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Abstract

One of the earliest results in Combinatorics is Mantel’s theorem from 1907
that the largest triangle-free graph on a given vertex set is complete bipartite.
However, a seemingly similar question posed by Turán in 1941 is still open: what
is the largest 3-uniform hypergraph on a given vertex set with no tetrahedron?
This question can be considered a test case for the general hypergraph Turán
problem, where given an r-uniform hypergraph F , we want to determine the
maximum number of edges in an r-uniform hypergraph on n vertices that does
not contain a copy of F . To date there are very few results on this problem,
even asymptotically. However, recent years have seen a revitalisation of this
field, via significant developments in the available methods, notably the use of
stability (approximate structure) and flag algebras. This article surveys the
known results and methods, and discusses some open problems.

Acknowledgements

Research supported in part by ERC grant 239696 and EPSRC grant EP/G056730/1.
Thanks to Dan Hefetz, Dhruv Mubayi, Richard Mycroft and Oleg Pikhurko for
helpful comments and corrections.

1 Introduction

The Turán number ex(n, F ) is the maximum number of edges in an F -free r-
graph on n vertices.1 It is a long-standing open problem in Extremal Combinatorics
to develop some understanding of these numbers for general r-graphs F . Ideally, one
would like to compute them exactly, but even asymptotic results are currently only
known in certain cases. For ordinary graphs (r = 2) the picture is fairly complete.
The first step was taken by Turán [190], who solved the case when F = Kt is a
complete graph on t vertices. The most obvious examples of Kt-free graphs are
(t−1)-partite graphs. On a given vertex set, the (t−1)-partite graph with the most
edges is complete and balanced , in that the part sizes are as equal as possible (any
two sizes differ by at most 1). Turán’s theorem is that this construction always gives
the largest Kt-free graph on a given vertex set, and furthermore it is unique (up to
isomorphism). This result inspired the development of Extremal Graph Theory,
which is now a substantial field of research (see [19]). For general graphs F we
still do not know how to compute the Turán number exactly, but if we are satisfied
with an approximate answer the theory becomes quite simple: it is enough to know
the chromatic number of F . Erdős and Stone [62] showed that if χ(F ) = t then
ex(n, F ) ≤ ex(n, Kt) + o(n2). As noted in [58], since (t − 1)-partite graphs are F -
free, this implies that ex(n, F ) = ex(n, Kt) + o(n2). When F is not bipartite this
gives an asymptotic result for the Turán number. When F is bipartite we can only

1An r-graph (or r-uniform hypergraph) G consists of a vertex set and an edge set, each edge
being some r-set of vertices. We say G is F -free if it does not have a (not necessarily induced)
subgraph isomorphic to F .
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deduce that ex(n, F ) = o(n2); in general it is a major open problem to determine
even the order of magnitude of Turán numbers for bipartite graphs. However, we
will not consider these so-called ‘degenerate’ problems here.

By contrast with the graph case, there is comparatively little understanding of
the hypergraph Turán problem. Having solved the problem for F = Kt, Turán [191]
posed the natural question of determining ex(n, F ) when F = Kr

t is a complete r-
graph on t vertices. To date, no case with t > r > 2 of this question has been solved,
even asymptotically. Erdős [54] offered $500 for the solution of any case and $1000
for a general solution. A comprehensive survey of known bounds on these Turán
numbers was given by Sidorenko [180], see also the earlier survey of de Caen [41];
a survey of more general Turán-type problems was given by Füredi [79]. Our focus
will be on fixed F and large n, rather than the ‘covering design’ problems which
occur for small n (see [180]). Despite the lack of progress on the Turán problem for
complete hypergraphs, there are certain hypergraphs for which the problem has been
solved asymptotically, or even exactly, and most of these results have been obtained
since the earlier surveys. These special cases may only be scratching the surface of
a far more complex general problem, but they are nevertheless interesting for the
rich array of different ideas that have been developed for their solutions, ideas that
one may hope can be applied or developed to much greater generality. Thus we feel
it is most helpful to organise this survey around the methods; we conclude with a
summary of the results for easy reference.

