> # full automorphism group.

gap> Size(HoffmanSingleton.group);

252000

gap> DisplayCompositionSeries(HoffmanSingleton.group);

G (5 gens, size 252000)

| C2

S (2 gens, size 126000)

| U3(5)

1 (0 gens, size 1)

2.3 EdgeOrbitsGraph

A common way to construct a graph in GRAPE is via the function EdgeOrbitsGraph.

Where n is a non-negative integer, G is a permutation group on {1, . . . , n},
and edges is a list of ordered pairs of elements of {1, . . . , n}, the function call

8

EdgeOrbitsGraph(G, edges, n)

returns the (directed) graph with vertex-set {1, . . . , n}, and edge-set the
union of the G-orbits of the ordered pairs in edges. The group associated
with the returned graph is G. The parameter n may be omitted, in which
case n is taken to be the largest point moved by G.

Note that G may be the trivial permutation group, Group(()), in which
case the (directed) edges of the returned graph are precisely those in the list
edges (not including any repeats).
Here is an example.

gap> G:=AllPrimitiveGroups(NrMovedPoints,275,Size,2025*443520*2);

[McL:2]

gap> G:=G[1]; # the automorphism group of the McLaughlin group

McL:2

gap> H:=Stabilizer(G,1);

<permutation group of size 6531840 with 3 generators>

gap> orbs:=List(Orbits(H,[1..275]),Set);;

gap> List(orbs,Length);

[1, 112, 162]

gap> y:=First(orbs,x->Length(x)=112)[1];

2

gap> McLaughlin:=EdgeOrbitsGraph(G,[[1,y]]);; # the McLaughlin graph

gap> IsSimpleGraph(McLaughlin);

true

gap> OrderGraph(McLaughlin);

275

gap> VertexDegrees(McLaughlin);

[112]

Some other useful GRAPE functions to construct graphs are NullGraph,
CompleteGraph, CayleyGraph, JohnsonGraph, and HammingGraph.

2.4 Automorphism groups and isomorphism testing in
GRAPE

GRAPE contains functionality to test graph isomorphism and to calculate the
automorphism group of a graph. This functionality can also be applied to
graphs with ordered vertex partitions (see Graphs with colour-classes in
the GRAPE manual).

To do all this, by default GRAPE uses its included version (currently final
patched version 2.2) of B.D. McKay’s nauty software [25]. A Linux user may
instead choose to have GRAPE use their own installed copy of T. Junttila’s

9

and P. Kaski’s bliss software [20]. The nauty (and nauty/traces) and bliss soft-
ware packages are powerful tools using “partition backtrack” for computing
the automorphism group of a graph and for canonically labelling a graph for
the purpose of isomorphism testing. A basic introduction to these techniques
is given in [30], with much more detailed expositions in [25, 20]. The GRAPE
interfaces to nauty and bliss are seamless and transparent to the user.

As we have already seen, where gamma is a graph in GRAPE, the function
call

AutomorphismGroup(gamma)

returns the automorphism group of gamma, which can then be studied using
the permutation group functionality in GAP.

Where gamma and delta are graphs in GRAPE, the function call

GraphIsomorphism(gamma, delta)

returns a permutation giving an isomorphism from gamma to delta if these
graphs are isomorphic, and returns the special value fail if the graphs are
not isomorphic, whereas

IsIsomorphicGraph(gamma, delta)

returns true if the graphs are isomorphic, and false otherwise.
For example:

gap> J:=JohnsonGraph(7,3);;

gap> Size(AutomorphismGroup(J));

5040

gap> IsIsomorphicGraph(J,JohnsonGraph(7,4));

true

When comparing more than two graphs for pairwise isomorphism, you should
use the function GraphIsomorphismClassRepresentatives. Where L is a
list of graphs in GRAPE, the function call

GraphIsomorphismClassRepresentatives(L)

returns a list consisting of pairwise non-isomorphic elements of L (in some
order), representing all the isomorphism classes of elements of L.

10

2.5 Local and global regularity parameters

Let gamma be a simple connected graph, and let V be a singleton vertex or
set of vertices of gamma.

We say that gamma has the local parameter ci(V) (respectively ai(V),
bi(V)), with respect to V , if the number of vertices at distance i− 1 (respec-
tively i, i + 1) from V that are adjacent to a vertex w at distance i from V
is the constant ci(V) (respectively ai(V), bi(V)) depending only on i and V
(and not the choice of w). See Distance in the GRAPE manual.

We say that gamma has the global parameter ci (respectively ai, bi) if the
number of vertices at distance i−1 (respectively i, i+1) from a vertex v that
are adjacent to a vertex w at distance i from v is the constant ci (respectively
ai, bi) depending only on i (and not the choice of v or w).

In GRAPE, the function call

LocalParameters(gamma, V)

returns a list whose i-th element is the list

[ci−1(V), ai−1(V), bi−1(V)],

except that if some local parameter does not exist then −1 is put in its place.

The function call

LocalParameters(gamma, V , G)

does the same, except that the additional parameter G is assumed to be a
subgroup of the automorphism group of gamma fixing V setwise. Including
such a G can result in a performance gain.

The function call

GlobalParameters(gamma)

returns a list of length one more than the diameter of gamma (see Diameter
in the GRAPE manual), and whose i-th element is the list

[ci−1, ai−1, bi−1],

except that if some global parameter does not exist then −1 is put in its
place.

Note that (the simple connected graph) gamma is distance-regular if and
only if this function returns no −1 in place of a global parameter (see [7]).

11

See also IsDistanceRegular and CollapsedAdjacencyMat in the GRAPE
manual.
Here are some examples.

gap> GlobalParameters(HoffmanSingleton);

[[0, 0, 7], [1, 0, 6], [1, 6, 0]]

gap> IsDistanceRegular(HoffmanSingleton);

true

gap> edge:=[1,Adjacency(HoffmanSingleton,1)[1]];

[1, 4]

gap> edge_stab:=Stabilizer(HoffmanSingleton.group,edge,OnSets);

<permutation group of size 1440 with 4 generators>

gap> LocalParameters(HoffmanSingleton,edge,edge_stab);

[[0, 1, 6], [1, 0, 6], [2, 5, 0]]

gap> GlobalParameters(McLaughlin);

[[0, 0, 112], [1, 30, 81], [56, 56, 0]]

gap> GlobalParameters(EdgeGraph(McLaughlin));

[[0, 0, 222], [1, -1, -1], [-1, -1, -1], [184, 38, 0]]

2.6 The Sylvester graph

The Sylvester graph is the unique distance-regular graph with intersection
array {5, 4, 2; 1, 1, 4}, that is, with global parameters

[[0,0,5],[1,0,4],[1,2,2],[4,1,0]].

This graph can be constructed as the induced subgraph on the 36 vertices at
distance 2 from a fixed edge in the Hoffman-Singleton graph (see [7, Section
13.1.A]). We do this now using GRAPE.

gap> Sylvester:=DistanceSetInduced(HoffmanSingleton,2,edge,edge_stab);;

gap> GlobalParameters(Sylvester);

[[0, 0, 5], [1, 0, 4], [1, 2, 2], [4, 1, 0]]

2.7 Construction of a distance-regular graph from a
transitive group

Let G be a transitive permutation group on V := {1, . . . , n}. A generalized
orbital graph for G is a simple graph with vertex-set V on which G acts
naturally as a (vertex-transitive) group of automorphisms.

Here we construct the (non-null) generalized orbital graphs for the group
M22:2 (the automorphism group of the Mathieu group M22) in its primitive
action on 672 points. This includes the distance-regular so-called Moscow-
Soicher graph (see [28] and [11, Section 3.2.5]).

