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This chapter introduces to chaos in dynamical systems and how this
theory can be applied to derive fundamental laws of statistical physics
from first principles. We first elaborate on the concept of deterministic
chaos by defining and calculating Ljapunov exponents and dynamical en-
tropies as fundamental quantities characterizing chaos. These quantities
are shown to be related to each other by Pesin’s Theorem. Considering
open systems where particles can escape from a set asks for a gener-
alization of this theorem which involves fractals, whose properties we
briefly describe. We then cross-link this theory to statistical physics
by discussing simple random walks on the line, their characterization in
terms of diffusivion, and the relation to elementary concepts of Brown-
ian motion. This sets the scene for considering the problem of chaotic
diffusion. Here we derive a formula exactly expressing diffusion in terms
of the chaos quantities mentioned above.

1. Introduction

This book chapter introduces to chaos in dynamical systems and how this

theory can be applied to derive fundamental laws of statistical physics from

first principles. Very intuitively, one may say that the path of a point

particle generated by a dynamical system looks “chaotic” if it displays

“random-looking” evolution in time and space. A mathematically rigorous

definition of chaos was given in Ref.1 Therein it was discussed that even

1
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very simple one-dimensional maps can exhibit chaotic dynamics. Surpris-

ingly, abstract low-dimensional chaotic dynamics bears similarities to the

dynamics of interacting physical many-particle systems. This is the key

point that we explore in this chapter.

Over the past few decades it was found that famous statistical physical

laws like Ohm’s Law for electric conduction, Fourier’s Law for heat conduc-

tion, and Fick’s Law for the diffusive spreading of particles, which a long

time ago were formulated phenomenologically, can be derived from first

principles in chaotic dynamical systems. This sheds new light on the rigor-

ous mathematical foundations of Nonequlibrium Statistical Physics, which

is the theory of the dynamics of many-particle systems under external gra-

dients or fields. The external forces induce transport of physical quantities

like charge, energy, or matter. The goal of nonequilibrium statistical physics

is to derive macroscopic statistical laws describing such transport starting

from the microscopic dynamics for the single parts of many-particle sys-

tems. While the conventional theory puts in randomness “by hand” by

using probabilistic, or stochastic, equations of motion like random walks

or stochastic differential equations, recent developments in the theory of

dynamical systems enable to do such derivations starting from determinis-

tic equations of motion. Determinism means that no random variables are

involved, rather, randomness is generated by chaos in the underlying dy-

namics. This is the field of research that will be introduced by this chapter.

This theory also illustrates the emergence of complexity in systems under

nonequilibrium conditions: Due to the microscopic nonlinear interaction

of the single parts in a complex many-particle system novel, non-trivial

dynamics, in this case exemplified by universal transport laws, may emerge

on macroscopic scales. The dynamics of a complex system, as a whole, is

thus different from the sum of its single parts. In the very simplest case, this

idea is illustrated by the interaction of a point particle with a “scatterer”,

where the latter is modeled by a one-dimensional map. This is our vehicle

of demonstration in the following, because this simple model can be solved

rigorously analytically.

Our chapter consists of two sections: In Sec. 2 we introduce to two

important quantities assessing chaos in dynamical systems, Ljapunov ex-

ponents and dynamical entropies. The former are widely used in the applied

sciences to test whether a given system is chaotic, the latter is motivated by

information theory. Cross-links to ergodic theory by defining these quan-

tities are explored, which is a core discipline in mathematical dynamical
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systems theory. Interestingly, both these different quantities are exactly

related to each other by Pesin’s Theorem. Considering open system where

particles can escape from a set generates fractals, a concept that we will

introduce as well.

The latter problem cross-links to Sec. 3, which explores diffusion in

chaotic dynamical systems. After briefly introducing to the statistical phys-

ical problem of diffusion we outline a rigorous theory that enables one to

calculate diffusion coefficients characterizing the spreading of particles from

first principles. By combining this approach with a key result for open sys-

tems from the previous section we arrive at an exact formula expressing the

diffusion coefficient in terms of the two quantities characterizing determin-

istic chaos introduced before. This important result forms the highlight of

our exposition and concludes our chapter.

While Sec. 2 mainly elaborates on textbook material of chaotic dy-

namical systems,2–4 Sec. 3 introduces to advanced topics that emerged in

research over the past twenty years.5–7

2. Deterministic chaos

2.1. Dynamics of simple maps

Let us recall the following:

Definition 1. Let J ⊆ R, xn ∈ J, n ∈ Z. Then

F : J → J , xn+1 = F (xn) (1)

is called a one-dimensional time-discrete map. xn+1 = F (xn) are sometimes

called the equations of motion of the dynamical system.

Choosing the initial condition x0 determines the outcome after n discrete

time steps, hence we speak of a deterministic dynamical system. It works

as follows:

x1 = F (x0) = F 1(x0),

x2 = F (x1) = F (F (x0)) = F 2(x0).

⇒ Fm(x0) := F ◦ F ◦ · · ·F (x0)
︸ ︷︷ ︸

m-fold composed map

. (2)

In other words, there exists a unique solution to the equations of motion

in form of xn = F (xn−1) = . . . = Fn(x0), which is the counterpart of the
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flow for time-continuous systems. We will focus on simple piecewise linear

maps. The following one serves as a paradigmatic example:2,3,5,8

Example 1. The Bernoulli shift (also shift map, doubling map, dyadic

transformation)

1/2 10

1

Fig. 1. The Bernoulli shift.

The map shown in Fig. 1 is defined by

B : [0, 1) → [0, 1) , B(x) := 2x mod 1 =

{
2x , 0 ≤ x < 1/2

2x− 1 , 1/2 ≤ x < 1
. (3)

The dynamics of this map can be understood follows, see Fig. 2: Assume

we fill the whole unit interval with a uniform distribution of points. We

may now decompose the action of the Bernoulli shift into two steps:

(1) The map stretches the whole distribution of points by a factor of two,

which leads to divergence of nearby trajectories.

(2) Then we cut the resulting line segment in the middle due to the the

modulo operation mod 1, which leads to motion bounded on the unit

interval.

The Bernoulli shift thus yields a simple example for an essentially non-

linear stretch-and-cut mechanism, as it typically generates deterministic

chaos.3 The same mechanisms are encountered in more realistic dynamical

systems. We remark that “stretch and fold” or “stretch, twist and fold”

provide alternative mechanisms for generating chaotic behavior, see, e.g.,

the tent map mentioned in Ref.1 The reader may wish to play around with

these ideas in thought experiments, where the sets of points is replaced by

kneading dough. These ideas can be made mathematically precise by what

is called mixing, which is an important concept in the ergodic theory of

dynamical systems.5,9
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Fig. 2. Stretch-and-cut mechanism in the Bernoulli shift.

2.2. Ljapunov chaos

In Ref.1 Devaney’s definition of chaos was discussed, which requires that

for a given dynamical system three conditions have to be fulfilled: sensi-

tivity, existence of a dense orbit, and that the periodic points are dense.

The Ljapunov exponent generalizes the concept of sensitivity in form of a

quantity that can be calculated more conveniently, as we will motivate by

an example:

Example 2. Ljapunov instability of the Bernoulli shift3

Consider two points that are initially displaced from each other by

δx0 := |x′
0 − x0| with δx0 “infinitesimally small” such that x0, x

′
0 do not

hit different branches of the Bernoulli shift B(x) around x = 1/2. We then

have

δxn := |x′
n − xn| = 2δxn−1 = 22δxn−2 = . . . = 2nδx0 = en ln 2δx0 . (4)

We see that there is an exponential separation between two nearby points

as we follow their trajectories. The rate of separation λ(x0) := ln 2 is called

the (local) Ljapunov exponent of the map B(x).

