Fluctuation relations for anomalous dynamics

Aleksei V. Chechkin1, Rainer Klages2

1 Institute for Theoretical Physics, Kharkov, Ukraine

2 Queen Mary University of London, School of Mathematical Sciences

Nonequilibrium Processes, Obergurgl, 1st September 2011
Outline

- ‘Normal’ fluctuation relations: motivation with some history

- Anomalous fluctuation relations: check transient fluctuation relations for three fundamental classes of anomalous stochastic processes

- Biological cell migration: brief outline and outlook towards checking these relations in experiments
two-dimensional fluid of soft particles under shear: measure the probability distribution \(\rho(\eta_t) \) of the entropy production rate \(\eta_t \sim P_{xyt} \) during time \(t \) in a nonequilibrium steady state

- ratio of the tails \(\rightarrow \) Second Law for small nonequ. systems
...with a groundbreaking idea

analytical argument (for $\rho(\eta t)$ in terms of the SRB measure) yielded the **steady state fluctuation relation**

\[\ln \frac{\rho(\eta t)}{\rho(-\eta t)} = t\eta t \]

confirmed by computer simulations (for long enough t):

proof on basis of chaotic hypothesis by Gallavotti, Cohen (1995)
A second pioneering paper

Consider a particle system *evolving from some initial state* into a nonequilibrium steady state.

Measure the probability distribution $\rho(\xi_t)$ of *entropy production* ξ_t during time t:

$$\ln \frac{\rho(\xi_t)}{\rho(-\xi_t)} = \xi_t$$

transient (Evans-Searles) fluctuation relation (TFR)
Brownian particle in a harmonic trap dragged with constant velocity v_\ast through a fluid:

- FRs can be checked in experiments!

Fluctuation relation for Langevin dynamics

warmup: check TFR for the overdamped Langevin equation

\[\dot{x} = F + \zeta(t) \]
(set all irrelevant constants to 1)

with constant field \(F \) and Gaussian white noise \(\zeta(t) \).

entropy production \(\xi_t \) is equal to (mechanical) work \(W_t = Fx(t) \)

with \(\rho(W_t) = F^{-1} \rho(x, t) \); remains to solve corresponding Fokker-Planck equation for initial condition \(x(0) = 0 \):

the position pdf is Gaussian,

\[\rho(x, t) = \frac{1}{\sqrt{2\pi} \sigma_x^2} \exp \left(-\frac{(x-\langle x \rangle)^2}{2\sigma_x^2} \right) \]

straightforward:

(work) TFR holds if \(\langle W_t \rangle = \sigma_{W_t}^2/2 \)

and \(\exists \) fluctuation-dissipation relation 1 (FDR1) \(\Rightarrow \) TFR

see, e.g., van Zon, Cohen, PRE (2003)
TFRs for anomalous dynamics

goal: check TFR for three fundamental types of *anomalous diffusion*

First type: Gaussian stochastic processes defined by the (overdamped) *generalized Langevin equation* (Kubo, 1965)

\[
\int_0^t dt' \dot{x}(t') K(t - t') = F + \zeta(t)
\]

with Gaussian noise \(\zeta(t)\) and a suitable memory kernel \(K(t)\)

examples of applications: polymer dynamics (Panja, 2010); biological cell migration (Dieterich et al., 2008)
split this class into two cases:

1. internal Gaussian noise defined by the FDR2

\[< \zeta(t) \zeta(t') > \sim K(t - t') , \]

which is correlated by \(K(t) \sim t^{-\beta} , \quad 0 < \beta < 1 \)

\(\rho(W_t) \sim \varrho(x, t) \) is Gaussian; solving the generalized Langevin equation in Laplace space yields subdiffusion

\[\sigma_x^2 \sim t^\beta \]

by preserving FDR1 which implies

\[< W_t > = \sigma_{W_t}^2 / 2 \]

for correlated internal Gaussian noise \(\exists \) TFR
TFR for correlated external Gaussian noise

2. consider overdamped generalized Langevin equation

\[\dot{x} = F + \zeta(t) \]

with correlated Gaussian noise defined by

\[\langle \zeta(t)\zeta(t') \rangle \sim |t - t'|^{-\beta}, \ 0 < \beta < 1, \]

which is external, because there is no FDR2

\(\rho(W_t) \sim \rho(x, t) \) is again Gaussian but here with superdiffusion by breaking FDR1:

\[\langle W_t \rangle \sim t, \ \sigma_{W_t}^2 \sim t^{2-\beta} \]

yields the anomalous TFR

\[\ln \frac{\rho(W_t)}{\rho(-W_t)} = C_\beta t^{\beta - 1} W_t \quad (0 < \beta < 1) \]

note: pre-factor on rhs not equal to one and time dependent
Relations to experiments

\[\ln \frac{\rho(W_t)}{\rho(-W_t)} = \frac{C_\beta}{t^{1-\beta}} W_t \quad (0 < \beta < 1) \]

experiments on slime mold:

computer simulation on glassy lattice gas:

Sellitto, PRE (2009)

⇒ anomalous fluctuation relation important for glassy dynamics
Second type of anomalous dynamics: consider the Langevin equation
\[\dot{x} = F + \zeta(t) \]
with white Lévy noise \(\rho(\zeta) \sim |\zeta|^{-1-\alpha} (\zeta \to \infty) , \, 0 \leq \alpha < 2 \)