12

gap> n:=672;

672

gap> G:=AllPrimitiveGroups(NrMovedPoints,n,Size,443520*2);

[M(22).2]

gap> G:=G[1]; # the automorphism group of the Mathieu group M_{22}

M(22).2

gap> RankAction(G,[1..n]);

6

gap> L:=GeneralizedOrbitalGraphs(G);;

gap> # the non-null generalized orbital graphs

gap> Length(L);

31

gap> List(L,GlobalParameters);

[[[0, 0, 55], [1, 8, 46], [-1, -1, -1], [45, 10, 0]],

[[0, 0, 385], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 440], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 605], [1, -1, -1], [540, 65, 0]],

[[0, 0, 671], [1, 670, 0]],

[[0, 0, 506], [1, -1, -1], [398, 108, 0]],

[[0, 0, 550], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 616], [1, -1, -1], [562, 54, 0]],

[[0, 0, 451], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 110], [1, 28, 81], [18, 80, 12], [90, 20, 0]],

[[0, 0, 275], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 341], [1, -1, -1], [170, 171, 0]],

[[0, 0, 176], [1, 40, 135], [48, 128, 0]],

[[0, 0, 220], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 286], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 121], [1, 20, 100], [-1, -1, 0]],

[[0, 0, 330], [1, 158, 171], [-1, -1, 0]],

[[0, 0, 385], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 550], [1, -1, -1], [450, 100, 0]],

[[0, 0, 616], [1, -1, -1], [570, 46, 0]],

[[0, 0, 451], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 495], [1, 366, 128], [360, 135, 0]],

[[0, 0, 561], [1, -1, -1], [480, 81, 0]],

[[0, 0, 396], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 55], [1, 0, 54], [-1, -1, -1], [45, 10, 0]],

[[0, 0, 220], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 286], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 121], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 165], [1, 56, 108], [-1, -1, 0]],

[[0, 0, 231], [1, -1, -1], [-1, -1, 0]],

[[0, 0, 66], [1, 0, 65], [-1, -1, 0]]]

gap> MoscowSoicher:=First(L,x->VertexDegrees(x)=[110]);;

gap> IsDistanceRegular(MoscowSoicher);

true

gap> GlobalParameters(MoscowSoicher);

[[0, 0, 110], [1, 28, 81], [18, 80, 12], [90, 20, 0]]

13

gap> AutomorphismGroup(MoscowSoicher) = G;

true

See also VertexTransitiveDRGs and OrbitalGraphColadjMats in the GRAPE
manual for further study of vertex-transitive graphs and the (homogeneous)
coherent configurations associated to transitive permutation groups.

2.8 Cliques

Let Γ be a simple graph.

A clique of Γ is a set of pairwise adjacent vertices. A maximal clique of
Γ is a clique which is not properly contained in any clique of Γ, while a
maximum clique of Γ is a clique of largest size in Γ. The clique number
of Γ is the size of a maximum clique of Γ. A co-clique (or independent
set) of Γ is a set of pairwise non-adjacent vertices. Clearly, the co-cliques
of Γ are precisely the cliques of the complement of Γ. The independence
number of Γ is the size of a largest co-clique of Γ.

Now let gamma be a simple graph in GRAPE, with associated group G :=
gamma.group. Then GRAPE functions can compute the maximal cliques of
gamma, or the cliques of given size in gamma, or the maximal cliques of given
size in gamma, such that one such clique is determined or it is determined that
no such cliques exist, or G-orbit generators of all such cliques are determined,
or G-orbit representatives of all such cliques are determined. There is also
the functionality to determine a maximum clique, and hence to determine
the clique number of gamma. These are computationally HARD problems!

The main function for clique classification in GRAPE is CompleteSubgraphsOfGivenSize.
We shall now study the use of this function for non-weighted cliques, but for a
complete specification, see CompleteSubgraphsOfGivenSize in the GRAPE
manual. Also see CompleteSubgraphs, MaximumClique, and CliqueNumber.

In GRAPE, where gamma is a simple graph, k is a non-negative integer, alls
is 0, 1, or 2, and maxi is true or false, the function call

CompleteSubgraphsOfGivenSize(gamma, k, alls, maxi)

returns a set K (possibly empty) of cliques of size k of gamma. These are
all maximal cliques if maxi=true, and not necessarily maximal cliques if
maxi=false. The parameter maxi is optional, and has default value false.

The parameter alls controls how many cliques are returned.

First, suppose alls = 0. Then K will contain at most one element. If maxi =
false then K will contain a clique of size k if and only if gamma has such a

14

clique, and if maxi = true then K will contain a maximal clique of size k if
and only if gamma has a maximal clique of that size.

In the above function call with alls = 0, if gamma.group is not the full
automorphism group of gamma, it may be (much) more efficient to replace
gamma by a copy whose associated group is its full automorphism group.

If alls = 1 and maxi = false, then K will contain (perhaps properly) a
set of gamma.group orbit-representatives of the size k cliques of gamma. If
alls = 1 and maxi = true, then K will contain (perhaps properly) a set of
gamma.group orbit-representatives of the size k maximal cliques of gamma.

If alls = 2 and maxi = false, then K will be a set of gamma.group orbit-
representatives of all the size k cliques of gamma. If alls = 2 and maxi =
true, then K will be a set of gamma.group orbit-representatives of the size
k maximal cliques of gamma.
Here are some illustrative examples.

gap> gamma:=MoscowSoicher;;

gap> CompleteSubgraphsOfGivenSize(gamma,5,0,false);

[[1, 2, 18, 35, 41]]

gap> CompleteSubgraphsOfGivenSize(gamma,5,0,true);

[[1, 2, 80, 124, 455]]

gap> CompleteSubgraphsOfGivenSize(gamma,5,1,false);

[[1, 2, 18, 35, 41], [1, 2, 18, 35, 377], [1, 2, 18, 119, 161],

[1, 2, 18, 119, 277], [1, 2, 18, 161, 277],

[1, 2, 18, 281, 287], [1, 2, 18, 281, 366],

[1, 2, 80, 124, 455], [1, 2, 124, 183, 461]]

gap> CompleteSubgraphsOfGivenSize(gamma,5,1,true);

[[1, 2, 80, 124, 455]]

gap> CompleteSubgraphsOfGivenSize(gamma,5,2,false);

[[1, 2, 18, 35, 41], [1, 2, 18, 119, 161],

[1, 2, 18, 281, 287], [1, 2, 80, 124, 455]]

gap> CompleteSubgraphsOfGivenSize(gamma,5,2,true);

[[1, 2, 80, 124, 455]]

gap> CompleteSubgraphsOfGivenSize(gamma,7,0,false);

[]

gap> C:=CompleteSubgraphsOfGivenSize(gamma,6,2,true);

[[1, 2, 18, 35, 41, 377], [1, 2, 18, 119, 161, 277],

[1, 2, 18, 281, 287, 366]]

gap> List(C,clique->Size(Stabilizer(gamma.group,clique,OnSets)));

[360, 144, 36]

gap> CliqueNumber(McLaughlin); # the size of a largest clique

5

gap> MaximumClique(McLaughlin); # a clique of largest size

[1, 2, 17, 45, 193]

gap> CliqueNumber(ComplementGraph(McLaughlin));

22

gap> # This is the independence number of the McLaughlin graph,

15

gap> # the size of a largest co-clique.

The function CompleteSubgraphsOfGivenSize can also compute and clas-
sify cliques with given vertex-weight sum in a vertex-weighted graph, where
the weights can be positive integers or non-zero d-vectors of non-negative
integers (satisfying certain conditions with respect to the group associated
with the graph). This type of clique functionality in GRAPE is used by the
DESIGN package for GAP, for functionality to construct and classify block
designs of many types (including those invariant under a specified group),
as well as to construct and classify parallel classes and resolutions of block
designs. We will see some of this DESIGN package functionality later.

2.9 Proper vertex-colourings

Let Γ be a simple graph. A proper vertex-colouring of Γ is a labelling of
its vertices by elements from a set of colours, such that adjacent vertices are
labelled with different colours. Where k is a non-negative integer, a vertex
k-colouring of Γ is a proper vertex-colouring using at most k colours. A
minimum vertex-colouring of Γ is a vertex k-colouring with k as small
as possible, and the chromatic number χ(Γ) of Γ is the number of colours
used in a minimum vertex-colouring of Γ.

In GRAPE, a proper vertex-colouring of a simple graph is given as a list of
positive integers (the colours), indexed by the vertices of the graph, such that
the i-th list element is the colour of vertex i.

In GRAPE, where gamma is a simple graph and k is a non-negative integer,
the function call

VertexColouring(gamma, k)

returns a vertex k-colouring of gamma if such a colouring exists; otherwise,
the special value fail is returned. In general, this is a computationally
HARD problem. See also MinimumVertexColouring and ChromaticNumber

in the GRAPE manual.