This simple example can be generalized as follows, leading to the general

definition of the Ljapunov exponent for one-dimensional maps F . Consider

δxn = |x′
n − xn| = |Fn(x′

0)− Fn(x0)| =: δx0e
nλ(x0) (δx0 → 0) (5)
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for which we presuppose that an exponential separation of trajectories ex-

ists. By assuming that F is differentiable we rewrite this equation to

λ(x0) = lim
n→∞

lim
δx0→0

1

n
ln

δxn

δx0

= lim
n→∞

lim
δx0→0

1

n
ln

|Fn(x0 + δx0)− Fn(x0)|
δx0

= lim
n→∞

1

n
ln

∣
∣
∣
∣

dFn(x)

dx

∣
∣
∣
∣
x=x0

. (6)

Using the chain rule we obtain

dFn(x)

dx

∣
∣
∣
∣
x=x0

= F ′(xn−1)F
′(xn−2) . . . F

′(x0) , (7)

which leads to

λ(x0) = lim
n→∞

1

n
ln

∣
∣
∣
∣
∣

n−1∏

i=0

F ′(xi)

∣
∣
∣
∣
∣

= lim
n→∞

1

n

n−1∑

i=0

ln |F ′(xi)| . (8)

This simple calculation motivates the following definition:

Definition 2.8 Let F ∈ C1 be a map of the real line. The local Ljapunov

exponent λ(x0) is defined as

λ(x0) := lim
n→∞

1

n

n−1∑

i=0

ln |F ′(xi)| (9)

if this limit exists.

Example 3. For the Bernoulli shift B(x) = 2x mod 1 we have B′(x) =

2 ∀x ∈ [0, 1) , x 6= 1
2 , hence trivially

λ(x) =
1

n

n−1∑

k=0

ln 2 = ln 2 (10)

at these points.

Note that Definition 2 defines the local Ljapunov exponent λ(x0), that

is, this quantity may depend on our choice of initial conditions x0. For the

Bernoulli shift this is not the case, because this map has a uniform slope

of two except at the point of discontinuity, which makes the calculation

trivial. Generally the situation is more complicated. One question is of how
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to calculate the local Ljapunov exponent, a second one to which extent it

depends on initial conditions. An answer to both these questions is provided

by the global Ljapunov exponent that we are going to introduce, which does

not depend on initial conditions and thus characterizes the stability of the

map as a whole.

It is introduced by observing that the local Ljapunov exponent in Def-

inition 2 is defined by a time average, where n terms along the trajectory

with initial condition x0 are summed up by averaging over n. That this

is not the only possibility to define an average quantity is clarified by the

following definition. It requires the concepts of measure and density;1 if

the reader is not familiar with these objects, we recommend Ref.10 as an

introduction.

Definition 3. time and ensemble average5,9

Let µ∗ be the invariant probability measure of a one-dimensional map

F acting on J ⊆ R. Let us consider a function g : J → R, which we may

call an “observable”. Then

g(x) := lim
n→∞

1

n

n−1∑

k=0

g(xk) , (11)

x = x0, is called the time (or Birkhoff) average of g with respect to F .

〈g〉 :=
∫

J

dµ∗g(x) (12)

where, if such a measure exists, dµ∗ = ρ∗(x) dx, is called the ensemble (or

space) average of g with respect to F . Here ρ∗(x) is the invariant density

of the map, and dµ∗ is the associated invariant measure.3 Note that g(x)

may depend on x, whereas 〈g〉 does not.

If we choose g(x) = ln |F ′(x)| as the observable in Eq. (11) we recover

Definition 2 for the local Ljapunov exponent,

λ(x) := ln |F ′(x)| = lim
n→∞

1

n

n−1∑

k=0

ln |F ′(xk)| , (13)

which we may write as λt(x) = λ(x) in order to label it as a time average. If

we choose the same observable for the ensemble average Eq. (12) we obtain

λe := 〈ln |F ′(x)|〉 :=
∫

J

dxρ∗(x) ln |F ′(x)| . (14)

Example 4.
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For the Bernoulli shift we have seen that for almost every x ∈ [0, 1)

λt = ln 2. For λe we obtain

λe =

∫ 1

0

dxρ∗(x) ln 2 = ln 2 , (15)

taking into account that ρ∗(x) = 1.1 In other words, time and ensemble

average are the same for almost every x,

λt(x) = λe = ln 2 . (16)

This motivates the following fundamental definition:

Definition 4. ergodicity 5,9

A dynamical system is called ergodic if for every g on J ⊆ R satisfying
∫
dµ∗ |g(x)| < ∞

g(x) = 〈g〉 (17)

for typical x.

For our purpose it suffices to think of a typical x as a point that is ran-

domly drawn from the invariant density ρ∗(x). This definition implies that

for ergodic dynamical systems g(x) does not depend on x. That the time

average is constant is sometimes also taken as a definition of ergodicity.4,5

To prove that a given system is ergodic is typically a hard task and one

of the fundamental problems in the ergodic theory of dynamical systems;

see5,9 for proofs of ergodicity in case of some simple examples. We remark

that pure mathematicians define ergodicity in terms of indecomposability.11

On this basis, let us get back to Ljapunov exponents. For time average

λt(x) and ensemble average λe of the Bernoulli shift we have found that

λt(x) = λe = ln 2. Definition 4 now states that the first equality must hold

whenever a map F is ergodic. This means, in turn, that for an ergodic

dynamical system the Ljapunov exponent becomes a global quantity char-

acterizing a given map F for a typical point x irrespective of what value

we choose for the initial condition, λt(x) = λe = λ. This observation very

much facilitates the calculation of λ, as is demonstrated by the following

example:

Example 5.

Let us consider the map A(x) displayed in Fig. 3 below:

From the figure we can infer that

A(x) :=

{
3
2x , 0 ≤ x < 2

3

3x− 2 , 2
3 ≤ x < 1

. (18)
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0

1

1

A(x)

3
2

Fig. 3. A simple map for demonstrating the calculation of Ljapunov exponents via

ensemble averages.

It is not hard to see that the invariant probability density of this map is

uniform, ρ∗(x) = 1. The Ljapunov exponent λ for this map is then trivially

calculated to

λ =

∫ 1

0

dxρ∗(x) ln |A′(x)| = ln 3− 2

3
ln 2 . (19)

By assuming that map A is ergodic (which here is the case), we can conclude

that this result for λ represents the value for typical points in the domain

of A.

In other words, for an ergodic map the global Ljapunov exponent λ

yields a number that assesses whether it is chaotic in the sense of exhibiting

an exponential dynamical instability. This motivates the following defini-

tion of deterministic chaos:

Definition 5. Chaos in the sense of Ljapunov3,4,8

An ergodic map F : J → J, J ⊆ R, F (piecewise) C1 is said to be

L-chaotic on J if λ > 0.

Why did we introduce a definition of chaos that is different from De-

vaney’s definition mentioned earlier? One reason is that often the largest

Ljapunov exponent of a dynamical system is easier to calculate than check-

ing for sensitivity. Furthermore, the magnitude of the positive Ljapunov

exponent quantifies the strength of chaos. This is the reason why in the

applied sciences “chaos in the sense of Ljapunov” became a very popular

concept. Note that there is no unique quantifier of deterministic chaos.

Many different definitions are available highlighting different aspects of

“chaotic behavior”, all having their advantages and disadvantages. The
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detailed relations between them are usually non-trivial and a topic of on-

going research. We will encounter yet another definition of chaos in the

following section.

2.3. Entropies

Let us start with a brief motivation outlining the basic idea of entropy

production in dynamical systems. Consider again the Bernoulli shift by

decomposing its domain J = [0, 1) into J0 := [0, 1/2) and J1 := [1/2, 1).

For x ∈ [0, 1) define the output map s1 by2

s : [0, 1) → {0, 1} , s(x) :=

{
0 , x ∈ J0
1 , x ∈ J1

(20)

and let sn+1 := s(xn). Now choose some initial condition x0 ∈ J . Ac-

cording to the above rule we obtain a digit s1 ∈ {0, 1}. Iterating the

Bernoulli shift according to xn+1 = B(xn) then generates a sequence of

digits {s1, s2, . . . , sn}. This sequence yields nothing else than the binary

representation of the given initial condition x0.
2,3,5 If we assume that we

pick an initial condition x0 at random and feed it into our map without

knowing about its precise value, this simple algorithm enables us to find

out what number we have actually chosen. In other words, here we have

a mechanism of creation of information about the initial condition x0 by

analyzing the chaotic orbit generated from it as time evolves.

Conversely, if we now assume that we already knew the initial state up

to, say, m digits precision and we iterate p > m times, we see that the map

simultaneously destroys information about the current and future states, in

terms of digits, as time evolves. So creation of information about previous

states goes along with loss of information about current and future states.

This process is quantified by theKolmogorov-Sinai (KS) entropy (also called

metric, or measure-theoretic entropy), which measures the exponential rate

at which information is produced, respectively lost in a dynamical system,

as we will see below.

The situation is similar to the following thought experiment illustrated

in Fig. 4: Let us assume we have a gas consisting of molecules, depicted

as billiard balls, which is constrained to the left half of the box as shown

in (a). This is like having some information about the initial conditions of

all gas molecules, which are in a more localized, or ordered, state. If we

remove the piston as in (b), we observe that the gas spreads out over the full

box until it reaches a uniform equilibrium steady state. We then have less

information available about the actual positions of all gas molecules, that
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(a) (b)

Fig. 4. Schematic representation of a gas of molecules in a box. In (a) the gas is

constrained by a piston to the left hand side of the box, in (b) the piston is removed and
the gas can spread out over the whole box. This illustrates the basic idea of (physical)
entropy production.

is, we have increased the disorder of the whole system. This observation

lies at the heart of what is called thermodynamic entropy production in

the statistical physics of many-particle systems which, however, is usually

assessed by quantities that are different from the KS-entropy.

At this point we may not further elaborate on the relation to statistical

physical theories. Instead, let us make precise what we mean by KS-entropy

starting from the famous Shannon (or information) entropy.3,4 This en-

tropy is defined as

HS :=

r∑

i=1

pi ln

(
1

pi

)

, (21)

where pi , i = 1, . . . , r are the probabilities for the r possible outcomes of an

experiment. Think, for example, of a roulette game, where carrying out the

experiment one time corresponds to n = 1 in the iteration of an unknown

map. HS then measures the amount of uncertainty concerning the outcome

of the experiment, which can be understood as follows:

(1) Let p1 = 1 , pi = 0 otherwise. By defining pi ln
(

1
pi

)

:= 0 , i 6= 1,

we have HS = 0. This value of the Shannon entropy must therefore

characterize the situation where the outcome is completely certain.

(2) Let pi = 1/r , i = 1, 2, . . . , r. Then we obtain HS = ln r thus charac-

terizing the situation where the outcome is most uncertain because of

equal probabilities.

Case (1) thus represents the situation of no information gain by doing

the experiment, case (2) corresponds to maximum information gain. These

two special cases must therefore define the lower and upper bounds of HS ,

0 ≤ HS ≤ ln r . (22)
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This basic concept of information theory carries over to dynamical systems

by identifying the probabilities pi with invariant probability measures µ∗
i

on subintervals of a given dynamical system’s phase space. The precise

connection is worked out in four steps:3,5

1. Partition and refinement:

Consider a map F acting on J ⊆ R, and let µ∗ be an invariant proba-

bility measure generated by the map. Let {Ji}, i = 1, . . . , s be a partition

of J .8 We now construct a refinement of this partition as illustrated by the

following example:

Example 6.

Consider the Bernoulli shift displayed in Fig. 5. Start with the partition

{J0, J1} shown in (a). Now create a refined partition by iterating these two

partition parts backwards according to B−1(Ji) as indicated in (b). Alter-

natively, you may take the second forward iterate B2(x) of the Bernoulli

shift and then identify the preimages of x = 1/2 for this map. In either

case the new partition parts are obtained to

J00 := {x : x ∈ J0 , B(x) ∈ J0}
J01 := {x : x ∈ J0 , B(x) ∈ J1}
J10 := {x : x ∈ J1 , B(x) ∈ J0}
J11 := {x : x ∈ J1 , B(x) ∈ J1} . (23)

0 1

1

1
2

1
2

J
0

J
1

J
0

J
1

0 1

1

1
2

1
2

J
00

J
0

J
1

(a) (b)

J
01

J
10

J
11

Fig. 5. (a) The Bernoulli shift and a partition of the unit interval consisting of two

parts. (b) Refinement of this partition under backward iteration.

If we choose x0 ∈ J00 we thus know in advance that the orbit emerging

from this initial condition under iteration of the map will remain in J0
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at the next iteration. That way, the refined partition clearly yields more

information about the dynamics of single orbits.

More generally, for a given map F the above procedure is equivalent to

defining

{Ji1i2} := {Ji1 ∩ F−1(Ji2)} . (24)

The next round of refinement proceeds along the same lines yielding

{Ji1i2i3} := {Ji1 ∩ F−1(Ji2) ∩ F−2(Ji3)} , (25)

and so on. For convenience we define

{Jn
i } := {Ji1i2...in} = {Ji1 ∩ F−1(Ji2) ∩ . . . ∩ F−(n−1)(Jin)} . (26)

2. H-function:

In analogy to the Shannon entropy Eq. (21) next we define the function

H({Jn
i }) := −

∑

i

µ∗(Jn
i ) lnµ

∗(Jn
i ) , (27)

where µ∗(Jn
i ) is the invariant measure of the map F on the partition part

Jn
i of the nth refinement.

Example 7.

For the Bernoulli shift with uniform invariant probability density

ρ∗(x) = 1 and associated (Lebesgue) measure µ∗(Jn
i ) =

∫

Jn

i

dx ρ∗(x) =

diam (Jn
i ) we can calculate

H({J1
i }) = −(

1

2
ln

1

2
+

1

2
ln

1

2
) = ln 2

H({J2
i }) = H({Ji1 ∩B−1(Ji2)}) = −4(

1

4
ln

1

4
) = ln 4

H({J3
i }) = . . . = ln 8 = ln 23

...

H({Jn
i }) = ln 2n (28)

3. Take the limit:

We now look at what we obtain in the limit of infinitely refined partition

by

h({Jn
i }) := lim

n→∞

1

n
H({Jn

i }) , (29)

which defines the rate of gain of information over n refinements.

Example 8.

