Irregular diffusion in the bouncing ball billiard

Laszlo Matyas1 \quad Rainer Klages2 \quad Imre F. Barna3

1Sapientia University, Dept. of Technical and Natural Sciences, Miercurea Ciuc, Romania
2Queen Mary University of London, School of Mathematical Sciences, UK
3Central Physical Research Institute, Budapest, Hungary

Institut für Laserphysik, Universität Hamburg
11 March 2011
1 Motivation: the bouncing ball billiard
2 Frequency locking, diffusion and correlated random walks
3 Spiral modes and diffusion
4 Outlook: experiments on vibro-transporters
The bouncing ball: experiments

Pieranski (1983ff)
Tufillaro (1986ff)
“Jugend forscht” (2004?)

Luck, Mehta (1993): “chattering” bifurcations into chaotic motion?
Linz (2003?)
The bouncing ball: ‘theory’

linear stability analysis of the exact (implicit) equations of motion yields **frequency locking** regions (“tongues”):

- **high bounce approximation:**
 - for displacement amplitude $A \ll y_{\text{max}}$ ball’s max. height
 - eom’s become

$$
\begin{align*}
\theta_{k+1} &= \theta_k + v_k \\
v_{k+1} &= \alpha v_k + \gamma \cos \theta_{k+1}
\end{align*}
$$

- dissipative standard map
 - with θ_k: phase of the table; v_k: ball velocity at the kth collision
 - and $\gamma = 2\omega^2(1 + \alpha)A/g$

Tufillaro (1986ff)

- cp. with driven pendulum and Fermi acceleration

Hongler et al. (1989)

Luck, Mehta (1993)
The bouncing ball billiard

study gas of granular particles on vibrating surface coated with periodic scatterers:

motivated our one dimensional bouncing ball billiard:

at collision: two friction coefficients α perpendicular and β tangential to the surface

Q: \exists frequency locking in diffusion?

Farkas et al. (1999)
Urbach et al. (2002)
Frequency locking and diffusion

parameters: scatterer radius $R = 25\text{mm}$, amplitude $A = 0.1\text{mm}$, restitution $\alpha = 0.5$, $\beta = 0.99$

diffusion coefficient $D(f)$ from MD computer simulations:

- highly irregular $D(f)$, no monotonicity
- frequency locking \leftrightarrow largest maxima of $D(f)$
The bouncing ball billiard

Irregular diffusion

Spiral modes

Summary

Numerical analysis of the dynamics: resonance

∃ two types of attractors; projections at collisions:

attractor 1:

- ∃ 1/1-resonance \(\text{vertically}\), irregular motion \(\text{horizontally}\)
- traces of harmonic oscillator \(\text{separatrix}\)
- fan-shaped structure by \(\text{chaotic}\) scatterers
 \(\Rightarrow\) defines regime (b)(ii)
Irregular diffusion in the bouncing ball billiard

The bouncing ball billiard

Introduction

Summary

Irregular diffusion

Spiral modes

- 1/1
- 2/1
- 3/1

(b)(i) (b)(ii)

(b)(i) (b)(ii) (b)(i) (c) (d)

\[D \]

\[f \]
Numerical analysis of the dynamics: creeps

attractor 2:

• non-resonant irregular motion in \(x \) and \(y \)
• long creeps: sequences of correlated tiny jumps along the surface: regime (c)

both types of dynamics can be linked to each other ergodically (d) or exist on different attractors non-ergodically (b)(i)
Irregular diffusion in the bouncing ball billiard

Rainer Klages

10
Simple random walk approximation

Diffusion as a random walk on the line:

\[D_{\text{rw}}(f) = \frac{d^2}{2\tau(f)} \]

Distance \(d \) between wedges and escape time \(\tau \) out of wedge \(D_{\text{rw}}(f) \) for \(\tau \) numerically:

\[\tau \simeq \frac{d}{<v_x>} \simeq \frac{d}{\sqrt{2E_x}} \] links \(D_{\text{rw}}(f) \) to kinetic energy \(E_x(f) \)

dotted line: energy balance

\[E = E_x + E_y + E_{\text{pot}} \]

with

\[E_{\text{pot}} \simeq g\bar{y} \simeq gA, \quad E \simeq A^2\omega^2/2 \quad \text{and} \quad E_y \simeq 19E_x \]

leads to

\[D_{\text{stoch}}(f) \simeq \frac{d}{2}\sqrt{2E_x} \simeq \frac{d}{2}\sqrt{\frac{A^2\omega^2}{20}} - \frac{gA}{10} \]
Correlated random walk approximation