2.9.1 On colouring the McLaughlin graph

In the code below, we first make the induced subgraph in the McLaughlin
graph on the vertices at distance 1 from a fixed vertex (here the vertex
1). This is the so-called first subconstituent of the McLaughlin graph. We
then verify that its chromatic number is 8. After that, we make the second

16

subconstituent of the McLaughlin graph, and determine that its chromatic
number is 10.

gap> gamma:=DistanceSetInduced(McLaughlin,1,1);;

gap> # This is the induced subgraph on the vertices of the

gap> # McLaughlin graph at distance 1 from the vertex 1.

gap> GlobalParameters(gamma);

[[0, 0, 30], [1, 2, 27], [10, 20, 0]]

gap> VertexColouring(gamma,7);

fail

gap> VertexColouring(gamma,8)<>fail;

true

gap> delta:=DistanceSetInduced(McLaughlin,2,1);;

gap> # This is the induced subgraph on the vertices of the

gap> # McLaughlin graph at distance 2 from the vertex 1.

gap> GlobalParameters(delta);

[[0, 0, 56], [1, 10, 45], [24, 32, 0]]

gap> ChromaticNumber(delta);

10

Now here is a challenging problem. Let M be the McLaughlin graph. It
follows from the preceding computation that χ(M) ≤ 18. In fact, using
the “ant colony optimization” program supplied as supplementary material
to [23], the author found a vertex 16-colouring of M . On the other hand,
the eigenvalue-based lower bound given in [8, Corollary 3.6.4] shows that
χ(M) ≥ 15. Thus, the chromatic number of the McLaughlin graph M is 15
or 16. The problem is to either find a vertex 15-colouring of M or to show
there is no such colouring.

2.10 Partial linear spaces and partial geometries

Where s and t are positive integers, a partial linear space with param-
eters (s, t) consists of a finite set of points, together with a set of (s + 1)-
subsets of the points, called lines, such that every point is on exactly t + 1
lines, and any two distinct points lie on (i.e. are contained in) at most one
line (equivalently, any two distinct lines meet in at most one point).

Two partial linear spaces are isomorphic if there is a bijection from the
point-set of the first to that of the second which applied to the set of lines of
the first yields the set of lines of the second.

The point graph (or collinearity graph) of a partial linear space is the
graph whose vertices are the points of the space, with two distinct points
joined by an edge exactly when they lie on a common line.

17

Now, where gamma is a simple graph in GRAPE, and s and t are positive
integers, the function call

PartialLinearSpaces(gamma, s, t)

returns a list of representatives of the distinct isomorphism classes of partial
linear spaces with parameters (s, t) and point graph gamma. (This may take
a (very) long time.) In the output of this function, a partial linear space S is
given by its incidence graph delta, such that the group delta.group associated
with delta is the automorphism group of S, acting on point-vertices and
line-vertices, and preserving both sets. See the GRAPE manual entry for
PartialLinearSpaces for more information, including details of optional
parameters.
For example:

gap> K7:=CompleteGraph(SymmetricGroup([1..7]));;

gap> P:=PartialLinearSpaces(K7,2,2);

[rec(adjacencies := [[8, 9, 10], [1, 2, 3]],

group := Group([(1,2)(5,6)(9,11)(10,12), (1,2,3)(5,6,7)

(9,11,13)(10,12,14), (1,2,3)(4,7,6)(9,12,14)(10,11,13),

(1,4,7,6,2,5,3)(8,9,13,10,11,12,14)]), isGraph := true,

isSimple := true,

names := [1, 2, 3, 4, 5, 6, 7, [1, 2, 3], [1, 4, 5],

[1, 6, 7], [2, 4, 6], [2, 5, 7], [3, 4, 7],

[3, 5, 6]], order := 14, representatives := [1, 8],

schreierVector := [-1, 1, 2, 4, 4, 1, 3, -2, 4, 1, 1, 3, 4, 2

])]

gap> Length(P);

1

gap> GlobalParameters(P[1]);

[[0, 0, 3], [1, 0, 2], [1, 0, 2], [3, 0, 0]]

gap> Size(P[1].group);

168

gap> T:=ComplementGraph(JohnsonGraph(10,2));;

gap> P:=PartialLinearSpaces(T,4,6);;

gap> List(P,x->Size(x.group));

[216, 1512]

2.10.1 The Haemers partial geometry

The Haemers partial geometry [18] is a partial geometry with parameters
s = 4, t = 17, α = 2 and point graph the distance-2 graph of the edge graph
of the Hoffman-Singleton graph. (The distance-k graph Γk of a simple graph
Γ has the same vertex set as Γ, but with two vertices joined by an edge in Γk

if and only if they have distance k in Γ. The edge graph L(Γ) of a simple

18

graph Γ has as vertices the edges of Γ, with two such vertices joined by an
edge in L(Γ) if and only if they have exactly one common vertex in Γ.)

As done in the GRAPEmanual, we now use the GRAPE function PartialLinearSpaces
to construct the Haemers partial geometry and its dual, prove that they are
determined up to isomorphism (as partial linear spaces) by their respective
point graphs and parameters, and determine their full automorphism groups.

gap> pointgraph:=DistanceGraph(EdgeGraph(HoffmanSingleton),2);;

gap> GlobalParameters(pointgraph);

[[0, 0, 72], [1, 20, 51], [36, 36, 0]]

gap> VertexName(pointgraph,1); # example vertex-name

[[1, 2, 3], [4, 5, 6]]

gap> spaces:=PartialLinearSpaces(pointgraph,4,17);;

gap> Length(spaces);

1

gap> HaemersGeometry:=spaces[1];;

gap> #

gap> # Now HaemersGeometry is the incidence graph of the Haemers

gap> # partial geometry.

gap> #

gap> DisplayCompositionSeries(HaemersGeometry.group);

G (2 gens, size 2520)

| A7

1 (0 gens, size 1)

gap> linevertex:=Adjacency(HaemersGeometry,1)[1];

176

gap> linegraph:=PointGraph(HaemersGeometry,linevertex);;

gap> GlobalParameters(linegraph);

[[0, 0, 85], [1, 20, 64], [10, 75, 0]]

gap> spaces:=PartialLinearSpaces(linegraph,17,4);;

gap> Length(spaces);

1

gap> DualHaemersGeometry:=spaces[1];;

gap> DisplayCompositionSeries(DualHaemersGeometry.group);

G (3 gens, size 2520)

| A7

1 (0 gens, size 1)

2.11 Steve Linton’s function SmallestImageSet

An important behind-the-scenes workhorse included in GRAPE is Steve Lin-
ton’s function SmallestImageSet. This function is used in GRAPE in the
classification of cliques and the classification of partial linear spaces with
given point graph and parameters, as well as in the DESIGN package in the
classification of block designs. The function is of use in many other situations

19

when classifying objects up to the action of a given permutation group G,
when the objects can be represented as subsets of the permutation domain
of G.

Let G be a permutation group on X := {1, . . . , n}, and let S ⊆ X. Then the
function call

SmallestImageSet(G, S)

returns the lexicographically least set in Orbit(G,S,OnSets), without ex-
plicitly computing this (possibly huge) orbit. Thus, if T is any subset of X,
then S and T are equivalent under the action of G if and only if

SmallestImageSet(G, S) = SmallestImageSet(G, T).

Typically, we set things up so that certain subsets of X represent the objects
we are classifying, with two objects equivalent if and only if their representing
sets are in the same G-orbit of sets. Then, if C is a list of subsets of X (say
certain cliques of a given size in a graph), and we want to determine a set of
(canonical) representatives for the distinct G-orbits of the elements of C, we
can do this as:

Set(List(C, c->SmallestImageSet(G,c))).

Steve Linton’s algorithm for SmallestImageSet is given in [24]. Further de-
velopments in the computation of minimal and canonical images with respect
to a group action are given in [19].

3 The DESIGN package

The DESIGN package for GAP provides functionality for constructing, classi-
fying, partitioning, and studying block designs, including the computation of
statistical efficiency measures for these designs. For the use of the DESIGN
package for statistical designs, see [31] and [1]. Here we concentrate on the
combinatorial aspects of block designs. DESIGN makes use of the GRAPE
package.

3.1 Block designs

A block design is an ordered pair (P,B), where P is a non-empty finite
set whose elements are called points, and B is a non-empty finite multiset

20

whose elements are called blocks, such that each block is a non-empty finite
multiset of points. For our purposes, a multiset is a list, where order does
not matter, but the number of times an element appears does. We represent
a multiset as an ordered list in GAP.