For the Bernoulli shift we trivially obtain

h({Jn
i }) = ln 2 . (30)
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4. Supremum over partitions:

We finish the definition of the KS-entropy by maximizing h({Jn
i }) over

all available partitions,

hKS := sup
{Jn

i
}

h({Jn
i }) . (31)

The last step can be avoided if the partition {Jn
i } is generating for which

it must hold that diam (Jn
i ) → 0 (n → ∞).4,11 It is quite obvious that for

the Bernoulli shift the partition chosen above is generating in that sense,

hence hKS = ln 2 for this map.

These considerations suggest yet another definition of deterministic

chaos:

Definition 6. Measure-theoretic chaos4

A map F : J → J, J ⊆ R, is said to be chaotic in the sense of exhibiting

dynamical randomness if hKS > 0.

Again, one may wonder about the relation between this new definition

and our previous one in terms of Ljapunov chaos. Let us look again at the

Bernoulli shift:

Example 9.

For B(x) we have calculated the Ljapunov exponent to λ = ln 2, see

Example 4. Above we have seen that hKS = ln 2 for this map, so we arrive

at λ = hKS = ln 2.

That this equality is not an artefact due to the simplicity of our chosen

model is stated by the following theorem:

Theorem 1. Pesin’s Theorem (1977)5

For closed C2 Anosov systems the KS-entropy is equal to the sum of

positive Ljapunov exponents.

An Anosov system is a diffeomorphism where the expanding and con-

tracting directions in phase space exhibit a particularly “nice”, so-called

hyperbolic structure.5 A proof of this theorem goes considerably beyond

the scope of this chapter. In the given formulation it applies to higher-

dimensional dynamical systems that are “suitably well-behaved” in the

sense of exhibiting the Anosov property. Applied to one-dimensional maps,

it means that if we consider transformations which are “closed” by mapping

an interval onto itself, F : J → J , under certain conditions (which we do

not further specify here) and if there is a positive Ljapunov exponent λ > 0
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we can expect that λ = hKS , as we have seen for the Bernoulli shift. In

fact, the Bernoulli shift provides an example of a map that does not fulfill

the conditions of the above theorem precisely. However, the theorem can

also be formulated under weaker assumptions, and it is believed to hold for

an even wider class of dynamical systems.

In order to get an intuition why this theorem should hold, let us look

at the information creation in a simple one-dimensional map such as the

Bernoulli shift by considering two orbits {xk}nk=0, {x′
k}nk=0 starting at

nearby initial conditions |x′
0 − x0| ≤ δx0 , δx0 ≪ 1. Recall the encod-

ing defined by Eq. (20). Under the first m iterations these two orbits will

then produce the very same sequences of symbols {sk}mk=1, {s′k}mk=1, that

is, we cannot distinguish them from each other by our encoding. However,

due to the ongoing stretching of the initial displacement δx0 by a factor of

two, eventually there will be an m such that starting from p > m itera-

tions different symbol sequences are generated. Thus we can be sure that

in the limit of n → ∞ we will be able to distinguish initially arbitrarily

close orbits. If you like analogies, you may think of extracting information

about the different initial states via the stretching produced by the itera-

tion process like using a magnifying glass. Therefore, under iteration the

exponential rate of separation of nearby trajectories, which is quantified by

the positive Ljapunov exponent, must be equal to the rate of information

generated, which in turn is given by the KS-entropy. This is at the heart

of Pesin’s theorem.

2.4. Open systems, fractals and escape rates

So far we have only studied closed systems, where intervals are mapped onto

themselves. Let us now consider an open system, where points can leave

the unit interval by never coming back to it. Consequently, in contrast to

closed systems the total number of points is not conserved anymore. This

situation can be modeled by a slightly generalized example of the Bernoulli

shift.

Example 10. In the following we will study the map

Ba : [0, 1) → [1− a/2, a/2) , Ba(x) :=

{
ax , 0 ≤ x < 1/2

ax+ 1− a , 1/2 ≤ x < 1
,

(32)

see Fig. 6, where the slope a ≥ 2 defines a control parameter. For a = 2 we

recover our familiar Bernoulli shift, whereas for a > 2 the map defines an
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open system. That is, whenever points are mapped into the escape region

of width ∆ these points are removed from the unit interval. You may

thus think of the escape region as a subinterval that absorbs any particles

mapped onto it.

0 1

1

1
2

∆

a

Fig. 6. A generalization of the Bernoulli shift, defined as a parameter-dependent map
Ba(x) modeling an open system. The slope a defines a control parameter, ∆ denotes
the width of the escape region.

We now wish to compute the number of points Nn remaining on the

unit interval at time step n, where we start from a uniform distribution

of N0 = N points on this interval at n = 0. This can be done as follows:

Recall that the probability density ρn(x) was defined by

ρn(x) :=
Nn,j

Ndx
, (33)

where Nn,j is the number of points in the interval dx centered around the

position xj at time step n.1 With Nn =
∑

j Nn,j we have that

N1 = N0 − ρ0N∆ . (34)

By observing that for Ba(x), starting from ρ0 = 1 points are always uni-

formly distributed on the unit interval at subsequent iterations, we can

derive an equation for the density ρ1 of points covering the unit interval at

the next time step n = 1. For this purpose we divide the above equation by

the total number of points N (multiplied with the total width of the unit

interval, which however is one), which yields

ρ1 =
N1

N
= ρ0 − ρ0∆ = ρ0(1−∆) . (35)
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This procedure can be reiterated starting now from

N2 = N1 − ρ1N∆ (36)

leading to

ρ2 =
N2

N
= ρ1(1−∆) , (37)

and so on. For general n we thus obtain

ρn = ρn−1(1−∆) = ρ0(1−∆)n = ρ0e
n ln(1−∆) , (38)

or correspondingly

Nn = N0e
n ln(1−∆) , (39)

which suggests the following definition:

Definition 7. For an open system with exponential decrease of the number

of points,

Nn = N0e
−γn , (40)

γ is called the escape rate.

In case of our mapping we thus identify

γ = ln
1

1−∆
(41)

as the escape rate. We may now wonder whether there are any initial

conditions that never leave the unit interval and about the character of this

set of points. The set can be constructed as exemplified for Ba(x) , a = 3

in Fig. 7.

Example 11.

Let us start again with a uniform distribution of points on the unit

interval. We can then see that the points which remain on the unit interval

after one iteration of the map form two sets, each of length 1/3. Iterating

now the boundary points of the escape region backwards in time according

to xn = B−1
3 (xn+1), we can obtain all preimages of the escape region. We

find that initial points which remain on the unit interval after two iterations

belong to four smaller sets, each of length 1/9, as depicted at the bottom

of Fig. 7. Repeating this procedure infinitely many times reveals that the

points which never leave the unit interval form the very special set CB3
,

which is known as the middle third Cantor set.
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0 0.5 1

x

0

0.5

1

escape

escape

1/3 1/3

Fig. 7. Construction of the set CB3
of initial conditions of the map B3(x) that never

leave the unit interval.

Definition 8. Cantor set3

A Cantor set is a closed set which consists entirely of boundary points

each of which is a limit point of the set.