The contents by section are as follows: 1: Introduction, 2: Basic arguments, 3:
Hypergraph Lagrangians, 4: Link graphs and multigraphs, 5: Stability, 6: Counting,
7: Flag algebras, 8: The remaining exact results, 9: Bounds for complete hyper-
graphs, 10: The infinitary perspective, 11: Algebraic methods, 12: Probabilistic
methods, 13: Further topics, 14: Summary of results.

We use the following notation. Suppose G is an r-graph. We write V (G) for
the vertex set of G and E(G) for the edge set of G. We write v(G) = |V (G)| and
e(G) = |E(G)|. We often identify G with its edge set, so that |G| means |E(G)|. For
X ⊆ V (G), the induced subhypergraph G[X] has vertex set X and edge set all edges
of G that are contained in X. We often abbreviate ‘subhypergraph’ to ‘subgraph’.
A k-set is a set of size k. Usually G has n vertices, and asymptotic notations such
as o(1) refer to the limit for large n.

2 Basic arguments

We start with a simple but important averaging argument of Katona, Nemetz and
Simonovits [101]. Suppose G is an r-graph on n vertices with θ

(
n
r

)
edges. We say that

G has density d(G) = θ, as this is the fraction of all possible r-sets that are edges.
Now fix any r ≤ m < n and consider restricting G to subsets of its vertex set of size
m. It is easy to check that the average density of these restrictions is also θ. Taking
m = n− 1, for any fixed r-graph we see that

(
n
r

)−1ex(n, F ) ≤
(
n−1

r

)−1
ex(n− 1, F ).

Indeed, if θ =
(
n−1

r

)−1
ex(n − 1, F ) then we cannot have an F -free r-graph on n

vertices with density more than θ, as the averaging argument would give a restriction
to n − 1 vertices with at least the same density, contradicting the definition of
ex(n − 1, F ). Thus the ratios

(
n
r

)−1ex(n, F ) form a decreasing sequences of real
numbers in [0, 1]. It follows that they have a limit, which is called the Turán density ,
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and denoted π(F ).
Determining the Turán density is equivalent to obtaining an asymptotic result

ex(n, F ) ∼ π(F )
(
n
r

)
, provided that we are in the ‘non-degenerate’ case when π(F ) >

0. An r-graph F is degenerate if and only if it is r-partite, meaning that the vertices
of F can be r-coloured so that every edge has exactly one vertex of each colour. One
direction of this implication is clear: if F is not r-partite then the complete r-partite
r-graph on n vertices gives a non-zero lower bound for the Turán density. It has
about (n/r)r edges, so we obtain the bound π(F ) ≥ r!/rr. The other direction is
a result of Erdős [50]: if F is r-partite then π(F ) = 0, and in fact ex(n, F ) < nr−c

for some c = c(F ) > 0. We note for future reference that this argument shows that
there are no Turán densities in the range (0, r!/rr). We will return to the question
of what values may be taken by Turán densities in Section 13.1.

A similar averaging argument establishes the important ‘supersaturation’ phe-
nomenon discovered by Erdős and Simonovits [59]. Informally, this states that once
the density of an r-graph G exceeds the Turán density of F , we not only find a copy
of F , but in fact a constant fraction of all v(F )-sets from V (G) span a copy of F .

Lemma 2.1 (Supersaturation) For any r-graph F and a > 0 there are b, n0 > 0
so that if G is an r-graph on n > n0 vertices with e(G) > (π(F ) + a)

(
n
r

)
then G

contains at least b
(

n
v(F )

)
copies of F .

Proof Fix k so that ex(k, F ) ≤ (π(F ) + a/2)
(
k
r

)
. There must be at least 1

2a
(
n
k

)
k-sets K ⊆ V (G) inducing an r-graph G[K] with e(G[K]) > (π(F ) + 1

2a)
(
k
r

)
.2

Otherwise, we would have
∑

K e(G[K]) ≤
(
n
k

)
(π(F ) + 1

2a)
(
k
r

)
+ 1

2a
(
n
k

)(
k
r

)
= (π(F ) +

a)
(
n
k

)(
k
r

)
. But we also have

∑
K e(G[K]) =

(
n−r
k−r

)
e(G) >

(
n−r
k−r

)
(π(F ) + a)