A parallel class (or spread) of a block design D = (P,B) is a sub(multi)set
of B forming a partition of P , and a resolution of D is a partition of B
into parallel classes. We say that a block design is resolvable if it has a
resolution.

The DESIGN package deals with arbitrary block designs, but some DESIGN
functions only work for binary block designs (i.e. those with no repeated
element in any block of the design), but these functions will check if an input
block design is binary.

An important class of binary block designs are t-designs. For t a non-negative
integer and v, k, λ positive integers with t ≤ k ≤ v, a t-design with param-
eters t, v, k, λ, or a t-(v, k, λ) design, is a binary block design with exactly
v points, such that each block has size k and each t-subset of the points is
contained in exactly λ blocks.

A t-(v, k, λ) design is also an s-(v, k, λs) design for 0 ≤ s ≤ t, where

λs = λ

(
v − s

t− s

)/(
k − s

t− s

)
.

For example, we compute these λs for a 5-(24, 8, 1) design.

gap> LoadPackage("design",false);

true

gap> TDesignLambdas(5,24,8,1);

[759, 253, 77, 21, 5, 1]

The DESIGN package has extensive functionality for t-designs and their pa-
rameters. For example, you can compute an upper bound on the multiplicity
of a block in any t-design with given parameters t, v, k, λ or in any resolvable
such t-design. See the DESIGN manual (or online help in GAP) for specifica-
tions of the functions used below.

gap> TDesignLambdaMin(2,12,4);

3

gap> TDesignLambdas(2,12,4,3);

[33, 11, 3]

gap> TDesignBlockMultiplicityBound(2,12,4,3);

2

gap> ResolvableTDesignBlockMultiplicityBound(2,12,4,3);

21

1

gap> #

gap> # The DESIGN package knows the Bruck-Ryser-Chowla Theorem,

gap> # and so knows there is no projective plane of order 6.

gap> #

gap> TDesignBlockMultiplicityBound(2,43,7,1);

0

3.2 The function BlockDesign

The DESIGN package function BlockDesign gives a straightforward way of
constructing a block design.

Let v be a positive integer and B be a non-empty list of non-empty sorted
lists of elements of V := {1, . . . , v}. Then

BlockDesign(v, B)

returns the block design with point-set V and block multiset C, where C is
SortedList(B). Moreover, where G is a group of permutations on V , the
function call

BlockDesign(v, B, G)

returns the block design with point-set V and block multiset C, where now C
is the sorted list of the concatenation of each of the G-orbits of the elements
in the list B. For example:

gap> G:=Group((1,2,3,4,5,6,7));;

gap> design:=BlockDesign(7,[[1,2,4],[1,2,4]],G);

rec(autSubgroup := Group([(1,2,3,4,5,6,7)]),

blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 3, 5], [2, 3, 5],

[2, 6, 7], [2, 6, 7], [3, 4, 6], [3, 4, 6],

[4, 5, 7], [4, 5, 7]], isBlockDesign := true, v := 7)

gap> IsSimpleBlockDesign(design);

false

gap> AllTDesignLambdas(design);

[14, 6, 2]

gap> Size(AutomorphismGroup(design));

168

We note that, given a block design D, the function call

AllTDesignLambdas(D)

22

returns the empty list if D is not a t-design. Otherwise, D is a binary block
design with constant block size k, say, and this function returns an immutable
list L of length T+1, where T is the maximum t ≤ k such thatD is a t-design,
and, for i = 1, . . . , T + 1, the i-th element of L is equal to the (constant)
number of blocks of D containing an (i− 1)-subset of the point-set of D.

3.3 The structure of a block design in DESIGN

In DESIGN, a block design D is stored as a record, with mandatory compo-
nents isBlockDesign, v, and blocks.

The isBlockDesign component is set to true to specify that the record
is a DESIGN package block design. The component v gives the number of
points of D. The points of D are {1, 2, . . . , D.v}, but they may also be given
names in the optional component pointNames, with D.pointNames[i] the
name of point i. The blocks component must be a sorted list of the blocks
of D (including any repeats), with each block being a sorted list of points
(including any repeats). A block design record may also have some optional
components which store information about the design.

A non-expert user should only use functions in the DESIGN package to create
block design records and their components.

3.4 Automorphism groups and isomorphism testing in
DESIGN

Let A and B be block designs. Then A and B are isomorphic if there is
an isomorphism from A to B, that is, a bijection from the points of A to
those of B which applied to the block multiset of A yields the block multiset
of B. An automorphism of A is an isomorphism from A to itself. The set
of all automorphisms of A forms a group, the automorphism group of A.

The DESIGN package contains functionality to test block design isomorphism
and to calculate the automorphism group of a block design, but currently only
for binary block designs (equivalently, block designs where every block is a
set). To do this, the DESIGN package uses the graph automorphism group
and isomorphism testing functionality in GRAPE.

Now suppose that A and B are binary block designs in the DESIGN package.
Then the function call

AutomorphismGroup(A)

23

returns the automorphism group of A, which can then be studied using the
permutation group functionality in GAP. The function call

IsIsomorphicBlockDesign(A, B)

returns true if the block designs are isomorphic, and false otherwise.

When comparing more than two binary block designs for pairwise isomor-
phism, you should use the function BlockDesignIsomorphismClassRepresentatives.
Where L is a list of binary block designs in DESIGN package format, the func-
tion call

BlockDesignIsomorphismClassRepresentatives(L)

returns a list consisting of pairwise non-isomorphic elements of L, represent-
ing all the isomorphism classes of elements of L.

3.5 The function BlockDesigns

The most important DESIGN package function is BlockDesigns, which can
construct and classify block designs satisfying a wide range of user-specified
properties (although this may require a very large amount of store or time
depending on the problem). The calling syntax is

BlockDesigns(param)

and the function returns a list of block designs whose properties are specified
by the user in the record param, as described thoroughly in the full function
documentation in the DESIGN manual. Only binary block designs with the
given properties are generated if param.blockDesign is unbound or is a
binary block design, which we assume to be the case in this article.

The required components of the record param are as follows:

� param.v should be a positive integer specifying the number of points
(in each returned design)

� param.blockSizes should be a set of positive integers, specifying the
allowable block size(s)

� param.tSubsetStructure should be a record, used to specify for one
given t ≥ 0, for each t-subset T of the points, the number of blocks
containing T . This number may be a positive constant lambda, not
depending on T , in which case, param.tSubsetStructure can simply
be set to

24

rec(t := t, lambdas := [lambda]).

We will see an example using the more general form of param.tSubsetStructure

later.

The default is to classify the required designs up to isomorphism. As an ex-
ample, we now classify the 5-(12,6,1) designs, verifying the well-known result
that the “small Witt design” is the unique such design (up to isomorphism).

gap> designs := BlockDesigns(rec(

> v:=12, # there are exactly 12 points

> blockSizes:=[6], # each block has size 6

> tSubsetStructure:=rec(t:=5, lambdas:=[1])

> # every 5-subset of the points is contained in exactly one block

>));;

gap> Length(designs);

1

gap> AllTDesignLambdas(designs[1]); # as a check

[132, 66, 30, 12, 4, 1]

gap> Size(AutomorphismGroup(designs[1]));

95040

We next classify, up to isomorphism, the binary block designs having 11
points, such that each block has size 4 or 5, and every pair of distinct points
is contained in exactly two blocks.

gap> designs:=BlockDesigns(rec(v:=11, # there are exactly 11 points

> blockSizes:=[4,5], # each block has size 4 or 5

> tSubsetStructure:=rec(t:=2, lambdas:=[2])

> # every 2-subset of the points is contained in exactly two blocks

>));;

gap> Length(designs);

5

gap> List(designs,BlockSizes);

[[5], [4, 5], [4, 5], [4, 5], [4, 5]]

gap> List(designs,BlockNumbers);

[[11], [10, 5], [10, 5], [10, 5], [10, 5]]

gap> List(designs,AllTDesignLambdas);

[[11, 5, 2], [], [], [], []]

gap> List(designs,d->Size(AutomorphismGroup(d)));

[660, 6, 8, 12, 120]

Further properties may optionally be specified to the function BlockDesigns

via the record param. How to do this is precisely detailed in the DESIGN
package documentation for BlockDesigns. These further properties include:

� a total number b of blocks, specifying that every returned design has
exactly b blocks

25

� a replication number r, specifying that in every returned design, every
point is in exactly r blocks

� a list giving, for each specified possible block size, a corresponding
maximum multiplicity of a block of that size

� a list giving, for each specified possible block size, a corresponding
number of blocks of that size

� the possible sizes of intersections of pairs of blocks of given sizes

� a permutation group G on the point set {1, . . . , v}, such that two de-
signs are considered to be isomorphic if one is in the G-orbit of the
other (if param.blockDesign is unbound, the default is a group G
giving the usual notion of block design isomorphism)

� a subgroup H of G such that H is required to be a subgroup of the
automorphism group of each returned design (the default is for H to
be the trivial permutation group)

� whether the user wants a single design with the specified properties
(if one exists), a list of G-orbit representatives of all such designs (i.e.
isomorphism class representatives as determined by G; this is the de-
fault), or a list of such designs containing at least one representative
from each G-orbit.