Let us explore some fundamental properties of the set CB3
:3

(1) From Fig. 7 we can infer that the total length ln of the intervals of points

remaining on the unit interval after n iterations, which is identical with

the Lebesgue measure µL of these sets, is

l0 = 1 , l1 =
2

3
, l2 =

4

9
=

(
2

3

)2

, . . . , ln =

(
2

3

)n

. (42)

We thus see that

ln =

(
2

3

)n

→ 0 (n → ∞) , (43)

that is, the total length of this set goes to zero, µL(CB3
) = 0. However,

there exist also Cantor sets whose Lebesgue measure is larger than

zero.3 Note that matching ln = exp(−n ln(3/2)) to Eq. (41) yields an

escape rate of γ = ln(3/2) for this map.
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(2) By using the binary encoding Eq. (20) for all intervals of CB3
, thus

mapping all elements of this set onto all the numbers in the unit in-

terval, it can nevertheless be shown that our Cantor set contains an

uncountable number of points.5

(3) By construction CB3
must be the invariant set of the map B3(x) under

iteration, so the invariant measure of our open system must be the

measure defined on the Cantor set, µ∗(C) , C ∈ CB3
;11 see the following

Example 12 for the procedure of how to calculate this measure.

(4) For the next property we need the following definition:

Definition 9. repeller4,5

The limit set of points that never escape is called a repeller. The orbits

that escape are transients, and 1/γ is the typical duration of them.

From this we can conclude that CB3
represents the repeller of the map

B3(x).

(5) Since CB3
is completely disconnected by only consisting of boundary

points, its topology is highly singular. Consequently, no invariant den-

sity ρ∗(x) can be defined on this set, since this concept presupposes

a certain “smoothness” of the underlying topology such that one can

meaningfully speak of “small subintervals dx” on which one counts the

number of points, see Eq. (33). In contrast, µ∗(C) is still well-defined,
and we speak of it as a singular measure.5

(6) Fig. 7 shows that CB3
is self-similar, in the sense that smaller pieces of

this structure reproduce the entire set upon magnification.3 Here we

find that the whole set can be reproduced by magnifying the funda-

mental structure of two subsets with a gap in the middle by a constant

factor of three. Often such a simple scaling law does not exist for these

types of sets. Instead, the scaling may depend on the position x of the

subset, in which case one speaks of a self-affine structure.3,4,8

(7) Again we need a definition:

Definition 10. fractals, qualitatively4

Fractals are geometrical objects that possess nontrivial structure on

arbitrarily fine scales.

In case of our Cantor set CB3
, these structures are generated by a simple

scaling law. However, generally fractals can be arbitrarily complicated

on finer and finer scales. An example of a structure that is trivial,

hence not fractal, is a straight line. The fractality of such complicated
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sets can be assessed by quantities called fractal dimensions,3,4 which

generalize the integer dimensionality of Euclidean geometry. It is in-

teresting how in our case fractal geometry naturally comes into play,

forming an important ingredient of the theory of dynamical systems.

However, here we do not further elaborate on the concept of fractal

geometry and refer to the literature instead.3,4,8

Example 12.

Let us now compute all three basic quantities that we have introduced

so far, that is: the Ljapunov exponent λ and the KS-entropy hks on the

invariant set as well as the escape rate γ from this set. We do so for the map

B3(x) which, as we have learned, produces a fractal repeller. According to

Eqs. (12),(14) we have to calculate

λ(CB3
) =

∫ 1

0

dµ∗ ln |B′
3(x)| . (44)

However, for typical points we have B′
3(x) = 3, hence the Ljapunov expo-

nent must trivially be

λ(CB3
) = ln 3 , (45)

because the probability measure µ∗ is normalised. The calculation of the

KS-entropy requires a bit more work: Recall that

H({Cn
i }) := −

2n∑

i=1

µ∗(Cn
i ) lnµ

∗(Cn
i ) , (46)

see Eq. (27), where Cn
i denotes the ith part of the emerging Cantor set

at the nth level of its construction. We now proceed along the lines of

Example 7. From Fig. 7 we can infer that

µ∗(C1
i ) =

1
3
2
3

=
1

2

at the first level of refinement. Note that here we have renormalized the

(Lebesgue) measure on the partition part C1
i . That is, we have divided the

measure by the total measure surviving on all partition parts such that we

always arrive at a proper probability measure under iteration. The measure

constructed that way is known as the conditionally invariant measure on

the Cantor set.4 Repeating this procedure yields

µ∗(C2
i ) =

1
9
4
9

=
1

4

...

µ∗(Cn
i ) =

( 13 )
n

( 23 )
n
= 2−n (47)
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from which we obtain

H({Cn
i }) = −

2n∑

i=1

2−n ln 2−n = n ln 2 . (48)

We thus see that by taking the limit according to Eq. (29) and noting that

our partitioning is generating on the fractal repeller CB3
= {C∞

i }, we arrive
at

hKS(CB3
) = lim

n→∞

1

n
H({Cn

i }) = ln 2 . (49)

Finally, with Eq.(41) and an escape region of size ∆ = 1/3 for B3(x) we

get for the escape rate

γ(CB3
) = ln

1

1−∆
= ln

3

2
, (50)

as we have already seen before.

In summary, we have that γ(CB3
) = ln 3

2 = ln 3 − ln 2, λ(CB3
) = ln 3,

hKS(CB3
) = ln 2, which suggests the relation

γ(CB3
) = λ(CB3

)− hKS(CB3
) . (51)

Again, this equation is no coincidence. It is a generalization of Pesin’s

theorem to open systems, known as the escape rate formula. This equation

holds under similar conditions like Pesin’s theorem, which is recovered from

it if there is no escape.5

3. Chaotic diffusion

We now apply the concepts of dynamical systems theory developed in Ref.1

to a fundamental problem in nonequilibrium statistical physics, which is to

understand the microscopic origin of diffusion in many-particle systems.

We start with a reminder of diffusion as a simple random walk on the

line. Modeling such processes by suitably generalizing the piecewise lin-

ear map studied previously, we will see how diffusion can be generated by

microscopic deterministic chaos. The main result will be an exact formula

relating the diffusion coefficient, which characterizes macroscopic diffusion

of particles, to the dynamical systems quantities introduced before.
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n

x

Fig. 8. The “problem of the random walk” in terms of a drunken sailor at a lamppost.

The space-time diagram shows an example of a trajectory for such a drunken sailor,
where n ∈ N holds for discrete time and x ∈ R for the position of the sailor on a discrete
lattice of spacing s.

3.1. What is chaotic diffusion?

In order to learn about chaotic diffusion, we must first understand what

ordinary diffusion is all about. Here we introduce this concept by means

of a famous example, see Fig. 8: Let us imagine that some evening a sailor

wants to walk home, however, he is completely drunk such that he has no

control over his single steps. For sake of simplicity let us imagine that he

moves in one dimension. He starts at a lamppost at position x = 0 and

then makes steps of a certain step length s to the left and to the right.

Since he is completely drunk he loses all memory between any single steps,

that is, all steps are uncorrelated. It is like tossing a coin in order to decide

whether to go to the left or to the right at the next step. We may now

ask for the probability to find the sailor after n steps at position x, i.e., a

distance |x| away from his starting point.

The answer to this question is obtained from a calculation for an ensem-

ble of sailors starting from the lamppost and is given in terms of Gaussian

probability distributions for the sailor’s positions, which are obtained in a

suitable scaling limit.12 Fig. 9 sketches the spreading of such a diffusing

distribution of sailors in time. The mathematical reason for the emerging

Gaussianity of the probability distributions is nothing else than the central

limit theorem.