(
n
r

)
=

(π(F ) + a)
(
n
k

)(
k
r

)
, so this is a contradiction. By choice of k, each of these k-sets

contains a copy of F , so the number of copies of F in G is at least 1
2a

(
n
k

)
/
(n−v(F )
k−v(F )

)
=

1
2a

(
n

v(F )

)
/
(

k
v(F )

)
, i.e. at least b = 1

2a
(

k
v(F )

)−1
fraction of all v(F )-sets span a copy of

F . �

Supersaturation can be used to show that ‘blowing up’ does not change the
Turán density. The t-blowup F (t) of F is defined by replacing each vertex x of F
by t ‘copies’ x1, · · · , xt and each edge x1 · · ·xr of F by the corresponding complete
r-partite r-graph of copies, i.e. all xa1

1 · · ·xar
r with 1 ≤ a1, · · · , ar ≤ t. Then we have

the following result.

Theorem 2.2 (Blowing up) π(F (t)) = π(F ).

First we point out a special case that will be used in the proof. When F = Kr
r

consists of a single edge we trivially have ex(n, F ) = 0 and so π(F ) = 0. Also
F (t) = Kr

r (t) is the complete r-partite r-graph with t vertices in each part. Then
the result of Erdős mentioned above gives π(F (t)) = 0.

Proof By supersaturation, for any a > 0 there is b > 0 so that if n is large and
G is an r-graph on n vertices with e(G) > (π(F ) + a)

(
n
r

)
then G contains at least

2In fact, large deviation estimates imply that almost all k-sets K ⊆ V (G) have this property
when k is large.
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b
(

n
v(F )

)
copies of F . Consider an auxiliary v(F )-graph H on the same vertex set as

G where edges of H correspond to copies of F in G. For any T > 0, if n is large
enough we can find a copy K of K

v(F )
v(F ) (T ) in H. We colour each edge of K by one

of v(F )! colours, corresponding to which of the v(F )! possible orders the vertices of
F are mapped to the parts of K. Now a standard result of Ramsey theory implies
that for large enough T there is a monochromatic copy of K

v(F )
v(F ) (t), which gives a

copy of F (t) in G. �

One application of blowing up is to deduce the Erdős-Stone theorem from Turán’s
theorem: if χ(H) = t then H is contained in Kt(s) for some s, so π(H) = π(Kt) =
t−2
t−1 .

Another useful perspective on blowing up is a formulation in terms of homomor-
phisms. Given r-graphs F and G we say f : V (F ) → V (G) is a homomorphism if it
preserves edges, i.e. f(e) ∈ E(G) for all e ∈ E(F ). Note that f need not be injec-
tive; if it is then F is a subgraph of G. We say that G is F -hom-free if there is no
homomorphism from F to G. Clearly, G is F -hom-free if and only if G(t) is F -free
for every t. We can make analogous definitions to the Turán number and density
for homomorphic copies of F : we let exhom(n, F ) be the maximum number of edges
in an F -hom-free r-graph on n vertices, and πhom(F ) = limn→∞

(
n
r

)−1exhom(n, F ).
Then blowing up implies that πhom(F ) = π(F ).

We can in principle approximate π(F ) to any desired accuracy by an exhaustive
search of small examples. For suppose that m < n and we have found that H is
a largest F -hom-free r-graph on m vertices with θ

(
m
r

)
edges. Then averaging gives

π(F ) ≤ θ. On the other hand, for any t, the blowup H(t) is an F -free r-graph on tm

vertices with tr · θ
(
m
r

)
edges, so π(F ) ≥ limt→∞

(
tm
r

)−1
trθ

(
m
r

)
= θ

∏r−1
i=1 (1 − i/m).

Thus by examining all r-graphs on m vertices one can approximate π(F ) to within
an error of O(r2/m). Simple brute force search becomes infeasible even for quite
small values of m on very powerful computers. However, more sophisticated search
techniques can be much faster, and in some cases they give the best known bounds:
see Section 7.