For example, we now construct one simple 2-(20,5,4) design invariant under
a group of order 19 (a block design is simple if it has no repeated block).

gap> H:=CyclicGroup(IsPermGroup,19);

Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)])

gap> D:=BlockDesigns(rec(v:=20,

> blockSizes:=[5],

> tSubsetStructure:=rec(t:=2, lambdas:=[4]),

> blockMaxMultiplicities:=[1], # since we want a simple design

> requiredAutSubgroup:=H,

> # since we want a design whose automorphism group contains H

> isoLevel:=0

> # since we want just one design (if such a design exists)

>));;

gap> Length(D);

1

gap> AllTDesignLambdas(D[1]); # a check

[76, 19, 4]

gap> Size(AutomorphismGroup(D[1]));

19

26

3.6 Computing subdesigns using the function BlockDesigns

Here a subdesign of a block design D means a block design with the same
point set as D and whose block multiset is a submultiset of the blocks of D.

Setting the optional parameter param.blockDesign to be a block design D
asks BlockDesigns(param) to construct subdesigns of D with the other
given properties. In this case, the default is to determine the subdesigns up
to the action of the automorphism group of D.

We now give an example of the use of subdesigns, where we determine certain
“Sylvester designs”, which are highly efficient block designs from a statistical
design viewpoint. See [1]. A Sylvester design is a 1-(36,6,8) design, such
that

� if a and b are distinct points then {a, b} is contained in just 1 or 2
blocks, and

� the graph on the 36 points whose edges are those {a, b} contained in
exactly 2 blocks is isomorphic to the Sylvester graph.

gap> Sylvester_3:=DistanceGraph(Sylvester,3);;

gap> GlobalParameters(Sylvester_3);

[[0, 0, 10], [1, 4, 5], [2, 8, 0]]

gap> IsIsomorphicGraph(Sylvester_3,HammingGraph(2,6));

true

gap> K:=CompleteSubgraphsOfGivenSize(Sylvester_3,6,2);

[[1, 10, 13, 16, 22, 23]]

gap> K:=Union(Orbits(Sylvester_3.group,K,OnSets));;

gap> Length(K);

12

gap> #

gap> # Now K is the set of cliques of size 6 of Sylvester_3,

gap> # which is isomorphic to the Hamming graph H(2,6).

gap> #

gap> complement_3:=ComplementGraph(Sylvester_3);;

gap> L:=CompleteSubgraphsOfGivenSize(complement_3,6,2);

[[1, 2, 4, 8, 9, 35], [1, 2, 4, 8, 19, 28],

[1, 2, 4, 9, 11, 30], [1, 2, 4, 11, 19, 36],

[1, 2, 5, 19, 24, 36]]

gap> L:=Union(Orbits(complement_3.group,L,OnSets));;

gap> Length(L);

720

gap> #

gap> # Now L is the set of independent sets of size 6 in Sylvester_3.

gap> #

gap> blocks:=Union(K,L);;

gap> BD:=BlockDesign(36,blocks);;

27

gap> #

gap> # We are here interested in those Sylvester designs that are

gap> # subdesigns of BD.

gap> #

gap> edges:=UndirectedEdges(Sylvester);;

gap> nonedges:=UndirectedEdges(ComplementGraph(Sylvester));;

gap> Sdesigns := BlockDesigns(rec(v:=36, blockSizes:=[6],

> tSubsetStructure:=

> rec(t:=2, partition:=[edges,nonedges],lambdas:=[2,1]),

> r:=8, # replication number

> blockDesign:=BD, # to get subdesigns of BD

> isoGroup:=AutomorphismGroup(Sylvester)));;

gap> Length(Sdesigns);

4

gap> #

gap> # The elements of Sdesigns are (up to the action of the

gap> # automorphism group of the Sylvester graph, and so up to

gap> # isomorphism) the Sylvester designs whose blocks come from

gap> # the rows, columns, and transversals of the 6x6 array

gap> # defined by the distance-3 graph of the Sylvester graph.

gap> #

gap> List(Sdesigns,design->Size(AutomorphismGroup(design)));

[144, 16, 72, 1440]

Challenge problem: Classify all the Sylvester designs.

3.7 Partitioning block designs

The DESIGN package function PartitionsIntoBlockDesigns constructs par-
titions of (the block multiset of) a given block design D, such that the sub-
designs of D whose block multisets are the parts of this partition each have
the same user-specified properties. See PartitionsIntoBlockDesigns in
the DESIGN manual for full details.

For example, given a block designD having v points and each of whose blocks
has size k, we can classify the resolutions of D by classifying the partitions
of D into 1-(v, k, 1) designs, up to the action of the automorphism group of
D. We now do this for the Sylvester designs constucted above.

gap> L:=List(Sdesigns, design->

> PartitionsIntoBlockDesigns(rec(v:=36, blockSizes:=[6],

> blockDesign:=design,

> tSubsetStructure:=rec(t:=1,lambdas:=[1]))));;

gap> List(L,Length);

[1, 0, 1, 1]

gap> # This gives the respective numbers of resolutions of the designs

28

gap> # in Sdesigns, up to the actions of the respective automorphism

gap> # groups of these designs.

4 Study of the Cohen-Tits near octagon

There is a unique distance-regular graph with intersection array {10, 8, 8, 2; 1, 1, 4, 5},
that is, with global parameters

[[0,0,10], [1,1,8], [1,1,8], [4,4,2], [5,5,0]].

The partial linear space CT with parameters (2, 4) having this graph as point
graph is the Cohen-Tits near octagon. The lines of CT consist of all the
525 triangles (cliques of size 3) in this point graph. See [7, Sections 6.4 and
13.6].

In the extended example of this section, we show that CT does not have
an ovoid (where an ovoid is a set of points such that every line lies on just
one of these points), but CT does have a resolution, both of which appear
to be new results. We start by constructing the point graph of CT on the
conjugacy class of size 315 of involutions in the Hall-Janko sporadic simple
group J2.

gap> n:=315;

315

gap> L:=AllPrimitiveGroups(NrMovedPoints,100,Size,604800,IsSimple,true);

[J_2]

gap> J2:=L[1];

J_2

gap> CC:=Filtered(ConjugacyClasses(J2),x->Size(x)=n);;

gap> Length(CC);

1

gap> CC:=CC[1];;

gap> Order(Representative(CC));

2

gap> pointgraph:=Graph(J2,AsSet(CC),OnPoints,

> function(x,y) return x*y=y*x and x<>y; end,

> true);;

gap> GlobalParameters(pointgraph);

[[0, 0, 10], [1, 1, 8], [1, 1, 8], [4, 4, 2], [5, 5, 0]]

gap> #

gap> # Now pointgraph is the point graph of the Cohen-Tits near octagon.

gap> #

gap> A:=AutomorphismGroup(pointgraph);;

gap> Size(A);

1209600

29

gap> pointgraph:=NewGroupGraph(A,pointgraph);;

gap> K:=CompleteSubgraphsOfGivenSize(pointgraph,3,2);

[[1, 2, 5]]

gap> CT:=BlockDesign(n,K,A);;

gap> #

gap> # Now CT is the Cohen-Tits near octagon as a block design

gap> # in DESIGN package format.

gap> #

gap> NrBlockDesignPoints(CT);

315

gap> BlockSizes(CT);

[3]

gap> AllTDesignLambdas(CT);

[525, 5]

gap> dualCT:=DualBlockDesign(CT);;

gap> NrBlockDesignPoints(dualCT);

525

gap> BlockSizes(dualCT);

