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Abstract

We study the dynamical and statistical behavior of the Hamiltonian mean field (HMF) model in order to investigate the
relation between microscopic chaos and phase transitions. HMF is a simple toy model of N fully coupled rotators which
shows a second-order phase transition. The solution in the canonical ensemble is briefly recalled and its predictions are tested
numerically at finite N. The Vlasov stationary solution is shown to give the same consistency equation of the canonical
solution and its predictions for rotator angle and momenta distribution functions agree very well with numerical simulations,
A link is established between the behavior of the maximal Lyapunov exponent and that of thermodynamical fluctuations,
expressed by kinetic energy fluctuations or specific heat. The extensivity of chaos in the N— oo limit is tested through the
scaling properties of Lyapunov spectra and of the Kolmogorov—Sinai entropy. Chaotic dynamics provides the mixing property
in phase space necessary for obtaining equilibration; however, the relaxation time to equilibrium grows with N, at least near
the critical point. Qur results constitute an interesting bridge between Hamiltonian chaos in many degrees of freedom systems
and equilibrium thermodynamics. €©)1999 Elsevier Science B.V All rights reserved.
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1. Introduction

Many-body systems can show collective behavior
when the average kinetic energy is small enough.
This collective macroscopic behavior can coexist
with chaos at the microscopic level. Such a behavior
is particularly evident for systems that have a phase
transition, for which a nonvanishing order parameter
measures the degree of macroscopic organization,
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while at the microscopic level chaotic motion is a
source of disorder. The latter can induce nontrivial
time dependence in the macroscopic quantities, and it
would be desirable to relate the time behavior of such
quantities and their fluctuations to the chaotic prop-
erties of microscopic motion, measured through the
Lyapunov spectrum. A naive idea is that an increase
of chaos as the energy (temperature) is increased
should be accompanied with a growth of fluctuations
of some macroscopic quantity. These should be max-
imal at the critical point and then drop again at high
energy. In this paper we study a model of N fully
coupled Hamiltonian rotators which realizes such a
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behavior, it has been called Hamiltonian mean field
(HMF) model [1-3]. It can also be considered as a
system of interacting particles moving on a circle.
This system has a second-order phase transition and
in the ordered phase the rotators are clustered; the
high-temperature phase is a gaseous one, with the
particles uniformly distributed on the circle. It has
been shown in [3] that the maximal Lyapunov expo-
nent grows up to the critical energy density U, and
then drop to zero in the whole high-temperature phase
in the N— oo limit. Correspondingly, one observes a
growth of kinetic energy fluctuations up to the criti-
cal point and then a phase of vanishing fluctuations.
Finite N effects complicate this simple picture. In the
high-temperature phase the maximal Lyapunov expo-
nent vanishes quite slowly (with N ~!/3), and finite
size effects influence the first region below the critical
point. In this region the system displays metastability:
starting far from equilibrium, this latter is reached
in a time 7, which grows with N. On the contrary,
the extremely low-energy phase is characterized by
a weak N dependence, with the maximal Lyapunov
exponent A; which behaves as A; ~ VU.

Although the model is extremely simplified, it
shares many features with more complex models,
for which the relation between chaotic motion at the
microscopic level and collective macroscopic prop-
erties has been studied. Let us mention studies in
solid state physics and lattice field theory [4-15].
However, it has been actually in nuclear physics
[16-21], where there is presently a lively debate on
multifragmentation phase transition [16-35], that the
interest in the connection between chaos and phase
transitions has been revived. In this case in fact, an
energy/temperature relation quite close to the HMF
model has been observed [22] and critical exponents
have been measured experimentally [23]. Statistical
thermodynamical models [24,25] and percolation ap-
proaches [27-30] have been proved to give a good
description of the experimental data, though dynam-
ics is missing. On the other hand, classical molecular
dynamics models [21,26,31—33]3 seem to contain
all the main ingredients, but have the disadvantage

3 For an up-to-date review of multifragmentation see [26].

that a detailed understanding of the dynamics can be
too complicated. In this respect, the HMF model can
be very useful in clarifying some general dynamical
features which could be eventually compared with
real experimental data. In fact, when studying nuclear
multifragmentation, one deals with excited clusters of
100-200 particles interacting via long-range (nuclear
and Coulomb) forces. Quantum effects are relevant
only at very low energy. In fact in the nuclear case,
at very low energy, T is not linear in U, but grows
as ~U because nucleons are fermions [22,24,25].
However, a classical picture should be quite realistic
in the critical region where the excitation energy is
substantial [34,35].