We may now wish to quantify the speed by which a “droplet of sailors”

starting at the lamppost spreads out. This can be done by calculating the
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x

ρ (x)n

1n

2n

3n

Fig. 9. Probability distribution functions ρn(x) to find a sailor after n time steps at

position x on the line, calculated for an ensemble of sailors starting at the lamppost,
cf. Fig. 8. Shown are three probability densities after different numbers of iteration
n1 < n2 < n3.

diffusion coefficient for this system. In case of one-dimensional dynamics

the diffusion coefficient can be defined by the Einstein formula

D := lim
n→∞

1

2n
< x2 > , (52)

where

< x2 >:=

∫

dx x2ρn(x) (53)

is the variance, or second moment, of the probability distribution ρn(x)

at time step n, also called mean square displacement of the particles. This

formula may be understood as follows: For our ensemble of sailors we may

choose ρ0(x) = δ(x) as the initial probability distribution with δ(x) de-

noting the (Dirac) δ-function, which mimicks the situation that all sailors

start at the same lamppost at x = 0. If our system is ergodic the diffusion

coefficient should be independent of the choice of the initial ensemble. The

spreading of the distribution of sailors is then quantified by the growth of

the mean square displacement in time. If this quantity grows linearly in

time, which may not necessarily be the case but holds true if our probabil-

ity distributions for the positions are Gaussian in the long-time limit,7 the

magnitude of the diffusion coefficient D tells us how quickly our ensemble of

sailors disperses. For further details about a statistical physics description

of diffusion we refer to the literature.12

In contrast to this well-known picture of diffusion as a stochastic random

walk, the theory of dynamical systems makes it possible to treat diffusion

as a deterministic dynamical process. Let us replace the sailor by a point

particle. Instead of coin tossing, the orbit of such a particle starting at
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initial condition x0 may then be generated by a chaotic dynamical system

of the type as considered in the previous sections, xn+1 = F (xn). Note

that defining the one-dimensional map F (x) together with this equation

yields the full microscopic equations of motion of the system. You may

think of these equations as a caricature of Newton’s equations of motion

modeling the diffusion of a single particle. Most importantly, in contrast to

the drunken sailor with his memory loss after any time step here the com-

plete memory of a particle is taken into account, that is, all steps are fully

correlated. The decisive new fact that distinguishes this dynamical process

from the one of a simple uncorrelated random walk is hence that xn+1 is

uniquely determined by xn, rather than having a random distribution of

xn+1 for a given xn. If the resulting dynamics of an ensemble of particles

for given equations of motion has the property that a diffusion coefficient

D > 0 Eq. (52) exists, we speak of deterministic or chaotic diffusion.2,5–7

Fig. 10 shows the simple model of chaotic diffusion that we shall study

in the following. It depicts a “chain of boxes” of chain length L ∈ N,

which continues periodically in both directions to infinity, and the orbit of

a moving point particle. Let us first specify the map defined on the unit

interval, which we may call the box map. For this we choose the map Ba(x)

introduced in our previous Example 10. We can now periodically continue

this box map onto the whole real line by a lift of degree one,

Ba(x+ 1) = Ba(x) + 1 . (54)

Physically speaking, this means that Ba(x) continued onto the real line is

translational invariant with respect to integers. Note furthermore that we

have chosen a box map whose graph is point symmetric with respect to the

center of the box at (x, y) = (0.5, 0.5). This implies that the graph of the

full map Ba(x) is anti-symmetric with respect to x = 0,

Ba(x) = −Ba(−x) , (55)

so that there is no “drift” in this chain of boxes. The drift case with broken

symmetry could be studied as well,7 but we exclude it here for sake of

simplicity.

3.2. The diffusion equation

In the last section we have sketched in a nutshell what, in our setting, we

mean if we speak of diffusion. This picture is made more precise by deriving

an equation that exactly generates the dynamics of the probability densities
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Fig. 10. A simple model for chaotic diffusion. The dashed line depicts the orbit of a
diffusing particle in form of a cobweb plot.8 The slope a serves as a control parameter
for the periodically continued piecewise linear map Ba(x).

displayed in Fig. 9.12 For this purpose, let us reconsider for a moment the

situation depicted in Fig. 4. There, we had a gas with an initially very high

concentration of particles on the left hand side of the box. After the piston

was removed, it seemed natural that the particles spread out over the right

hand side of the box as well thus diffusively covering the whole box. We

may thus come to the conclusion that, firstly, there will be diffusion if the

density of particles in a substance is non-uniform in space. For this density

of particles and by restricting ourselves to diffusion in one dimension in the

following, let us write ñ = ñ(x, t), which holds for the number of particles

that we can find in a small line element dx around the position x at time

step t divided by the total number of particles N .

As a second observation, we see that diffusion occurs in the direction of

decreasing particle density. This may be expressed as

j =: −D
∂ñ

∂x
, (56)

which according to Einstein’s formula Eq. (52) may be considered as a

second definition of the diffusion coefficient D. Here the flux j = j(x, t)

denotes the number of particles passing through an area perpendicular to
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the direction of diffusion per time t. This equation is known as Fick’s first

law. Finally, let us assume that no particles are created or destroyed during

our diffusion process. In other words, we have conservation of the number

of particles in form of

∂ñ

∂t
+

∂j

∂x
= 0 . (57)

This continuity equation expresses the fact that whenever the particle den-

sity ñ changes in time t, it must be due to a spatial change in the particle

flux j. Combining the equation with Fick’s first law we obtain Fick’s second

law,

∂ñ

∂t
= D

∂2ñ

∂x2
, (58)

which is also known as the diffusion equation. Mathematicians call the

process defined by this equation aWiener process, whereas physicists rather

speak of Brownian motion. If we would now solve the diffusion equation

for the drunken sailor initial density ñ(x, 0) = δ(x), we would obtain the

precise functional form of our spreading Gaussians in Fig. 9,

ñ(x, t) =
1√
4πDt

exp

(

− x2

4Dt

)

. (59)

Calculating the second moment of this distribution according to Eq. (53)

would lead us to recover Einstein’s definition of the diffusion coefficient

Eq. (52). Therefore, both this definition and the one provided by Fick’s

first law are consistent with each other.

3.3. Basics of the escape rate formalism

We are now fully prepared for establishing an interesting link between dy-

namical systems theory and statistical mechanics. We start with a brief

outline of the concept of this theory, which is called the escape rate formal-

ism.5,6 It consists of three steps:

Step 1: Solve the one-dimensional diffusion equation Eq. (58) derived

above for absorbing boundary conditions. That is, we consider now some

type of open system similar to what we have studied in the previous section.

We may thus expect that the total number of particles N(t) :=
∫
dx ñ(x, t)

within the system decreases exponentially as time evolves according to the

law expressed by Eq. (40), that is,

N(t) = N(0)e−γdet . (60)



May 9, 2016 12:39 ws-rv9x6 Book Title klages˙ltcc˙ws page 27

Chaos in Statistical Physics 27

It will turn out that the escape rate γde defined by the diffusion equation

with absorbing boundaries is a function of the system size L and of the

diffusion coefficient D.

Step 2: Solve the Frobenius-Perron equation

ρn+1(x) =

∫

dy ρn(y) δ(x− F (y)) , (61)

which represents the continuity equation for the probability density ρn(x)

of the map F (x),1,3–5 for the very same absorbing boundary conditions as

in Step 1. Let us assume that the dynamical system under consideration

is normal diffusive, that is, that a diffusion coefficient D > 0 exists. We

may then expect a decrease in the number of particles that is completely

analogous to what we have obtained from the diffusion equation. That is,

if we define as before Nn :=
∫
dx ρn(x) as the total number of particles

within the system at discrete time step n, in case of normal diffusion we

should obtain

Nn = N0e
−γFPn . (62)

However, in contrast to Step 1 here the escape rate γFP should be fully

determined by the dynamical system that we are considering. In fact,

we have already seen before that for open systems the escape rate can be

expressed exactly as the difference between the positive Ljapunov exponent

and the KS-entropy on the fractal repeller, cf. the escape rate formula

Eq. (51).