[5]

gap> AllTDesignLambdas(dualCT);

[315, 3]

gap> #

gap> # Does dualCT have a spread (parallel class)?

gap> #

gap> spreadsofdual:=BlockDesigns(rec(v:=NrBlockDesignPoints(dualCT),

> blockSizes:=BlockSizes(dualCT),

> blockDesign:=dualCT,

> tSubsetStructure:=rec(t:=1, lambdas:=[1])));

[]

gap> #

gap> # So the dual of CT has no 1-(525,5,1) subdesign,

gap> # i.e. no spread. Equivalently, CT has no ovoid.

gap> #

gap> # What about possible spreads and resolutions of CT?

gap> #

gap> # We shall first consider the spreads of CT invariant under

gap> # a well-chosen subgroup S of its automorphism group A.

gap> #

gap> CC:=Set(ConjugacyClasses(A),x->Group(Representative(x)));;

gap> S:=Filtered(CC,x->Size(x)=5 and Size(Centralizer(A,x))=300);;

gap> Length(S);

1

gap> S:=S[1];

<permutation group of size 5 with 1 generator>

gap> #

gap> # We now classify the S-invariant spreads of CT, up to the

gap> # action of the normalizer in A of S.

gap> #

gap> spreads:=BlockDesigns(rec(v:=NrBlockDesignPoints(CT),

30

> blockSizes:=BlockSizes(CT),

> blockDesign:=CT,

> requiredAutSubgroup:=S,

> isoGroup:=Normalizer(A,S),

> tSubsetStructure:=rec(t:=1, lambdas:=[1])));;

gap> Collected(List(spreads,AllTDesignLambdas)); # a check

[[[105, 1], 39]]

gap> #

gap> # Now make each spread into the set of the indices of its blocks

gap> # in CT.

gap> #

gap> spreads:=List(spreads,

> spread->List(spread.blocks,B->PositionSorted(CT.blocks,B)));;

gap> #

gap> # We now make a graph whose vertices correspond to the spreads

gap> # invariant under a conjugate in A of S, with two such

gap> # spreads joined by an edge iff they are disjoint.

gap> #

gap> spreadsgraph:=Graph(Image(ActionHomomorphism(A,CT.blocks,OnSets)),

> spreads, OnSets,

> function(x,y) return Intersection(x,y)=[]; end);;

gap> OrderGraph(spreadsgraph);

2645160

gap> VertexDegrees(spreadsgraph);

[51, 53, 158, 163, 166, 167, 173, 176, 179, 188, 196, 201, 207, 208,

210, 212, 223, 226, 248, 252, 269, 312, 327, 357, 383, 395, 438,

832, 900, 1369, 1423, 1432, 1561, 1879, 4948]

gap> Size(spreadsgraph.group);

1209600

gap> #

gap> # Now a clique of size 5 in spreadsgraph would yield a resolution

gap> # of CT.

gap> #

gap> CompleteSubgraphsOfGivenSize(spreadsgraph,5,0,true);

[[309961, 458110, 501557, 828391, 1047808]]

gap> #

gap> # Thus, the Cohen-Tits near octagon CT has a resolution.

gap> #

5 The FinInG Package

FinInG [3] is a large and powerful GAP package for finite incidence geometry.
It requires the GAP packages GAPDoc, Forms, cvec, Orb, GenSS, and GRAPE,
and can also make use of DESIGN.

A (finite) incidence structure consists of a finite set of elements, a re-
flexive symmetric incidence relation on the set of elements, and a function,

31

called a type function, from the set of elements to a finite set of types,
such that no two distinct elements having the same type are incident. An
incidence geometry is an incidence structure such that every maximal set
of pairwise incident elements contains an element of each type.

FinInG provides efficient functionality for constructing and studying the fol-
lowing incidence structures:

� projective and affine spaces

� classical polar spaces

� generalised polygons

� coset incidence structures.

FinInG also provides functionality for:

� groups of automorphisms of incidence structures

� specialised actions, orbits, and stabilizers

� morphisms of incidence geometries

� algebraic varieties over finite fields.

See [4] for a good overview of the FinInG package. The extensive FinInG
manual includes much more detailed information, together with many useful
examples. In this article, however, we look only into some FinInG function-
ality for projective spaces and coset incidence structures, concentrating on
applications by the author.

5.1 The projective space PG(d, q)

Let V be a (d+ 1)-dimensional vector space over the finite field GF(q).

In FinInG, the projective space PG(d, q) is the incidence geometry whose
elements are the proper non-zero subspaces of V , with two elements being
incident exactly when one is contained in the other, and having the same
type if and only if they have the same dimension.

The points and lines of PG(d, q) are respectively the 1- and 2-dimensional
subspaces of V . A partial spread (of lines) in a projective space is a set
of lines whose pairwise intersection is the zero-subspace (projectively, the
empty subspace). A maximal partial spread is one which is not contained
in any larger partial spread of the projective space.

32

We now use FinInG and GRAPE to classify the maximal partial spreads of
lines in the projective space PG(3, 4), first, up to the action of the projective
general linear group PGL(4, 4) (which was done much more slowly in [29]),
and then, up to the action of the full collineation group PΓL(4, 4) of the
projective space.

gap> LoadPackage("fining",false);

true

gap> d:=3;;

gap> q:=4;;

gap> pg:=PG(d,q);

ProjectiveSpace(3, 4)

gap> IsIncidenceStructure(pg);

true

gap> TypesOfElementsOfIncidenceStructure(pg);

["point", "line", "plane"]

gap> lines:=Lines(pg);

<lines of ProjectiveSpace(3, 4)>

gap> Size(lines);

357

gap> points:=Points(pg);

<points of ProjectiveSpace(3, 4)>

gap> Size(points);

85

gap> lineset:=Set(List(lines));;

gap> G:=ProjectivityGroup(pg);

The FinInG projectivity group PGL(4,4)

gap> Size(G);

987033600

gap> #

gap> # Now construct the graph gamma, whose vertices are labelled

gap> # by the lines of PG(d,q), with two vertices joined by an edge

gap> # iff the corresponding lines have no point in common.

gap> #

gap> # The cliques of gamma give the partial spreads of PG(d,q),

gap> # with the maximal cliques giving the maximal partial spreads.

gap> #

gap> gamma:=Graph(G, lineset, OnProjSubspaces,

> function(x,y) return Meet(x,y)=EmptySubspace(pg); end,

> true);;

gap> GlobalParameters(gamma);

[[0, 0, 256], [1, 180, 75], [192, 64, 0]]

gap> Size(gamma.group);

987033600

gap> maximalpartialspreads:=CompleteSubgraphs(gamma,-1,2);;

gap> # The maximal complete subgraphs of gamma, up to the action of

gap> # gamma.group. See the GRAPE documentation on CompleteSubgraphs.

gap> #

33

gap> L:=List(maximalpartialspreads,Length);

[13, 14, 11, 13, 11, 12, 11, 12, 13, 13, 14, 14, 14, 13, 11, 13, 11,

11, 13, 12, 17, 13, 13, 13, 13, 17, 13, 13, 17]

gap> Collected(L);

[[11, 6], [12, 3], [13, 13], [14, 4], [17, 3]]

gap> #

gap> # Repeat the classification with G now being the collineation

gap> # group of pg.

gap> #

gap> G:=CollineationGroup(pg);

The FinInG collineation group PGammaL(4,4)

gap> Size(G);

1974067200

gap> hom:=ActionHomomorphism(G,VertexNames(gamma),OnProjSubspaces);

<action homomorphism>

gap> gamma:=NewGroupGraph(Image(hom),gamma);;

gap> Size(gamma.group);

1974067200

gap> Size(AutomorphismGroup(gamma));

3948134400

gap> maximalpartialspreads:=CompleteSubgraphs(gamma,-1,2);;

gap> L:=List(maximalpartialspreads,Length);

[12, 13, 13, 13, 11, 17, 14, 14, 11, 12, 14, 11, 11, 13, 13, 13, 13,

17, 13, 17]

gap> Collected(L);

[[11, 4], [12, 2], [13, 8], [14, 3], [17, 3]]

More sophisticated computations of maximal partial spreads using GRAPE
are described in [33], where to illustrate certain theory, the maximal partial
spreads in PG(3, q) that are invariant under a group of order 5 are classified,
for q ∈ {7, 8}.

5.2 Flag-transitive geometries and coset incidence struc-
tures

Let Γ be an incidence structure.