In this paper we present new numerical data
concerning both statistical quantities, like specific
heat and distribution functions, and chaotic probes,
like Lyapunov spectra and Kolmogorov—Sinai en-
tropy. Moreover, we add to the theoretical analysis
of the model a thorough treatment of differences
in the fluctuating quantities between the canonical
and microcanonical ensembles. We also investigate
in detail the relaxation to equilibrium and compare
numerical results with a complete self-consistent
Vlasov calculation of distribution functions. Fi-
nally, a comparison of numerically obtained maximal
Lyapunov exponents with theoretical formulas is
attempted.

The paper is organized as follows. In Section 2
we briefly discuss the details of the HMF model.
The equilibrium statistical mechanics and the con-
tinuum Vlasov solution are described in Sections 3
and 4, respectively. In Section 5 we discuss the re-
laxation to equilibrium and in Section 6 we present
the numerical calculations of the Lyapunov spec-
tra and Kolmogorov—Sinai entropy as a function
of the energy and N. Analytical estimates are dis-
cussed in Section 7 and conclusions are drawn in
Section 8.

2. The HMF model

The Hamiltonian we consider is the following:

H{6:}, {p)=K+V, (D
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where
Ay
i=1
€ N
V= —27\]-'21[1 — cos (6 —0))] 2)
Ij=

are the kinetic and potential energies. The model de-
scribes the motion of N rotators characterized by the
angle 6; € [0, 2): each rotator interacts with all the
others. One can define a spin vector associated with
each rotator m; = (cos (#;), sin (6;)). The Hamilto-
nian then describes N classical spins similarly to the
XY model, and a ferromagnetic or an antiferromag-
netic behavior according to the positive or negative
sign of € [1,2]. In the following we will consider only
the ferromagnetic (attractive) case and moreover we
put € = 1 without loss of generality. After defining
M = (I/N)vazlm,- = (M,, M,), the potential en-
ergy V can be rewritten as

N N
Vi=S0- M+ M) = 5 (1= M), 3)
The equations of motion then read

6;=pi, Pi= — sin(@)M, + cos(6)M,,
i=1,..N. “
The evolution equations of the tangent vector are
3’V
— ) ———46y,
2 30,00,

j
i=1,..,N, 5)

86, =6p;, 8p =

where the diagonal and off-diagonal terms of the Ja-
cobian J;; = — 32V /36,36, are

. 1
Ji = — cos (0:) My — sin (6:) My + ., 6
Jij = (/N)cos(8; —6;), i#]. (N
Expression (6) can also be written for convenience as
1
Jii = —MCOS(Qi—¢)+N, 3

where ¢ is the phase of M.

The HMF model was initially proposed in [1,2]. A
time discrete version of it was previously introduced
in [37] in the form of globally coupled Chirikov stan-
dard maps. The Lyapunov instability of the HMF has
been first studied numerically in [10,11], and analyti-
cally in [38] using a Riemaniann geometry approach
[12-15]. The connection between Lyapunov instability
and thermodynamical properties has been established
in [3]. In the original proposal of the HMF [1,2], the
relation of the model with self-gravitating systems (in
the attractive case) and charged sheets models (in the
repulsive case) was studied; this has been also consid-
ered for the gravitational case in [39,40] and taken over
in the context of plasma models in [41,42]. It has also
been shown that the HMF is the peculiar representa-
tive of a larger class of models, whose thermodynam-
ics can be solved exactly [41]. Moreover, anomalous
diffusion properties of a generalization of the model,
with two angles for each rotator, have been recently
studied [43].