Step 3: If the functional forms of the particle density ñ(x, t) of the dif-

fusion equation and of the probability density ρn(x) of the map’s Frobenius-

Perron equation match in the limit of system size and time going to infinity

— which is what one has to show —, the escape rates γde obtained from the

diffusion equation and γFP calculated from the Frobenius-Perron equation

should be equal,

γde = γFP , (63)

providing a fundamental link between the statistical physical theory of dif-

fusion and dynamical systems theory. Since γde is a function of the diffu-

sion coefficient D, and knowing that γFP is a function of dynamical systems

quantities, we should then be able to express D exactly in terms of these dy-

namical systems quantifiers. We will now illustrate how this method works

by applying it to our simple chaotic diffusive model introduced above.
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Fig. 11. Our previous map Ba(x) periodically continued onto the whole real line for
the specific parameter value a = 4. The example shown depicts a chain of length L = 3.
The dashed quadratic grid indicates a Markov partition for this map.

3.4. The escape rate formalism applied to a simple map

Let us consider the map Ba(x) lifted onto the whole real line for the specific

parameter value a = 4, see Fig. 11. With L we denote the chain length.

Proceeding along the above lines, let us start with

Step 1: Solve the one-dimensional diffusion equation Eq. (58) for the

absorbing boundary conditions

ñ(0, t) = ñ(L, t) = 0 , (64)

which models the situation that particles escape precisely at the boundaries

of our one-dimensional domain. A straightforward calculation yields

ñ(x, t) =
∞∑

m=1

bm exp

(

−
(mπ

L

)2

Dt

)

sin
(mπ

L
x
)

(65)

with bm denoting the Fourier coefficients.

Step 2: Solve the Frobenius-Perron equation Eq. (61) for the same

absorbing boundary conditions,

ρn(0) = ρn(L) = 0 . (66)

In order to do so, we first need to introduce Markov partitions for our map

B4(x):
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Definition 11. Markov partition, verbally4

For one-dimensional maps acting on compact intervals a partition is

called Markov if parts of the partition get mapped again onto parts of the

partition, or onto unions of parts of the partition.

Example 13.

The dashed quadratic grid in Fig. 11 defines a Markov partition for the

lifted map B4(x).

Having a Markov partition at hand enables us to rewrite the Frobenius-

Perron equation in form of a matrix equation, where a Frobenius-Perron

matrix operator acts onto probability density vectors defined with respect

to this special partitioning. In order to see this, consider an initial density of

points that covers, e.g., the interval in the second box of Fig. 11 uniformly.

By applying the map onto this density, one observes that points of this

interval get mapped two-fold onto the interval in the second box again, but

that there is also escape from this box which uniformly covers the third and

the first box intervals, respectively. This mechanism applies to any box in

our chain of boxes, modified only by the absorbing boundary conditions

at the ends of the chain of length L. Taking into account the stretching

of the density by the slope a = 4 at each iteration, this suggests that the

Frobenius-Perron equation Eq. (61) can be rewritten as

ρn+1 =
1

4
T (4)ρn , (67)

where the L x L-transition matrix T (4) must read

T (4) =















2 1 0 0 · · · 0 0 0

1 2 1 0 0 · · · 0 0

0 1 2 1 0 0 · · · 0
...

...
...

...

0 · · · 0 0 1 2 1 0

0 0 · · · 0 0 1 2 1

0 0 0 · · · 0 0 1 2















. (68)

Note that in any row and in any column we have three non-zero matrix

elements except in the very first and the very last rows and columns, which

reflect the absorbing boundary conditions. In Eq.(67) this transition matrix

T (4) is applied to a column vector ρn corresponding to the probability

density ρn(x), which can be written as

ρn = |ρn(x) >:= (ρ1n, ρ
2
n, . . . , ρ

k
n, . . . , ρ

L
n)

∗ , (69)
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where “∗” denotes the transpose and ρkn represents the component of the

probability density in the kth box, ρn(x) = ρkn , k − 1 < x ≤ k , k =

1, . . . , L , ρkn being constant on each part of the partition. We see that this

transition matrix is symmetric, hence it can be diagonalized by spectral

decomposition. Solving the eigenvalue problem

T (4) |φm(x) >= χm(4) |φm(x) > , (70)

where χm(4) and |φm(x) > are the eigenvalues and eigenvectors of T (4),

respectively, one obtains

|ρn(x) > =
1

4

L∑

m=1

χm(4) |φm(x) >< φm(x)|ρn−1(x) >

=

L∑

m=1

exp

(

−n ln
4

χm(4)

)

|φm(x) >< φm(x)|ρ0(x) > , (71)

where |ρ0(x) > is the initial probability density vector. Note that the choice

of initial probability densities is restricted by this method to functions that

can be written in the vector form of Eq.(69). It remains to solve the eigen-

value problem Eq. (70).7 The eigenvalue equation for the single components

of the matrix T (4) reads

φk
m + 2φk+1

m + φk+2
m = χmφk+1

m , 0 ≤ k ≤ L− 1 , (72)

supplemented by the absorbing boundary conditions

φ0
m = φL+1

m = 0 . (73)

This equation is of the form of a discretized ordinary differential equation

of degree two, hence we make the ansatz

φk
m = a cos(kθ) + b sin(kθ) , 0 ≤ k ≤ L+ 1 . (74)

The two boundary conditions lead to

a = 0 and sin((L+ 1)θ) = 0 (75)

yielding

θm =
mπ

L+ 1
, 1 ≤ m ≤ L . (76)

The eigenvectors are then determined by

φk
m = b sin(kθm) . (77)

Combining this equation with Eq. (72) yields as the eigenvalues

χm = 2 + 2 cos θm . (78)
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Step 3: Putting all details together, it remains to match the solution

of the diffusion equation to the one of the Frobenius-Perron equation: In

the limit of time t and system size L to infinity, the density ñ(x, t) Eq. (65)

of the diffusion equation reduces to the largest eigenmode,

ñ(x, t) ≃ exp (−γdet)B sin
(π

L
x
)

, (79)

where

γde :=
(π

L

)2

D (80)

defines the escape rate as determined by the diffusion equation. Analo-

gously, for discrete time n and chain length L to infinity we obtain for the

probability density of the Frobenius-Perron equation, Eq.(71) with Eq.(77),

ρn(x) ≃ exp (−γFPn) B̃ sin

(
π

L+ 1
k

)

,

k = 0, . . . , L+ 1 , k − 1 < x ≤ k (81)

with an escape rate of this dynamical system given by

γFP = ln
4

2 + 2 cos(π/(L+ 1))
, (82)

which is determined by the largest eigenvalue χ1 of the matrix T (4), see

Eq.(71) with Eq.(78). We can now see that the functional forms of the

eigenmodes of Eqs.(79) and (81) match precisely. This allows us to match

Eqs. (80) and (82) leading to

D(4) =

(
L

π

)2

γFP . (83)

Using the right hand side of Eq. (82) and expanding it for L → ∞, this

formula enables us to calculate the diffusion coefficient D(4) to

D(4) =

(
L

π

)2

γFP =
1

4

L2

(L+ 1)2
+O(L−4) → 1

4
(L → ∞) . (84)

Thus we have developed a method by which we can exactly calculate the

deterministic diffusion coefficient of a simple chaotic dynamical system.