A flag of Γ is a set of pairwise incident elements, and the type of a flag is
the set of the types of its elements. A chamber of Γ is a flag containing an
element of each type.

An automorphism of Γ is a permutation of the elements of Γ preserving
the type of each element and preserving incidence between elements.

The incidence structure Γ is a flag-transitive geometry for a group G of
automorphisms of Γ if Γ is an incidence geometry and G acts transitively on
the set of chambers of Γ (and so G acts transitively on the flags of Γ of any

34

given type).

Suppose now Γ is a flag-transitive geometry for a group G of automorphisms.
Consider a chamber {c1, c2, . . . , cn} of Γ, such that ci has type i, and let Gi be
the stabilizer in G of ci. Now G acts transitively on the elements of type i, so
these elements are in 1-to-1 correspondence with the right cosets of Gi in G.
Furthermore, two elements of Γ are incident if and only if the corresponding
cosets have a nonempty intersection.

Now let G be any finite group and let G1 . . . , Gn be distinct subgroups of G.
Then these parabolic subgroups determine an incidence structure called a
coset incidence structure for G, with type set {1, . . . , n}, the elements of
type i being the right cosets of Gi in G, and with two elements being incident
precisely when they have nonempty intersection.

A coset incidence structure need not be an incidence geometry. However,
in FinInG, if the function IsFlagTransitiveGeometry applied to a coset
incidence structure returns true, this guarantees that the argument is a
(flag-transitive) incidence geometry.

5.3 A flag-transitive geometry for J2 and J2:2

We now use GRAPE and FinInG to construct and study a certain coset inci-
dence structure which is a flag-transitive geometry for the Hall-Janko spo-
radic simple group J2 and its automorphism group J2:2. The elements of
this geometry correspond to certain induced subgraphs in a vertex- and edge-
transitive graph for J2, having 280 vertices and vertex-degree 36. As far as
the author is aware, this geometry has never before been published.

gap> n:=280;

280

gap> L:=AllPrimitiveGroups(NrMovedPoints,n,Size,604800,IsSimple,true);

[J_2]

gap> J2:=L[1];

J_2

gap> H:=Stabilizer(J2,1);

<permutation group of size 2160 with 4 generators>

gap> orbs:=List(Orbits(H,[1..n]),Set);;

gap> List(orbs,Length);

[1, 108, 36, 135]

gap> orb36:=First(orbs,orb->Length(orb)=36);;

gap> edge:=[1,orb36[1]];

[1, 3]

gap> gamma:=EdgeOrbitsGraph(J2,[edge]);;

gap> GlobalParameters(gamma);

[[0, 0, 36], [1, 8, 27], [4, 32, 0]]

35

gap> AssignVertexNames(gamma,[1..n]);

gap> f:=First(orbs,orb->Length(orb)=135)[1];

4

gap> eps:=GeodesicsGraph(gamma,1,f);;

gap> # So eps is the induced subgraph on the vertices of the

gap> # geodesics from 1 to f, but not including 1 and f.

gap> #

gap> GlobalParameters(eps);

[[0, 0, 2], [1, 0, 1], [2, 0, 0]]

gap> # So eps is a 4-gon.

gap> #

gap> oct_vertices:=Union([1,f],VertexNames(eps));

[1, 3, 4, 118, 223, 265]

gap> # So the induced subgraph on oct_vertices is (the 1-skeleton of)

gap> # an octahedron.

gap> #

gap> oct_stab:=Stabilizer(J2,oct_vertices,OnSets);;

gap> Size(oct_stab);

96

gap> oct_graph:=InducedSubgraph(gamma,oct_vertices,oct_stab);;

gap> GlobalParameters(oct_graph);

[[0, 0, 4], [1, 2, 1], [4, 0, 0]]

gap> Size(oct_graph.group);

48

gap> #

gap> # oct_graph is a chosen special induced subgraph of gamma,

gap> # and is isomorphic to (the 1-skeleton of) an octahedron.

gap> #

gap> K:=CompleteSubgraphsOfGivenSize(oct_graph,3,2);

[[1, 2, 4]]

gap> clique:=Set(K[1],x->VertexName(oct_graph,x));

[1, 3, 118]

gap> # Now clique is the set of vertices in gamma of a triangle

gap> # in oct_graph.

gap> #

gap> parabolics:=[];

[]

gap> for i in [1..3] do

> parabolics[i]:=Stabilizer(J2,clique{[1..i]},OnSets);

> od;

gap> Add(parabolics,oct_stab);

gap> List(parabolics,x->Size(J2)/Size(x));

[280, 5040, 10080, 6300]

gap> J2geom:=CosetGeometry(J2,parabolics);

CosetGeometry(J_2)

gap> #

gap> # In FinInG, CosetGeometry makes a coset incidence structure

gap> # (which is not necessarily an incidence geometry).

gap> #

36

gap> IsFlagTransitiveGeometry(J2geom);

true

gap> #

gap> # So J2geom is a flag-transitive geometry for the group J2.

gap> #

gap> # We now use FinInG to determine some properties of J2geom.

gap> #

gap> TypesOfElementsOfIncidenceStructure(J2geom);

[1 .. 4]

gap> IsConnected(J2geom);

true

gap> IsResiduallyConnected(J2geom);

true

gap> IsThinGeometry(J2geom);

false

gap> IsThickGeometry(J2geom);

false

gap> IsFirmGeometry(J2geom);

true

gap> Size(BorelSubgroup(J2geom));

2

gap> autgrp:=AutGroupIncidenceStructureWithNauty(J2geom);;

gap> # the automorphism group of J2geom

gap> #

gap> DisplayCompositionSeries(autgrp);

G (6 gens, size 1209600)

| C2

S (3 gens, size 604800)

| J2

1 (0 gens, size 1)

gap> #

gap> # FinInG can draw the "diagram" of a flag-transitive

gap> # coset geometry, making use of the GraphViz

gap> # software (available from https://graphviz.org).

gap> #

gap> DrawDiagram(DiagramOfGeometry(J2geom),"J2geomdiagram");

The diagram of the constructed flag-transitive geometry, as described in the
FinInG manual and produced by the code above, is shown in Figure 1.

gap> incidencegraph:=IncidenceGraph(J2geom);;

gap> #

gap> # Now incidencegraph is the incidence graph of J2geom,

gap> # in GRAPE format.

gap> #

gap> IsGraph(incidencegraph);

true

gap> OrderGraph(incidencegraph); # number of vertices

37

1

2 8 0

1

5 0 4 0

1

1 0 0 8 0

4

6 3 0 0

3 4 3 3 4

Figure 1: Diagram of the constructed flag-transitive geometry for J2

21700

gap> Size(incidencegraph.group);

604800

gap> IsLoopy(incidencegraph);

true

We next read in a file downloadable from [32], which provides GAP functions
for the computation of fundamental groups, certain quotients of fundamental
groups, and covers of finite simplicial complexes, making use of the theory and
algorithms of [27] and the GRAPE package. We then compute the fundamen-
tal group of the clique complex of the incidence graph of the flag-transitive
geometry for J2 we have constructed. This clique complex is the so-called
flag complex of the geometry.

gap> Read("fundamental_v2.g");

gap> # This loads functions for fundamental groups and covers of

gap> # finite simplicial complexes.

gap> #

gap> # We now remove the loops on the incidence graph of J2geom

gap> # to make it compatible with the fundamental group software.

gap> #

gap> for rep in incidencegraph.representatives do

> RemoveEdgeOrbit(incidencegraph,[rep,rep]);

> od;

gap> IsSimpleGraph(incidencegraph);

true

gap> VertexDegrees(incidencegraph);

[11, 23, 26, 279]

gap> F:=FundamentalRecordSimplicialComplex(incidencegraph);;

#I now the presentation has 1 generators, the new generator is _x1

#I now the presentation has 2 generators, the new generator is _x2

gap> G:=F.group;

<fp group on the generators [_x1, _x2]>

gap> # Now G is the fundamental group of the clique complex

gap> # of incidencegraph.

38

gap> Size(G);

12

gap> IsAbelian(G);

false

gap> StructureDescription(G);

"C3 : C4"

6 Other software for graphs, designs, and fi-

nite geometries

In this article we have focussed on three GAP packages, but the reader should
be aware of other software available for research in graphs, designs, and finite
geometries. We now briefly discuss some of this software. Much more detailed
information is available in the references cited.