3. Canonical and microcanonical results

It is interesting to look at the predictions of statis-
tical mechanics. We restrict here to the N— oo limit,
where microcanonical and canonical ensemble results
coincide for averaged quantities (apart from excep-
tions near first-order phase transitions, see [44,45]).
The free energy of our model can be easily obtained
in the canonical ensemble. This was done in [1,2] and
the result reads

1 2
-pr =g ()

_F + max (— y_2 + 10g(27r10(y))) ©)]
2 ¥ 28 '

where § = 1/kgT (the Boltzmann constant kg is set
to 1) and I; is the modified Bessel function of ith order.
The auxiliary variable y is introduced to decouple the
particles by the usual Hubbard—Stratonovich trick for
Gaussian integrals, and the search of the maximum in
Eq. (9) (which is a consequence of the continuum limit
N— oo solved with the saddle point method) leads to
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the consistency equation

y 14
Z—7—=0 am
g Io
The magnetization M = I;/Ij is obtained by solving
the consistency equation, which is done numerically.
It vanishes for 8 < B. = 2, the inverse critical temper-
ature. At low temperatures it approaches 1 (the limit
of I1/Ip).
The energy—temperature relation (sometimes called
the caloric curve) is
E 0(BF 1 1
SE_WD L la-m, (1D
N ap 28 2
thus U, = E./N = 3/4.
Close to the critical point B— B, magnetization
and energy behave as

m~d L1 (12)
V2 f

~ L[ 8B 1
U~2ﬁ [1 7 ]+2. (13)

Hence, M vanishes with the 1/2 classical mean field
exponent and the specific heat Cy = aU/dT is finite
at the critical point Cv (8;) = 5/2 and constant (Cy =
1/2) in the high-temperature phase. Thus for what
concerns the critical behavior, Cy ~ (T, — T) ~ % with
a=0.

These theoretical resuits are compared with those of
numerical simulations in Fig. 1, where care is taken to
use almost equilibrated initial data in order to reduce
the relaxation time (as discussed in Sections 4 and 5).
We have integrated Eqgs. (4) using fourth-order sym-
plectic algorithms [46,47] with a time step At ~0.2,
adjusted to maintain the error in energy conservation
below AE/E = 107 3. The agreement is good over
the whole energy range, and finite N effects, although
present, are weak.

In the inset of Fig. 1(b) we plot the results obtained
starting from nonequilibrated initial data (the “water
bag” initial condition discussed in Section 5) and al-
though the integration time was quite long (010%)),
a sharp disagreement with canonical ensemble pre-
dictions is observed just below the critical point. A

region of negative specific heat is present and a con-
tinuation of the high-temperature phase (linear T vs.
U relation) into the low-temperature one (metastabil-
ity). It is very intriguing that these out-of-equilibrium
quasi-stationary states (QSS) show a caloric curve very
similar to the one found for first-order phase transi-
tions [43—45,48,49]. In that case, however, the corre-
sponding states are equilibrated and do not die asymp-
totically, as it is shown in Section 5 for our QSS.
In our case, at equilibrium, we do not have phase-
coexistence, all rotators belong to a single cluster (see
Section 4); phase-coexistence can arise only as a fi-
nite N nonequilibrium effect. The existence of long-
living nonequilibrium states has been noticed already
in [3,10,11] and a connection to critical slowing down
has also been proposed. More recently, it has also been
found numerically in other one-dimensional models
[50] and in self-gravitating systems [51], but in this
case it is not associated to the closeness of a phase
transition. The coexistence of different states in the
continuum limit near the critical point is a purely mi-
crocanonical effect. It arises because of the inversion
of the t— oo limit with the N— 00 one.

Concerning fluctuations, it is well known that the
predictions of microcanonical ensemble differ from
those of the canonical [52]. For instance, while in
the canonical ensemble kinetic energy fluctuations are
given by

_Ucan(K)z ((Kz)can—'<K><2:an)= 1

Ecan— ’
VN N V2B

their expression in the microcanonical ensemble is
[38]

(14)

oK) Ty, 1

=T N TR 1-2M@M/dTy)’

(15)

where T, = 2(K),/N (for a rigorous definition of
microcanonical temperature see [53]).* The latter is
compared with numerical simulations in Fig. 5(b). The

4 The temperature defined through the kinetic energy is found in
our model to agree with Rugh’s temperature.
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Fig. 1. Theoretical predictions in the canonical ensemble (full curve) for the magnetization M vs. U, panel (a), and for the caloric curve T
vs. U, panel (b), in comparison with numerical simulations (microcanonical ensemble) for N = 100, 1000, 5000, 20 000. The vertical line
indicates the critical energy U. = 3/4. We plot also the microcanonical results for the quasi-stationary states (QSS) in the case N = 20000

(losanges) in the inset of panel (b).

specific heat is [52]

—1
w1 (ZkY
qmj(12(n)) , (16)

and also compares quite well with numerical simula-
tions (see Fig. 5(c)); although finite N effects are ob-
viously stronger for fluctuations than for the averages.