3 Hypergraph Lagrangians

The theory in this section was developed independently by Sidorenko [173] and
Frankl and Füredi [69], generalising work of Motzkin and Straus [135] and Zykov
[193]. Suppose G is an r-graph on [n] = {1, · · · , n}. Recall that the t-blowup
G(t) of G is obtained by replacing each vertex by t copies. More generally, we
can have different numbers of copies of each vertex: for any vector t = (t1, · · · , tn)
we let G(t) be obtained by replacing vertex i with ti copies, where as before, each
edge is replaced by the corresponding complete r-partite r-graph of copies. Then
e(G(t)) = pG(t) :=

∑
e∈E(G)

∏
i∈e ti. Note that pG(t) is a polynomial where for each

edge e of G we have the monomial
∏

i∈e ti in variables corresponding to the vertices
of e.

Now suppose that F is an r-graph and G is F -hom-free. We will derive an
expression for the best lower bound on π(F ) that can be obtained from blowups of G.
Note that G(t) is an F -free r-graph on |t| :=

∑n
i=1 ti vertices with density d(G(t)) =
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(|t|
r

)−1
pG(t1, · · · , tn). Then π(F ) ≥ limm→∞ d(G(tm)) = r!pG(t1/|t|, · · · , tn/|t|).

Thus we want to maximise pG(x) over the set S of all x = (x1, · · · , xn) with xi ≥ 0
for 1 ≤ i ≤ n and |x| = 1. (Sometimes S is called the standard simplex .) We
denote this maximum by λ(G) = maxx∈S pG(x): it is known as the Lagrangian
of G. Note that the maximum is achieved by some x ∈ S, as S is compact and
pG(x) is continuous. Also, x can be approximated to arbitrary precision by vectors
(t1/|t|, · · · , tn/|t|) with integral ti. We deduce that π(F ) ≥ b(G) := r!λ(G), where
we refer to b(G) as the blowup density of G.3 We have the following approximate
bound for the blowup density by the usual density: b(G) ≥ r!pG(1/n, · · · , 1/n) =
r!n−re(G) = d(G) − O(1/n). Since π(F ) is the limit supremum of d(G) over F -
hom-free G, we deduce that π(F ) is also the supremum of b(G) over F -hom-free
G.

We say that G is dense if every proper subgraph G′ satisfies b(G′) < b(G). This
is equivalent to saying that the maximum of pG(x) over x ∈ S is only achieved by
vectors x with xi > 0 for 1 ≤ i ≤ n, i.e. lying in the interior of S. Then π(F ) is
clearly also the supremum of b(G) over F -hom-free dense G. We say that G covers
pairs if for every pair of vertices i, j in G there is an edge of G containing both i
and j. We claim that if G is dense then G covers pairs. This can be seen from
the following simple variational argument. Suppose on the contrary that there is
no edge containing both i and j for some pair i, j. Then if we consider pG(x) with
any fixed values for the other variables xk, k 6= i, j we obtain some linear function
axi + bxj + c of xi and xj . However, a linear function cannot have an internal strict
maximum, so the maximum value of pG(x) can be achieved with one of xi or xj

equal to 0. This contradicts the assumption that G is dense, so we deduce that G
covers pairs.

We can now derive several results from the theory above. First we recover the
results for ordinary graphs (r = 2). Note that only complete graphs cover pairs, so
only complete graphs can be dense. We have b(Kt) = 1 − 1/t, so complete graphs
are dense. Suppose that G is a Kt-free graph on n vertices. Then b(G) = b(G′)
for some dense subgraph G′, which must be Ks for some s < t. We deduce that
2e(G)/n2 = 2pG(1/n, · · · , 1/n) ≤ b(G) = b(G′) = 1− 1/s ≤ t−2

t−1 . This gives Turán’s
theorem in the case when n is divisible by t− 1. (This argument is due to Motzkin
and Strauss [135].) Also, Kt is F -hom-free if and only if χ(F ) > t. Since π(F ) is
the supremum of b(G) for F -hom-free dense G we deduce the Erdős-Stone theorem.

