E    
  D  
    T

Encyclopaedia of DesignTheory: Latin squares

General Partition Incidence Array
Experimental Other designs Math properties Stat properties
Server External Bibliography Miscellanea

Latin squares: bibliography

  1. L. D. Andersen and A. J. W. Hilton, Thank Evans!, Proc. London Math. Soc. (3) 47 (1983), 507-522.
  2. L. Babai, Almost all Steiner triple systems are asymmetric, in Topics in Steiner systems (ed. C. C. Lindner and A. Rosa), Ann. Discrete Math. 7, Elsevier, Amsterdam, 1979, pp. 37-39.
  3. R. A. Bailey, Latin squares with highly transitive automorphism groups, J. Austral. Math. Soc. (A) 33 (1982), 18-22.
  4. P. J. Cameron and C. Y. Ku, Intersecting families of permutations, Europ. J. Combinatorics 24 (2003), 881-890.
  5. R. A. Bailey, Orthogonal partitions for designed experiments, Designs, Codes and Cryptography 8 (1996), 45-77.
  6. J. Dénes and A. D. Keedwell, Latin squares and their applications, Akademiai Kiado, Budapest, 1974, 547 pp.
  7. J. Dénes and A. D. Keedwell (eds.), Latin squares: New developments in the theory and applications, Annals of Discrete Mathematics, 46, North-Holland, Amsterdam, 1991, xiv+454 pp.
  8. M. T. Jacobson and P. Matthews, Generating uniformly distributed random Latin squares, J. Combinatorial Design 4 (1996), 405-437.
  9. B. D. McKay, A. Meynert and W. Myrvold, Small Latin squares, quasigroups and loops, preprint.
  10. B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Combin. 9 (2005), 335-344.
  11. H. J. Ryser, A combinatorial theorem with an application to latin rectangles, Proc. Amer. Math. Soc. 2 (1951), 550-552.
  12. B. Smetaniuk, A new construction on latin squares, I: A proof of the Evans conjecture, Ars Combinatoria 9 (1981), 155-172.

Table of contents | Glossary | Topics | Bibliography | History

Peter J. Cameron
5 July 2006