While GRAPE is designed for the construction and study of usually simple and
sometimes very large graphs related to groups, designs, and finite geometries,
the Digraphs package [12] for GAP focuses on directed graphs (digraphs), and
provides a very extensive range of constructions and graph-theoretic func-
tionality for simple graphs, digraphs, and (at present) multidigraphs. In
particular, the Digraphs package can input digraphs in GRAPE and other for-
mats, and includes many functions analogous to those in GRAPE, as well as
providing efficient functionality for digraph homomorphisms, digraph draw-
ing, I/O facilities and efficient storage for large collections of digraphs, and
more. The Digraphs package also includes an improved version of the bliss
software [20] for computing automorphism groups of digraphs and testing
digraph isomorphism. Some aspects of the Digraphs package were covered in
the author’s G2G2 lectures [36].

The GAP package AGT [13] for algebraic graph theory provides functionality
for the computation of spectral properties, various bounds, and regularity
properties for simple graphs given in GRAPE format. The package also pro-
vides an extensive library of strongly regular graphs and lists of “feasible”
strongly regular graph parameters.

For computations with permutation groups and coherent configurations, the
reader should consider the stand-alone COCO system [14], or one of its more
modern descendents under development (see [21]). Andries Brouwer has
made a Unix port of COCO, downloadable from [6].

Finally, Magma [5] is a large, powerful, comprehensive system for computa-
tions in algebra, number theory, algebraic geometry, and algebraic combina-
torics. Magma’s functionality has large overlaps with GAP and its packages.

39

However, Magma is not open source, and, with certain exceptions, is not free
of charge.

References

[1] R.A. Bailey, P.J. Cameron, L.H. Soicher, and E.R. Williams, Substi-
tutes for the non-existent square lattice designs for 36 varieties, Jour-
nal of Agricultural, Biological and Environmental Statistics 25 (2020),
487–499. Available online (open-access) at https://doi.org/10.1007/
s13253-020-00388-1

[2] S. Ball, Finite Geometry and Combinatorial Applications, Cambridge
University Press, Cambridge, 2015.

[3] J. Bamberg, A. Betten, Ph. Cara, J. De Beule, M. Lavrauw, and M.
Neunhoeffer, The FinInG package for GAP, Version 1.5, 2022, https:
//gap-packages.github.io/FinInG

[4] J. Bamberg, A. Betten, Ph. Cara, J. De Beule, M. Neunhöffer, and
M. Lavrauw, FinInG: a package for Finite Incidence Geometry, https:
//arxiv.org/abs/1606.05530, 2016.

[5] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system.
I: The user language, Journal of Symbolic Computation 24 (1997), 235-
–265.

[6] A.E. Brouwer, Unix port of the COCO computer algebra system, https:
//www.win.tue.nl/~aeb/ftpdocs/math/coco/coco-1.2b.tar.gz

[7] A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs,
Springer-Verlag, Berlin, 1989.

[8] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer, New
York, 2012.

[9] P.J. Cameron, Permutation Groups, Cambridge University Press, Cam-
bridge, 1999.

[10] P.J. Cameron and J.H. van Lint, Designs, Graphs, Codes and their
Links, Cambridge University Press, Cambridge, 1991.

[11] E.R. van Dam, J.H. Koolen, and H. Tanaka, Distance-regular graphs,
Electronic Journal of Combinatorics (2016), DS22.

40

[12] J. De Beule, J. Jonusas, J. Mitchell, M. Torpey, M. Tsalakou, and W.A.
Wilson, The Digraphs package for GAP, Version 1.5.0, 2021, https:

//digraphs.github.io/Digraphs

[13] R.J. Evans, The AGT package for GAP, Version 0.2, 2020, https://
gap-packages.github.io/agt

[14] I.A. Faradzev and M.H. Klin, Computer package for computations with
coherent configurations, In: ISSAC ’91: Proceedings of the 1991 Inter-
national Symposium on Symbolic and Algebraic Computation, S.M. Watt
(ed.), ACM Press, New York, 1991, pp. 219–223.

[15] The GAP Group, GAP — Groups, Algorithms, and Programming, Ver-
sion 4.12.0, 2022, https://www.gap-system.org

[16] The GAP Group, GAP — A Tutorial, Release 4.12.0, 2022, https:

//www.gap-system.org/Manuals/doc/tut/manual.pdf

[17] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New
York, 2001.

[18] W. Haemers, A new partial geometry constructed from the Hoffman-
Singleton graph, In: Finite Geometries and Designs: Proceedings of the
Second Isle of Thorns Conference 1980, P.J. Cameron et al. (eds), LMS
Lecture Note Series 49, Cambridge University Press, Cambridge, 1981,
pp. 119–127.

[19] C. Jefferson, E. Jonauskyte, M. Pfeiffer, and R. Waldecker, Minimal and
canonical images, Journal of Algebra 521 (2019), 481–506.

[20] T. Junttila and P. Kaski, Engineering an efficient canonical labeling
tool for large and sparse graphs, In: Proceedings of the Ninth Workshop
on Algorithm Engineering and Experiments and the Fourth Workshop
on Analytic Algorithmics and Combinatorics, D. Applegate et al. (eds),
SIAM, Philadelphia, 2007, pp. 135–149. bliss homepage: http://www.

tcs.hut.fi/Software/bliss/

[21] M. Klin, M. Muzychuk, and S. Reichard, Proper Jordan schemes ex-
ist. First examples, computer search, patterns of reasoning. An essay,
https://arxiv.org/abs/1911.06160, 2019.

[22] A. Konovalov, Programming with GAP, https://alex-konovalov.

github.io/gap-lesson/

41

[23] R.M.R. Lewis, A Guide to Graph Colouring: Algorithms and Applica-
tions, Springer International Publishing, Switzerland, 2016.

[24] S. Linton, Finding the smallest image of a set, In: ISSAC ’04: Proceed-
ings of the 2004 International Symposium on Symbolic and Algebraic
Computation, J. Gutierrez (ed.), ACM Press, New York, 2004, pp. 229–
234.

[25] B.D. McKay and A. Piperno, Practical graph isomorphism, II, Journal
of Symbolic Computation 60 (2014), 94–112. nauty and Traces: https:
//users.cecs.anu.edu.au/~bdm/nauty/

[26] A. Pasini, Diagram Geometries, Oxford University Press, Oxford, 1994.

[27] S. Rees and L.H. Soicher, An algorithmic approach to fundamental
groups and covers of combinatorial cell complexes, Journal of Symbolic
Computation 29 (2000), 59–77.

[28] L.H. Soicher, Yet another distance-regular graph related to a Golay code,
Electronic Journal of Combinatorics 2 (1995), N1.

[29] L.H. Soicher, Computation of partial spreads, 2004, https://

webspace.maths.qmul.ac.uk/l.h.soicher/partialspreads/

[30] L.H. Soicher, Computing with graphs and groups, In: Topics in Alge-
braic Graph Theory, L.W. Beineke and R.J. Wilson (eds), Cambridge
University Press, Cambridge, 2004, pp. 250–266.

[31] L.H. Soicher, Designs, groups and computing, In: Probabilistic Group
Theory, Combinatorics, and Computing: Lectures from the Fifth de
Brún Workshop, A. Detinko et al. (eds), Lecture Notes in Mathematics
2070, Springer, London, 2013, pp. 83–107.

[32] L.H. Soicher, Functions for computing fundamental groups, certain
quotients of fundamental groups, and covers of finite simplicial com-
plexes, Version 2.0, 2015, https://webspace.maths.qmul.ac.uk/l.h.
soicher/fundamental/fundamental_v2.g

[33] L.H. Soicher, On classifying objects with specified groups of automor-
phisms, friendly subgroups, and Sylow tower groups, Portugaliae Math-
ematica 74 (2017), 233–242.

[34] L.H. Soicher, The DESIGN package for GAP, Version 1.7, 2019, https:
//gap-packages.github.io/design

42

[35] L.H. Soicher, The GRAPE package for GAP, Version 4.8.5, 2021, https:
//gap-packages.github.io/grape

[36] L.H. Soicher, Using the GAP system and its packages for research in
graph theory, design theory, and finite geometry, G2G2 minicourse lec-
ture notes and exercises, 2021, https://webspace.maths.qmul.ac.uk/
l.h.soicher/g2g2/

43