4. The Vlasov solution

The Vlasov equation for our system reads

A v

i—y 1
ar P60 " 30 ap a7

where f(8, p, t) is the normalized distribution func-
tion and the potential V satisfies the equation

2r oc

32V 7 7 7 I3 ’
872://cos(e—e)f(e,p,r)dedp- (18)

0 —o0

A simple hypothesis that can be made on the distribu-
tion function f is that it factorizes as

= fo(pg@, 0. (19)

Although simple, this is a very strong hypothesis and
its validity can at present be justified only by the cor-
rectness of the results which are derived thereby (see
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Fig. 2. Equilibrium reduced distribution functions in angles § and momenta p for U = 0.095 ((a) and (b)) and U = 0.36 ((c) and (d)).

The numerical simulations for N =

the following). In the high-temperature phase one ex-
pects a uniform distribution in 6 and then f should
depend only on p, this fact is then consistent with
the factorization hypothesis. Lowering the tempera-
ture below the transition point, a modulation in & ap-
pears. This is a manifestation of the Jeans instability
(see [39,40)). If the modulation is not too strong, the
factorization hypothesis is again reasonable. However,
in the low-temperature/energy phase this hypothesis
has no clear a priori justification.
By further requiring that fo is Gaussian

L (_P_z) 20)
ST P\ T2t )

one gets the equation

fo=

3 3
%8 L % —(M\ cos — M, sin8)g(8) = 0,

ar " Pae
@

where M, = [ cosfgdf, M, = [ sinfgde.

1000 (histogram) are compared with the theoretical distributions (20), (22).

Restricting to the stationary solution, dg/dt = 0
one can easily solve for g(8)

1
g = goexp [T(My sin@ + M, cos 9)]

= goexp [% cos (0 — ¢)] , (22)
where go = 1/(2n Io(M/T)) as imposed by normal-
ization and ¢ is the phase of M. It must be observed
that g is expressed in terms of (M., M) or (M, ¢),
which are themselves functions of g; so one must solve
the problem self-consistently, after writing the equa-
tions for the two components of the magnetization

11 (M/T)

MX=COS¢ W)‘, (23)
_ L(M/T)
SN Ty @9

These equations coincide exactly with the consistency
equations (10) of the solution in the canonical ensem-
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Fig. 3. Reduced distribution function in p for U = 0.69 and N = 1000 at increasing times. The initial distribution is a water bag

(histogram). The thick full line is the equilibrium distribution.

ble. Once (M,, M,) are determined by solving (nu-
merically) Eqs. (23) and (24), they can be substituted
back into Eq. (22), thus obtaining the stationary dis-
tribution function. Due to the global phase translation
invariance of the model, for any M the choice of the
phase ¢ is arbitrary, as reflected in the solutions of Eqs.
(23) and (24). With respect to the results in [39,40]
we have fully determined the distribution function by
imposing the self-consistency conditions through Eqgs.
(24).

In the high-temperature phase M = 0 thus g =
1/(27) is uniform.

At very low-temperature one can use the asymptotic
development of Jy:

1
1 —
[+82+ ]

to get the Gaussian

_ exp(z)

I
0(z) NirE

(25)

1 6?
o~ e (~53) o
where 02 = T/M is the variance, which vanishes with
T, giving a Dirac-§ at zero temperature.

A comparison of formulas (20) and (22) with nu-
merical data is shown in Fig. 2; the theoretical curve
fits the data very accurately with no free parameter.
Both in the low-energy region (Figs. 2(a) and (b)) and
at higher energy, where the cluster drifts (Figs. 2(c)
and (d)), the agreement is very good. The theory does
not determine the value of ¢, which remains arbitrary;
so we have adjusted this value to the center of the
cluster, which moves in time quite irregularly.