Next we give some hypergraph results. Let Hr
t be the r-graph obtained from

the complete graph Kt by extending each edge with a set of r − 2 new vertices.
More precisely, Hr

t has vertices xi for 1 ≤ i ≤ t and yk
ij for 1 ≤ i < j ≤ t and

1 ≤ k ≤ r − 2 and edges xixjy
1
ij · · · y

r−2
ij for 1 ≤ i < j ≤ t. We will refer to Hr

t

as an extended complete graph. (Sometimes ‘expanded’ is used, but we will use this
terminology in a different context later.) Natural examples of Hr

t+1-free r-graphs
are the blowups Kr

t (s) of the complete r-graph on t vertices. To see that these are
Hr

t+1-free note that Kr
t is Hr

t+1-hom-free, as any map from Hr
t+1 to Kr

t will map
some pair xi, xj to the same vertex, so cannot be a homomorphism. On the other

3Given the simple relationship between b(G) and λ(G) it is arguably unnecessary to give them
both names. However, the name Lagrangian is widely used, so should be mentioned here, whereas
blowup density is more descriptive and often notationally more convenient.
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hand, if G covers pairs and has at least t + 1 vertices then it cannot be Hr
t+1-hom-

free: to define a homomorphism f : V (Hr
t+1) → V (G) we arbitrarily choose distinct

vertices as f(x1), · · · , f(xt+1), then for each 1 ≤ i < j ≤ t + 1 we fix an edge eij

containing f(xi)f(xj) and map yk
ij , 1 ≤ k ≤ r − 2 to eij \ {f(xi), f(xj)}. It follows

that π(Hr
t+1) = b(Kr

t ) = r!t−r
(

t
r

)
=

∏r−1
i=1 (1− i/t).

The previous result is due to Mubayi [138], who also gave an exact result for
the following family of r-graphs including Hr

t . Let Hr
t be the set of r-graphs F that

have at most
(

t
2

)
edges, and have some set T of size t such that every pair of vertices

in T is contained in some edge. We extend our earlier definitions to a family F of
r-graphs in the obvious way: we say G is F-free if it does not contain any F in F ,
and then we can define ex(n,F) and π(F) as before. Mubayi [138] showed that the
unique largest Hr

t+1-free r-graph on n vertices is the balanced blowup of Kr
t . This

was subsequently refined by Pikhurko [155], who showed that for large n, the unique
largest Hr

t+1-free r-graph on n vertices is the balanced blowup of Kr
t .

More generally, suppose F is any r-graph that covers pairs. For any t ≥ v(F ) we
define a hypergraph HF

t as follows. We label the vertices of F as v1, · · · , vv(F ). We
add new vertices vv(F )+1, · · · , vt. Then for each pair of vertices vi, vj not both in F

we add another r − 2 new vertices uk
ij , 1 ≤ k ≤ r − 2 and the edge vivju

1
ij . . . ur−2

ij .
Thus every pair of vertices in F is contained in an edge of HF

t (although HF
t does

not cover pairs because of the new vertices uk
ij). As an example, if we take F to

be the r-graph with no vertices then HF
t = Hr

t as defined above. The following
theorem generalises Mubayi’s density result.

Theorem 3.1 If F is an r-graph that covers pairs and t ≥ v(F ) satisfies π(F ) ≤
b(Kr

t ) =
∏r−1

i=1 (1− i/t) then π(HF
t+1) = b(Kr

t ).

Proof The same argument used for Hr
t+1 shows that Kr

t is HF
t+1-hom-free, so

π(HF
t+1) ≥ b(Kr

t ). For the converse, it suffices to show that any HF
t+1-hom-free

dense G satisfies b(G) ≤ b(Kr
t ). This holds by monotonicity if G has at most t

vertices, so we can assume G has at least t + 1 vertices. Now we claim that G is
F -hom-free. To see this, note that since F covers pairs, any homomorphism f from
F to G is injective, i.e. maps F to a copy of F in G. Then f can be extended
to a homomorphism from HF

t+1 to G, by the same argument used for Hr
t+1. This

contradicts our choice of G, so G is F -hom-free. Then b(G) ≤ π(F ) ≤ b(Kr
t ). �

The argument of the above theorem is due to Sidorenko [174] where it is given in
the special case when F is the 3-graph with 3 edges on 4 vertices and t = 4. We will
see later (Section 6) that π(F ) ≤ 1/3. Since b(K3

4 ) = 3/8 > 1/3 we deduce that in
this case π(HF

4 ) = 3/8. Another simple application is to the case when F consists of
a single edge. Then π(F ) = 0, so π(HF

t+1) = b(Kr
t ) for all t ≥ r. The corresponding

exact result for this configuration when n is large is given by Mubayi and Pikhurko
[141]; we will call it the generalised fan, as they call the case t = r a fan. As it has
not been explicitly pointed out in the earlier literature, we remark that for every
r-graph F that covers pairs, the theorem above gives an infinite family of r-graphs
for which we can determine the Turán density.

Sidorenko [174] also applied his method to give the asymptotic result for a con-
struction based on trees that satisfy the Erdős-Sós conjecture. This conjecture (see
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[51]) states that if T is a tree on k vertices and G is a graph on n vertices with
more than (k− 2)n/2 edges then G contains T . Although this conjecture is open in
general, it is known to hold for many families of trees (e.g. Sidorenko proves it in this
case when some vertex is adjacent to at least (k−2)/2 leaves, and a proof for large k
has been claimed by Ajtai, Komlós, Simonovits and Szemerédi). Suppose that T is
a tree satisfying the Erdős-Sós conjecture. Let F be the r-graph obtained from T by
adding a set S of r− 2 new vertices to every edge of T (note that it is the same set
for each edge). Let F ′ be the r-graph obtained from F by adding an edge for each
uncovered pair consisting of that pair and r − 2 new vertices (i.e. F ′ = HF

v(F )). We
call F ′ an extended tree. The result is π(F ′) = b(Kr

k+r−3), provided that k ≥ Mr,
where Mr is a small constant that can be explicitly computed. For example M3 = 2,
so when r = 3 we have π(F ′) = b(Kr

k) for all k ≥ 2.
We conclude this section with an application of general optimisation techniques

to Turán problems given by Bulò and Pelillo [31]. Suppose that G is a k-graph and
consider minimising the polynomial h(x) = pG(x) + a

∑
i x

k
i over x in S, where G is

the complementary k-graph whose edges are the non-edges of G. The intuition for
this function is that the first term is minimised when x is supported on a clique of G,
whereas the second term is minimised when x = (1/n, · · · , 1/n), so in combination
one might expect a maximum clique to be optimal. It is shown in [31] that this
is the case when 0 < a < 1

k(k−1) . One can immediately deduce a bound on the
Turán number of Kk

t+1. Indeed, the minimum of h(x) is achieved by putting weight
1/t on the vertices of a Kk

t , giving value at1−k. On the other hand, substituting
x = (1/n, · · · , 1/n) gives an upper bound of |G|n−k + an1−k. This gives |G|n−k +
an1−k ≥ at1−k, so ex(n, Kk

t+1) ≤
(
n
k

)
− at(n/t)k + an for any 0 < a < 1

k(k−1) . We
will see later that this is not as good as bounds obtained by other methods, but the
technique is interesting and perhaps more widely applicable.

4 Link graphs and multigraphs

This section explores the following constructive strategy that can be employed
for certain Turán problems. Given an r-graph G and a vertex x of G, the link (or
neighbourhood) G(x) is the (r−1)-graph consisting of all S ⊆ V (G) with |S| = r−1
and S ∪{x} ∈ E(G). Suppose we are considering the Turán problem for an r-graph
F of the following special form: there is some X ⊆ V (F ) such that every edge e of F
is either contained in X or has exactly one point in X. Then the strategy for finding
F is to first find a copy of the subgraph F [X], then extend it to F by consideration
of the links of the vertices in X.

Our first example will be to the following question of Katona. Say that an r-
graph G is cancellative if whenever A,B, C are edges of G with A ∪ C = B ∪ C we
have A = B. For example, an (ordinary) graph G is cancellative if and only if it
is triangle free. Katona asked for the maximum size of a cancellative 3-graph of n
vertices. This was answered as follows by Bollobás [20].