However, more importantly, instead of using the explicit expression for

γFP given by Eq. (82), let us remind ourselves of the escape rate formula

Eq. (51) for γFP ,

γFP = γ(CB4
) = λ(CB4

)− hKS(CB4
) , (85)



May 9, 2016 12:39 ws-rv9x6 Book Title klages˙ltcc˙ws page 32

32 R. Klages

which more geneally expresses this escape rate in terms of dynamical sys-

tems quantities. Combining this equation with the above equation Eq. (83)

leads to our final result, the escape rate formula for chaotic diffusion6

D(4) = lim
L→∞

(
L

π

)2

[λ(CB4
)− hKS(CB4

)] . (86)

We have thus established a fundamental link between quantities assessing

the chaotic properties of dynamical systems and the statistical physical

property of diffusion.

4. Exercises and solutions

4.1. Exercises

(1) Prove Eq. (7).

(2) Consider the map defined by the function

E(x) :=







2x+ 1 , −1 ≤ x < −1/2

2x , −1/2 ≤ x < 1/2

2x− 1 , 1/2 ≤ x ≤ 1 .

(87)

Draw the graph of this map. Is E ergodic? Prove your answer.

(3) Consider the Frobenius-Perron equation

ρn+1(x) =
∑

x=G(xi)

ρn(x
i)|G′(xi)|−1 =: Pρn(x) (88)

for a map G defined on the real line, where ρn(x) are probability densi-

ties at time step n ∈ N0 and P defines the Frobenius-Perron operator.
(a) Show that P is a linear and positive operator.

(b) Construct P for the map G defined in the figure below and verify

that

ρ∗(x) =

{
4/3 , 0 ≤ x < 1/2

2/3 , 1/2 ≤ x ≤ 1
(89)

is an invariant density of the above Frobenius-Perron equation.

0 1

1

1
2

G
1
2
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(c) By assuming that G is ergodic, calculate the Ljapunov exponent λ

for this map.

(4) Consider the asymmetric tent map

S(x) :=

{
ax , 0 ≤ x < 1/a

b− bx , 1/a ≤ x ≤ 1
(90)

with 1/a+ 1/b = 1.

(a) Calculate the Ljapunov exponent λ for this map.

(b) Show that for the H-function defined by Eq. (27) in the lec-

ture notes it holds H({J2
i }) = 2H({J1

i }). By assuming that

∀n ∈ NH({Jn
i }) = nH({J1

i }) calculate the KS-entropy hKS . Com-

pare your result for hKS with the one obtained for λ.

(5) Consider the map H(x) = 5x mod 1 on a domain which has “holes”

where points escape from the unit interval. Let these escape regions be

defined by the two subintervals (0.2, 04) and (0.6, 0.8).
(a) Sketch the map and the first two steps in the construction of its

fractal repeller RH .

(b) Calculate the escape rate γ(RH).

(c) Calculate the Ljapunov exponent λ(RH)

(d) Calculate the KS-entropy hKS(RH).

(e) By using these results, verify the escape rate formula for this map.

(6) Verify Eq. (84) by using Eqs. (83), (82).

4.2. Solutions

(1) Applying the chain rule we get

(Fn)′(x) = (F (Fn−1))′(x) = F ′(Fn−1(x))(Fn−1)′(x)

= . . . = F ′(xn−1)F
′(xn−2) . . . F

′(x0) (91)

with x = x0.

(2) We leave the drawing of the map to the reader.

Choose for g the indicator function g : [−1, 1] → {0, 1} with

g(x) :=

{
0 , −1 ≤ x < 0

1 , 0 ≤ x ≤ 1 .
(92)

We need to check Def. 4. For g we have
∫ 1

−1

dµ∗ |g(x)| =
∫ 1

0

dµ∗ =

∫ 1

0

dx ρ∗(x) < ∞ , (93)
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because µ∗ is a probability measure. Hence the assumption is fulfilled,

but for −1 ≤ x < 0 we have g(x) = 0 while for 0 ≤ x ≤ 1 g(x) = 1.

Hence g(x) depends on x, consequently g(x) 6= const. in contradiction

to Def. 4, which implies that the map E is not ergodic.

(3) (a) Linearity of an operator P is defined by

P (α1ρ
1 + α2ρ

2) = α1Pρ1 + α2Pρ2 (94)

with α1, α2 ∈ R and probability densities ρ1, ρ2. Positivity means

Pρ(x) ≥ 0. The proofs of these two properties for the Frobenius-

Perron operator defined by Eq. (88) is then straightforward.

(b) From the figure we can infer

G(x) :=







2x , 0 ≤ x < 1/2

2x− 1 , 1/2 ≤ x < 3/4

2x− 3/2 , 3/4 ≤ x ≤ 1

(95)

and G′(x) = 2∀x(x 6= 1/2, 3/4). We construct the piecewise inverse

functions

x1 = G−1(x) = x/2 , 0 ≤ x1 < 1/2 , 0 ≤ x < 1

x2 = G−1(x) = (x+ 1)/2 , 1/2 ≤ x2 < 3/4 , 0 ≤ x < 1/2

x3 = G−1(x) = (x+ 3/2)/2 , 3/4 ≤ x1 < 1 , 0 ≤ x ≤ 1/2 . (96)

Plugging these results into Eq. (88) yields

Pρ(x) = 1/2ρ(x/2) + 1/2ρ((x+ 1)/2) + 1/2ρ(x/2 + 3/4) . (97)

Feeding ρ∗(x) given by Eq. (89) into this equation shows Pρ∗(x) =

ρ∗(x).

(c) The calculation is analogous to the one of Example 5 yielding λ =

ln 2.

(4) (a) See again Example 5; in this case the solution is λ = 1/a ln a +

1/b ln b.

(b) The calculation follows Sec. 2.3:

i. It is convenient to choose as a partition the one generated by the

backward iteration of the critical point at xc = 1/a.

ii.

H({J1
i }) = 1/a ln a+ 1/b ln b

H({J2
i }) = 1/a2 ln a2 + 1/(ab) ln(ab) + 1/b2 ln b2 + 1/(ba) ln(ba)

= 2H({J1
i }) (98)
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iii. Using the stated assumption we get

h({Jn
i }) = lim

n→∞

1

n
H({Jn

i }) = H({J1
i }) . (99)

iv. Since the partition above is generating we find

hKS = h({Jn
i }) = 1/a ln a+ 1/b ln b = λ (100)

according to Pesin’s theorem.

(5) (a) The sketch can be performed in analogy to Fig. 7 and is left to the

reader.

(b) Since ρ∗(x) = 1, just consider the Lebesgue measure of the sets

{Rn
i }, i.e., the total lengths ln, which are l0 = 1 , l1 = 3/5 , l2 =

9/25. It follows that ln = (3/5)n = exp(−n ln(5/3)), hence

γ(RH) = ln(5/3).

(c) It is easy to find λ(RH) = ln 5.

(d) The calculation is in analogy to Ex. 12 and yields hKS(RH) = ln 3.

(e) We thus have the escape rate formula γ(RH) = ln(5/3) = λ(RH)−
hKS(RH).

(6) With cosx ≃ 1− x2/2 and ln(1± x) ≃ ±x we have

γFP ≃ ln
4

2 + 2− (π/(L+ 1))2
≃ 1

4

(
π

L+ 1

)2

, (101)

which leads to Eq. (84).
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