Examples of applications: fluid dynamics (Solomon et al., 1993); Lévy flights for light (Barthelemy, 2008)

by solving the corresponding Fokker-Planck equation
\[\frac{\partial \rho}{\partial t} = -F \frac{\partial \rho}{\partial x} + \frac{\partial^\alpha \rho}{\partial |x|^{\alpha}} \]

with Riesz fractional derivative
\[\frac{\partial^\alpha \rho}{\partial |x|^{\alpha}} = \Gamma(1+\alpha) \frac{\sin(\alpha \pi/2)}{\pi} \int_0^\infty dy (\rho(x+y) - 2\rho(x) + \rho(x-y))/y^{1+\alpha} \]

and using the scaled variable \(w_t = W_t/(F^2 t) \) we recover
\[\lim_{w_t \to \pm \infty} \frac{\rho(w_t)}{\rho(-w_t)} = 1 \]
Touchette, Cohen, PRE (2007)

i.e., large fluctuations are equally possible
TFR for time-fractional kinetics

Third type of anomalous dynamics: via subordinated Langevin equation

\[
\frac{dx(u)}{du} = F + \zeta(u), \quad \frac{dt(u)}{du} = \tau(u)
\]

with Gaussian white noise \(\zeta(u) \) and white Lévy stable noise \(\tau(u) > 0 \); leads to the time-fractional Fokker-Planck equation

\[
\frac{\partial \rho}{\partial t} = \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \left[-\frac{\partial F}{\partial x} + \frac{\partial^2}{\partial x^2} \right] \rho
\]

with Riemann-Liouville fractional derivative

\[
\frac{\partial^\gamma \rho}{\partial t^\gamma} = \frac{\partial^m \rho}{\partial t^m} \left[\frac{1}{\Gamma(m-\gamma)} \int_0^t dt' \frac{\rho(t')}{(t-t')^{\gamma+1-m}} \right] \text{ for } m - 1 < \gamma < m, \ m \in \mathbb{N}
\]

and \(\frac{\partial^\gamma \rho}{\partial t^\gamma} = \frac{\partial^m \rho}{\partial t^m} \) for \(\gamma = m \), which preserves a generalized FDR1

examples of applications: photo current in copy machines (Scher et al., 1975) and related systems modeled by

Continuous Time Random Walk theory (Metzler, Klafter, 2004)

for this dynamics we recover the conventional TFR
Outlook: Anomalous dynamics of cell migration

single biological cell crawling on a substrate; trajectory recorded with a video camera (Dieterich et al., 2008)

movie: MDCKF: $t=210\text{min}$, $dt=3\text{min}$
Position distribution function

- **two types**: wildtype and deficient one
- \(P(x, t) \to \text{Gaussian} \ (t \to \infty) \) and kurtosis
 \[\kappa(t) := \frac{\langle x^4(t) \rangle}{\langle x^2(t) \rangle^2} \to 3 \ (t \to \infty) \]
 for Brownian motion (green lines, in 1d)
- **other solid lines**: fits from our model
- **also extracted**: mean square displacement, velocity autocorrelation fct.

\[\Rightarrow \text{crossover from peaked to broad non-Gaussian distributions} \]
new experiments on **murine neutrophils** under **chemotaxis**

Schwab, Dieterich et al. (unpub.)

- **linear drift** in the direction of the gradient, \(< y(t) > \sim t \)
- \(msd(t) - < y(t) >^2 \sim t^\beta \) with same exponent \(\beta > 1 \) as in equilibrium \(\Rightarrow \) **fluctuation dissipation relation** 1
- data suggest an **anomalous fluctuation relation** of the type as obtained for generalized Langevin dynamics
The model

cell data fit by a fractional Klein-Kramers equation with external force $F(x)$ (Metzler, Sokolov, 2002):

$$\frac{\partial P}{\partial t} = -\frac{\partial}{\partial x}[vP] + \frac{\partial^{1-\alpha}}{\partial t^{1-\alpha}} \kappa \left[\frac{\partial}{\partial v} v - \frac{F}{\kappa m} \frac{\partial}{\partial v} + v_{th}^2 \frac{\partial^2}{\partial v^2} \right] P$$

with probability distribution $P = P(x, v, t)$, damping term κ, thermal velocity v_{th} and Riemann-Liouville fractional derivative of order $1 - \alpha$

for $\alpha = 1$ ordinary Klein-Kramers equation recovered

analytical solutions yield correctly drift, msd, VACF and (for large enough κ and t) the pdf's
TFR tested for three fundamental types of anomalous stochastic dynamics:

1. Gaussian stochastic processes with correlated noise:
 \[\text{FDR2} \Rightarrow \text{FDR1} \Rightarrow \text{TFR} \]
 TFR holds for internal noise, mild violation for external one

2. strong violation of TFR for space-fractional (Lévy) dynamics

3. TFR holds for time-fractional dynamics

same results obtained for a particle confined in a harmonic potential dragged by a constant velocity (cf. experiment by Wang et al., 2002)

outlook: work in progress on more generalized Gaussian processes and cell migration
References

- book on *Nonequilibrium statistical physics of small systems* currently in preparation (RK, Just, Jarzynski, Eds.; for 2012)

Happy Birthday Denis!