diffusion via Taylor-Green-Kubo formula:

\[D(f) = \frac{d^2}{2\tau} + \frac{1}{\tau} \sum_{k=1}^{\infty} < h(x_0) \cdot h(x_k) > \]

with lattice vectors \(h(x_k) = \pm d \) and equilibrium ensemble average \(< \ldots >\) (R.K., Korabel, 2002)

truncate series and express it by conditional probabilities

\[D_n(f) = \frac{d^2}{2\tau} + \frac{1}{\tau} \sum_{s_1\ldots s_n} p(s_1 s_2 \ldots) h \cdot h(s_1 s_2 \ldots) \]

examples: 1st order approximation by forward- and backward scattering: \(D_1 = D_0 + 2D_0(p_f - p_b) = D_0 + 2D_0(1 - 2p_b) \)

2nd order approximation: \(D_2 = D_1 + 2D_0(p_{ff} - p_{fb} + p_{bf} - p_{bb}) \)
Understanding correlations in deterministic diffusion

compute probabilities numerically and check convergence of higher-order terms to $D(f)$:

→ irregularities on fine scales are real and due to dynamical correlations

Hamiltonian billiard without vibrations and friction:

Harayama, Gaspard (2001) fractal diffusion coefficient in energy E, cp. to yesterday’s talk
Irregular diffusion for other parameters

2nd set of parameters closer to experiments: \(R = 15 \text{mm}, \ A = 0.1 \text{mm}, \ \alpha = 0.7 , \ \beta = 0.99 \)

\(D(f) \) from simulations:

- highly irregular diffusion coefficient, but very different from previous one

projections of velocities \(v_y^+ \) around \(y = 0 \):

- local extrema \(\leftrightarrow \) frequency locking?
- cp. ‘bifurcations’ \(\leftrightarrow \) local extrema!
projections of orbits onto the \((y, v_y^+)-plane:\)

(A) **onset of diffusion:**
particles oscillate harmonically with the surface

(B) **onset of 1/1-resonance:**
enhancement of diffusion; coexistence with creeping orbits
Irregular diffusion in the bouncing ball billiard

Rainer Klages
(C) **destruction of 1/1-resonance:** existence of a local minimum in the diffusion coefficient

(D) **new type of resonance:** a virtual harmonic oscillator mode (VHO) is forming; explains the second peak in $D(f)$; unstable around $f \approx 62$
Irregular diffusion in the bouncing ball billiard

Rainer Klages

50 55 60 65 70 75 80 85 90 95

D

0 500 1000 1500 2000 2500 3000

50 55 60 65 70 75 80 85 90 95

f
Spiral modes and diffusion

(E) the VHO spirals out: further enhancement of diffusion

(F) two-loop spiral
Irregular diffusion in the bouncing ball billiard

Rainer Klages
Spiral modes and diffusion 4

(G) onset of a third loop around $f \approx 76$: explains third local maximum

(H) onset of a fourth loop: related to fourth local maximum
note: diffusion coefficient is also irregular with respect to other control parameters α, β, R
Spiral modes quantitatively

frequency locking condition: $k := \frac{T_p}{T_f} = 2\nu_y^+ f / g$ with T_p
particle time of flight and T_f period of vibration

numerical finding: $D(f)$ has local maxima with complete VHO loops at half-integer k

spiral equation: assume flat surface and no correlations between collisions; from eom’s (Luck, Mehta, 1993):

$$y = -A \sin(2\pi ft_1), \quad \nu_y = \alpha g / 2(t_1 - t_0) - A2\pi f(1 + \alpha) \cos(2\pi ft_1)$$
with particle launched at time t_0 and first collision at t_1, cp. with simulations for $f = 72, 78$:
Outlook: Vibro-transporters

for agricultural material, also corrugated (Persson et al. (1992))

current generated by symmetry breaking;

current reversals under asymmetric vibrations:

reproduced in simulations with frequency locking (Elhor, Linz, 2003); cf. also Hongler et al. (1989); Han, Lee (2001)
Summary

- **bouncing ball billiard** models diffusion of a granular particle on a vibrating corrugated floor

- computer simulations show a **highly irregular frequency-dependent diffusion coefficient**; main impact by frequency locking and spiral modes

- **highly correlated nonlinear dynamics** yields further irregularities on fine scales, understood by correlated random walk approximations

- **fractal transport coefficients** in experiments?

References:
