Statistical Physics and Anomalous Dynamics of Foraging

Rainer Klages

Max Planck Institute for the Physics of Complex Systems, Dresden
Queen Mary University of London, School of Mathematical Sciences

Theory Colloquium at the Technische Universität Dresden
Institute of Theoretical Physics, 21 April 2016
Overview

Theme of this talk:
Can search for food by biological organisms be understood by mathematical modeling?

Three parts:

1. Lévy flight hypothesis: review
2. Biological data: analysis and interpretation
3. Foraging bumblebees: own research
Karl Pearson (1906):
model movements of biological organisms by a random walk
in one dimension: position x_n at discrete time step n

$X_{n+1} = X_n + \ell_n$

- here: steps of length $|\ell_n| = \ell$ to the left/right; sign determined by coin tossing
- Markov process: the steps are uncorrelated
- generates Gaussian distributions for x_n (central limit theorem)
Lévy flight search patterns of wandering albatrosses

famous paper by Viswanathan et al., Nature 381, 413 (1996):

for albatrosses foraging in the South Atlantic the flight times were recorded

the histogram of flight times was fitted by a Lévy distribution (power law $\sim t^{-\mu}$)
What are Lévy flights?

a random walk generating Lévy flights:

\[x_{n+1} = x_n + \ell_n \]

with \(\ell_n \) drawn from a Lévy \(\alpha \)-stable distribution

\[\rho(\ell_n) \sim |\ell_n|^{-1-\alpha} (|\ell_n| \gg 1) , \quad 0 < \alpha < 2 \]

- fat tails: larger probability for long jumps than for a Gaussian!
Properties of Lévy flights in a nutshell

- a Markov process (*no memory*)
- which obeys a generalized central limit theorem if the Lévy distributions are α-stable (for $0 < \alpha < 2$)

 Gnedenko, Kolmogorov, 1949

- implying that they are scale invariant and thus self-similar

- $\rho(\ell_n)$ has infinite variance

\[
\langle \ell_n^2 \rangle = \int_{-\infty}^{\infty} d\ell_n \rho(\ell_n)\ell_n^2 = \infty
\]

- Lévy flights have arbitrarily large velocities, as $v_n = \ell_n/1$
Lévy walks

cure the problem of infinite moments and velocities:

- a Lévy walker spends a time
 \[t_n = v \ell_n, \ |v| = \text{const.} \]
 to complete a step; yields finite moments and finite velocities in contrast to Lévy flights

- Lévy walks generate anomalous (super) diffusion:
 \[\langle x^2 \rangle \sim t^{\gamma} \ (t \to \infty) \text{ with } \gamma > 1 \]

Optimizing the success of random searches

another paper by Viswanathan et al., Nature 401, 911 (1999):

- question posed about “best statistical strategy to adapt in order to search efficiently for randomly located objects”
- random walk model leads to Lévy flight hypothesis:

Lévy flights provide an optimal search strategy for sparse, randomly distributed, immobile, revisitable targets in unbounded domains

Brownian motion (left) vs. Lévy flights (right)
- Lévy flights also obtained for bumblebee and deer data
Revisiting Lévy flight search patterns

- Viswanathan et al. results revisited by correcting old data (Buchanan, Nature 453, 714, 2008):

 - no Lévy flights: new, more extensive data suggests (gamma distributed) stochastic process
 - but claim that truncated Lévy flights fit yet new data

Humphries et al., PNAS 109, 7169 (2012)
Lévy or not Lévy?

Lévy paradigm: Look for power law tails in pdfs!

Humphries et al., Nature 465, 1066 (2010): blue shark data

- blue: exponential; red: truncated power law
- environmental context explains Lévy and Brownian movement patterns of marine predators
- but: averaged over day-night cycle, cf. oscillations!
Optimal searches: adaptive or emergent?

strictly speaking two different Lévy flight hypotheses:

1. Lévy flights represent an (evolutionary) **adaptive** optimal search strategy
 Viswanathan et al. (1999)
 the ‘conventional’ Lévy flight hypothesis

2. Lévy flights **emerge** from the interaction with a scale-free food source distribution
 Viswanathan et al. (1996)
 more recent reasoning
An alternative to Lévy flight search strategies

Bénichou et al., Rev. Mod. Phys. 83, 81 (2011):

- for non-revisitable targets intermittent search strategies minimize the search time

- popular account of this work in Shlesinger, Nature 443, 281 (2006): “How to hunt a submarine?”; cf. also protein binding on DNA
In search of a mathematical foraging theory

Summary:
- two different Lévy flight hypothesis: adaptive and emergent
- scale-free Lévy flight paradigm
- problems with the data analysis
- intermittent search strategies as alternatives

Ongoing discussions:

Applications:
- search algorithms for robots? Nurzaman et al. (2010)
Foraging bumblebees: the experiment

- tracking of **bumblebee flights** in the lab: foraging in an artificial carpet of flowers with or without spiders
- **no test** of the Lévy hypothesis but work inspired by the *paradigm*

three experimental stages:

1. spider-free foraging
2. foraging under predation risk
3. memory test 1 day later

Ings, Chittka (2008)
Bumblebee experiment: two main questions

1. **What type of motion** do the bumblebees perform in terms of stochastic dynamics?

2. **Are there changes of the dynamics under variation of the environmental conditions?**
Flight velocity distributions

Experimental **probability density** (pdf) of bumblebee v_y-velocities without spiders (bold black)

best fit: mixture of 2 Gaussians, cp. to exponential, power law, single Gaussian

biological explanation: models spatially different flight modes near the flower vs. far away, cf. intermittent dynamics

big surprise: no difference in pdf’s between different stages under variation of environmental conditions!
Velocity autocorrelation function || to the wall

\[V_{y}^{AC}(\tau) = \frac{\langle (v_{y}(t) - \mu)(v_{y}(t + \tau) - \mu) \rangle}{\sigma^2} \]

- \(\eta \): friction, \(\xi \): Gauss. white noise

model: Langevin equation

\[\frac{dv_{y}}{dt}(t) = -\eta v_{y}(t) - \frac{\partial U}{\partial y}(y(t)) + \xi(t) \]

3 stages: spider-free, predation thread, memory test

result: velocity correlations with repulsive interaction \(U \)

bumblebee - spider off / on

Lenz et al., PRL 108, 098103 (2012)

all changes are in the flight correlations, *not* in the pdfs
Modeling free bumblebee flights

reorientation model:
describe 2d movement in comoving frame by
- speed \(v(t) = \text{const.} \)
- turning angle \(\beta(t) = \xi(t) \) as random variable from *non-uniform* pdf modeling persistence

generalized model for bumblebee flights far away from flowers constructed from experimental data:
- \(\beta(t) = \xi_v(t) \): power law correlated Gaussian noise
- \(\frac{dv}{dt} = g(v(t)) + \psi(t) \): generalized Langevin equation with anti-correlated Gaussian noise

Be careful with (power law) paradigms for data analysis.

Other quantities may contain crucial information about foraging; example: bumblebee flights under predation threat.

Conclusion:
A more general biological embedding is needed!
beyond the Lévy hypothesis:

to be published

Statistical physics and anomalous dynamics of foraging
MPIPKS Dresden, July - December 2015

F.Bartumeus (Blanes, Spain), D.Boyer (UNAM, Mexico), A.V.Chechkin (Kharkov, Ukraine), L.Giuggioli (Bristol, UK),
convenor: RK (London, UK), J.Pitchford (York, UK)

ASG webpage: http://www.mpipks-dresden.mpg.de/~asg_2015

Literature:
RK, Search for food of birds, fish and insects, book chapter (preprint, 2016)