5. Slow relaxation to equilibrium

Around the critical energy, relaxation to equilibrium
depends in a very sensitive way on the adopted initial
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Fig. 4. (a) Relaxation to equilibrium of the Boltzmann entropy of the reduced distribution in p for N = 1000, N = 5000 and N = 10000,
(b) Linear increase with N of the timescale 7, for the relaxation to equilibrium.

condition [54]. When starting with “water bag” ini-
tial conditions, i.e. a flat distribution function of finite
width centered around zero for fu(p), and putting all
rotators at ¢; = 0 (g(8) = §(0)), we reveal the pres-
ence of quasi-stationary (long living) nonequilibrium
states (QSS) (see the inset of Fig. 1(b)). In Fig. 3 the
evolution to equilibrium of the QSS state is shown by
the time evolution of the reduced distribution function
fo(p,t).Itisonly atf = 5x 10° that a good reproduc-
tion of the Gaussian distribution and a convergence to
the predicted equilibrium temperature 7, = 0.4757
for U = 0.69 is obtained for N = 1000. Such a slow
relaxation is observed in the region just below the crit-
ical point (see Fig. 1(b)) and aiso around U ~ 1. In or-
der to study the N-dependence of the relaxation time
7, we have roughly quantified the distance from the

equilibrium state by measuring

AS = |S(@) — 5%, (27)

where S = — [ fo(p,1)In fo(p,t)dp is the Boltz-
mann entropy of the momentum reduced distribution
function, and S its equilibrium value when the dis-
tribution is a Gaussian at the given equilibrium tem-
perature 7,. The results, shown in Fig. 4, clearly in-
dicate an increase of the relaxation time with N (Fig.
4(a)), which can be approximately fitted with a linear
law 7, ~ N. The convergence to the equilibrium value
of S is not exact at finite N and the error decreases as
N ~ /2 this is shown in Fig. 4(a) by the convergence
to a decreasing value (horizontal lines) as N is in-
creased from 1000 to 10000. A similar law was found
in [1,2] by studying the time needed to reach equipar-
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tition of rotators velocity in the large U region and in
[42] analyzing the time needed to absorb holes in the
momentum distribution (so-called Dupree structures
in plasma physics) for the antiferromagnetic HMF. It
then seems that various indicators agree in suggesting
a diverging timescale with N. However, the timescale
also depends on U, and what we have here found is
that it is much greater in the region near the critical
point. This could be a manifestation of critical slow-
ing down.

6. Lyapunov spectra and Kolmogorov-Sinai
entropy

We have computed the Lyapunov spectrum A;, i =
1, ..., N, by the standard method of [55]. The average
number of time steps in order to get a good conver-
gence was of the order 10°. We discuss in the fol-
lowing numerical results for system sizes in between
N =10 and N = 20000.

In Fig. 5 (a) we plot A as a function of U for vari-
ous N values. As the system is integrable both in the
limit of very small and very large energies (reducing
in the former case to weakly coupled harmonic oscil-
lators and in the latter to free rotators), the maximal
Lyapunov exponent must vanish in these two limits.

In the region of weak chaos, for U < 0.25, the curve
has a weak N-dependence. Then A; changes abruptly
and a region of stronger chaos begins. In [1,2] it was
observed that in between U = 0.2 and U = 0.3 a
different dynamical regime sets in and particles start to
evaporate from the main cluster. A similar regime was
found in {21] and this behavior is also similar to the
one found in [6,7] at a solid-liquid transition. In this
region of strong chaoticity we observe a pronounced
peak already for N = 100 [10,11], which persists and
becomes broader for N = 20 000.

The standard deviation X, of the kinetic energy
fluctuations is plotted in Fig. 5(b) and it compares quite
well with the theoretical prediction (15), although fi-
nite N effects are larger than for averaged quantities.
In Fig. 5(c) we report the microcanonical specific heat
obtained with formula (16), compared with numeri-
cal simulations at increasing values of N. Both these

0.2 'T'T"‘I"‘\"I"'I"'I"—rl""‘]
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Fig. 5. (a) Numerical data for the largest Lyapunov exponent as
a function of U for various system sizes: N = 100, 1000, 5000
and 20000. (b) Kinetic energy fluctuations X', vs. U. (c) Specific
heat obtained from formula (16). The vertical line indicates the
critical energy U, = 3/4. The full lines in panels (b) and (c) are
the microcanonical predictions.

quantities display a similar behavior to the maximal
Lyapunov exponent: they increase up to the critical
point and then drop to zero. It is therefore quite natu-
ral to associate the growth of the Lyapunov exponent
to the growth of fluctuations, as expressed both by ki-
netic energy fluctuations and specific heat. In this re-
spect a similar connection was proposed in [36]. Un-
fortunately, a theoretical formula for the Lyapunov ex-
ponent as N— oo does not yet exist (see anyway Sec-
tion 7); however, the data in Fig. 5 (a) already show
what we should expect for the convergence of A| as
N increases. For U > U, A1—0 as N— 00, thus re-
vealing the presence of a whole region of integrability
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Fig. 6. (a) Convergence to zero of the largest Lyapunov exponent vs. N in the high-energy region. The fitted curve is the power law
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rather weak N dependence is observed.

in this limit; rotators decouple, reducing the system to
a “gas” of free rotators (which is consistent also with
the vanishing of kinetic energy fluctuations). Fig. 6
(a) shows that the convergence to zero can be fitted as
A1~ N ~1/3 This scaling law can be derived theoret-
ically using a random matrix approximation [3] (see
also Section 7), which is also shown in the same fig-
ure to approximate quite well the numerical results at
large enough energy. (An N ~!/3 convergence to the
asymptotic value of the Lyapunov exponent is also ob-
served in systems of hard spheres [57].) The question
is still open whether A will show a discontinuity at
U, in the N—oc limit, as the kinetic energy fluctua-
tions and specific heat do. Strong finite size effects are
present in the region U €[0.2,0.75]. This is the re-
gion where the cluster drifts (see [1,2]), while particles

172 growth of the maximal Lyapunov exponent vs. U at small U, a

evaporate from and condensate on it. The Lyapunov
exponent is here significantly larger than at smaller
energies. For U < 0.2, we observe a fast convergence
to the N— o0 limit, and the scaling law A ~+/U is
numerically obtained (see Fig. 6(b)). A heuristic justi-
fication of this scaling was proposed in [3], and a new
derivation is presented in Section 7.1.

The extensivity of the Lyapunov spectrum was first
proposed by Ruelle [58] and numerically tested in
[59,60] (see [61] for a review). It amounts to checking
that plotting A; vs. i/N and letting N go to infinity,
while keeping fixed physically intensive parameters
(in our case energy density or temperature), one ob-
tains a convergence to an asymptotic curve, so called
distribution of Lyapunov exponent. This is verified
for our model in Fig. 7(a) at various energy densi-
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Fig. 7. (a) Lyapunov spectra for three different values of U at different N in linear and lin-log scale (inset for N = 20) showing the
convergence (weaker for the U = 0.7 case) to the asymptotic distribution. (b) Lyapunov spectra for fixed N = 100 with two different values
of the energy, below (U = 0.7) and above (U = 0.5) the critical energy. No significative differences are observed at these values of N.
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Fig. 8. The Kolmogorov—Sinai entropy density Sgs/N vs. U at increasing values of N. The convergence to the thermodynamic limit of
the KS entropy density is shown in the inset for U = 0.01, 0.1, 0.3, 0.7. The convergence is weaker for this latter U value.

ties. The asymptotic Lyapunov distribution is more
quickly reached, as N increases, at smaller energies
(confirming the fast N convergence observed above
for the maximal Lyapunov exponent at small energy).
The data at U = 0.7 show a much weaker conver-
gence to the asymptotic spectrum, as also confirmed
by looking at the Kolmogorov—Sinai entropy density
at the same value of U (upper points in the inset of
Fig. 8). Heavier numerical simulations are needed to
assess the convergence of the spectrum in this energy
region. The spectra have a curious exponential shape
in the first part (see the inset of Fig. 7(a)), which was
already noticed in [37]. No significative change in the
shape of the spectra at N = 50 and N = 100 is ob-
served when going from below to above the phase
transition point (see Fig. 7(b) for the N = 100 case).
However, we cannot exclude that differences in the
spectra could arise at larger values of N, which are so
far inaccessible to numerical experiments.

The Kolmogorov-Sinai (KS) entropy density
(which, due to Pesin’s formula, is in our case the sum
of the positive Lyapunov exponents divided by N),
Sks/N, is plotted in Fig. 8 against U. It shows again
a peak at U, a fast convergence to a limiting value
as N increases in the small energy limit and a slow
convergence to zero (as expected) for U > U.. The
scaling laws are here roughly: Sks/N ~ U*/* at small
U, see Fig. 9 (a), and Sxs/N ~N ~1/ for U > U,
see Fig. 9(b) (but a more refined numerical analysis
is needed to confirm these results).

Therefore, the analysis of the behavior of the Lya-
punov spectrum and of the KS entropy confirms
the picture already emerging from the study of the
maximal Lyapunov exponent, showing an increase
of microscopic chaos near the phase transition point.
It is somewhat intriguing that it is precisely when
chaos is stronger that one reveals a slowing down
of the relaxation to equilibrium (see Section 5); al-
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though not unexpected, because it is quite simplistic
to associate the notion of chaos to that of efficient
diffusion of orbits in phase space. When starting from
a “water bag” initial condition one reaches the almost
frozen QSS state, and also for this state the transient
Lyapunov exponent has been checked to be positive,
although slightly different from the asymptotic value
in the equilibrium state. It could be that the phase
space near the transition point has a rich structure
with many coexisting chaotic QSS states.

7. Analytical estimates of the maximal Lyapunov
exponent

In this section we discuss some theoretical ap-
proaches which allow to justify the scaling laws of

the maximal Lyapunov exponent observed in numer-
ical experiments, and also to obtain some order of
magnitude estimates.

7.1. Using the Vlasov solution

One can try to use the stationary Vlasov distribution
function (20) and (22) to derive some properties of the
tangent space. For instance, averaging the Jacobian J;;
(6 and 7) over this distribution, one obtains a constant
matrix whose diagonal and off-diagonal elements are
~M? 4+ 1/N and M?/N, respectively (we are here
also neglecting correlations among the particles). It
is then quite easy, being now the Jacobian a constant
matrix, to compute the maximal Lyapunov exponent.
The result is
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1—M?

A =
! N

, (28)

with Lyapunov eigenvector ({86;}, {6p;}) = (a,b),
the vectors a and b being constant. This formula has
the correct dependence on M, in fact at small ener-
gies the virial relation (K) ~ (V') holds and then U =
E/N ~1— M?, giving A ~ /U, which is what is ob-
served numerically. However, formula (28) predicts
that the Lyapunov exponent vanishes with N ~1/2,
which is not observed in numerical experiments. We
have found numerically that, even if we allow for the
true temporal fluctuations of M2, we obtain for the
Lyapunov exponent the same value of formula (28)
and the same Lyapunov eigenvector. On the contrary,
if we look at the Lyapunov eigenvector given by the
true dynamics, we observe that it is far from being con-
stant, only a few components being significantly dif-
ferent from zero. We have checked that the number of
nonvanishing components of the Lyapunov eigenvec-
tor remains constant as N increases (this has also been
recently found also for a generalization of the HMF
studied in [43]). Thus, the typical size of each com-
ponent of the vector remains constant as N grows (re-
member that eigenvectors are normalized), while for
constant eigenvectors this size decreases as N ~1/2;
this is a naive argument that can explain the extra
N ~1/2 present in formula (28) with respect to what
is observed for the true Lyapunov, i.e. Aj ~~/U. We
have recently developed a perturbation theory scheme,
which shows that for sparse eigenvectors A| does not
vanish with N at small energies and, with some addi-
tional hypotheses, one obtains the VU law [62].

7.2. A numerical test of a recently proposed formula

We compare in this section a recently proposed for-
mula for the maximal Lyapunov exponent [12-15,38]
with numerical results, giving also an intuitive inter-
pretation of it for our model. In [12-15] a general
method is formulated to describe Hamiltonian chaos
using the differential geometric structure underlying
the dynamics. The authors consider the Hamiltonian
many-body dynamics as a geodesic flow on a Rie-
mannian manifold; then chaotic motion reflects the in-

stabilities of the geodesic flow, which depend on the
curvature properties of the manifold. They obtain the
following formula for A;:

_ A 282
T2 734
; 173
482
A= 20_%1’ -+ \/<'TO> + (20(221')2 s (29)

where £2p and aé are the average Ricci curvature and
the variance of its fluctuations, respectively. For the
HMEF, these two quantities turn out to be given by
very simple expressions in terms of the averages and
fluctuations introduced in Section 3 (see also [38])

1 1
90=(M2>—N=Tu+(1—2U)—

Ns
2
op=Noi, =4X], (30)
where ai,z is the variance of the fluctuations of M?.

All this is the consequence of the fact that the Ricci
curvature, — 1/N Zi Ji; with J;; given by formula (6),
is simply given in our model by M> — 1/N. The Ricci
curvature is assumed in [12-15] to be a §-correlated
stochastic process in time, and the correlation time 7
in formula (29) is estimated as

7! =2('L']_l +r271),

s «/.Qo
=, n=—. 3D
2820+ 00 oR

Some comments about the derivation and the use of
formula (29) are very important. It is derived in the
“diagonal” approximation, which corresponds to ne-
glect the effect of off-diagonal terms (7) in Eqs. (5).
This approximation has been checked numerically not
to be valid at small energies, leading to a value of i
which is orders of magnitude less than the true one
(see also Fig. 10). The assumption of a §-correlated
stochastic process makes easier the calculation of A,
but reduces the range of applicability of formula (29).
The estimate for 7 is a rather delicate problem, where
some arbitrariness can enter the theory [7].

In the high-energy phase, M fluctuates above zero
and scales with N ~!/2 at large N, then we have
(M?)~oy2~N~1 and moreover t=1,/2 since
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1, = M/(042/N) = O(1) while 7; ~ N'/4. Hence
one finds [38]

A ~A~@No D~ N, (32)

In the low-energy phase 0,2 <« M? and A; reduces
to
425 T

M2’
which gives a relation between A and the fluctuations
of kinetic energy. This result supports the link between
chaos and kinetic energy fluctuations already claimed
in [3] although the formula derived heuristically there
was different, and in better agreement with the scaling
law for small U.

In Fig. 10 we compare the numerically computed
values of A1 at increasing values of N with those ob-
tained from formula (29), using both the finite N nu-
merical values for (M?) and X', and the thermody-
namic limit values in the microcanonical ensemble.

)\.1 ~ (33)

We have also checked that Egs. (30) are well repro-
duced by numerical simulations. Formula (29) repro-
duces the behavior of A; vs. U within a factor of 2
over a large range of energies. In particular, it pre-
dicts correctly a maximum of A; around U, and the
N ~!'3.1aw in the high-energy phase.

However, in the limit U—0 this formula gives
A ~U?, as can be easily derived from formula
(33), which is sharply in contrast with the behavior
A1 ~ /U observed in numerical simulations (see Fig.
6(b)). We think that, in this limit, the stochastic ap-
proximation for the average Ricci curvature breaks
down, because this quantity is in our case nothing
but M?, and this is an almost regularly oscillating
quantity as U—0, due to the collective excitations
of the cluster. However, it is possible to use t as a
fitting parameter to reproduce the numerical data. In
fact some preliminary numerical investigations have
shown that in this region the correlation time given
by Eq. (31) strongly underestimates the realistic one.
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8. Conclusions

We have investigated the dynamical and statistical
behavior of a system with long-range forces show-
ing a second-order phase transition. Both the maximal
Lyapunov exponent A; and the Kolmogorov-Sinai en-
tropy density Sks/N are peaked at the phase transi-
tion point, where kinetic energy fluctuations and spe-
cific heat are maximal. There is actually a small shift
to lower energies due to finite size effects. The lat-
ter are present also in the Lyapunov spectra and in
the Kolmogorov—Sinai entropy. Above the phase tran-
sition point, both A| and Sks vanish as N—oc. We
think that this toy model contains some important in-
gredients to understand the behavior of macroscopic
order parameters when dynamical chaos is present at
the microscopic level. Most of our findings are prob-
ably common to other Hamiltonian systems showing
second-order phase transitions. In particular, our re-
sults could be very important in order to understand
the relaxation to the equilibrium solution and the suc-
cess of statistical approaches in describing the nuclear
multifragmentation phase transition.
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