Theorem 4.1 The unique largest cancellative 3-graph on n vertices is 3-partite.

It is not hard to see that a 3-partite 3-graph is cancellative. The largest 3-
partite 3-graph on n vertices is clearly complete and balanced (meaning as before
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that the 3 parts are as equal as possible). We denote this 3-graph by S3(n) and
write s3(n) = e(S3(n)). We will sketch a short proof given by Keevash and Mubayi
[106] using link graphs. In this application of the method, the subgraph F [X]
described above will just be a single edge e = xyz. The links G(x), G(y) and
G(z) are pairwise edge-disjoint graphs, for if, say, we had edges xab and yab then
xab ∪ xyz = yab ∪ xyz contradicts G being cancellative. We consider their union U
restricted to V (G) \ {x, y, z} as a 3-edge-coloured graph. Any triangle in U must
be ‘rainbow’ (use all 3 colours), as if, say, ab and ac both have colour x and bc has
colour y then xab ∪ bcy = xac ∪ bcy contradicts G being cancellative.

Proof Suppose G is a cancellative 3-graph on n vertices. For simplicity we just
show the inequality e(G) ≤ s3(n), though the uniqueness statement also follows
easily. We use induction on n. The result is obvious for n ≤ 4 so suppose n ≥ 5. If
any triple of vertices is incident to at most s3(n)−s3(n−3) edges then we can delete
it and apply induction. Thus we can assume that every triple is incident to more
than s3(n)−s3(n−3) = t3(n)−n+1 edges, where t3(n) denotes the number of edges
in the balanced complete 3-partite ‘Turán graph’ on n vertices. Now consider an
edge e = xyz. Note that there are at most n− 3 edges that intersect e in 2 vertices,
otherwise there would be some w that forms an edge with 2 pairs of e, but G is
cancellative. Since e is incident to at least t3(n)−n + 2 edges (including itself), the
number of edges in U is at least t3(n)−n+2−(n−3)−1 = t3(n−3)+1. By Turán’s
theorem U contains a K4; let its vertex set be abcd. This K4 is 3-edge-coloured in
such a way that every triangle is rainbow, which is only possible when it is properly
3-edge-coloured, i.e. each colour is a matching of two edges. Finally we consider the
7-set S = xyzabcd. The colouring of abcd implies that every pair of vertices in S is
contained in an edge of G, so have disjoint links. But by averaging, the total size of
the links of vertices in S is at least 7

3(t3(n)− n + 2) >
(
n
2

)
, contradiction. �

A similar argument was applied in [106] to give a new proof of a theorem of
Frankl and Füredi [66]. Note that a 3-graph is cancellative if and only if it does not
contain either of the following 3-graphs: F4 = {123, 124, 134}, F5 = {123, 124, 345}.
Thus we can write Bollobás’ theorem as ex(n, {F4, F5}) = s3(n). This was improved
in [106] to the ‘pure’ Turán result ex(n, F5) = s3(n) for large n. (This was the
first hypergraph Turán theorem.) The original proof required n ≥ 3000; this was
improved to n ≥ 33 in [106], where the extremal example S3(n) was also charac-
terised. Very recently, Goldwasser [86] has determined ex(n, F5) and characterised
the extremal examples for all n: S3(n) is the unique extremal example for n > 10,
the ‘star’ (all triples containing some fixed vertex) is the unique extremal example
for n < 10, and both S3(n) and the star are extremal for n = 10. A new proof
of the asymptotic form of the Frankl-Füredi theorem had previously been given by
Mubayi and Rödl [143]. That paper applied the link method to obtain several other
bounds on Turán densities. They also gave 5 specific 3-graphs each of which has
Turán density 3/4. One of these, denoted F (3, 3), is obtained by taking an edge
abc, three additional vertices d, e, f , and all edges with one vertex from abc and two
from def .

We remark that induction arguments as in the above proof are often very useful
for Turán problems. Above it was convenient to consider deleting triples, but usually
one considers deleting a single vertex. Then in order to prove the statement e(G) ≤
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f(n) for an F -free r-graph G on n vertices one can assume that the minimum
degree of a vertex in G is more than f(n)− f(n− 1). (This argument gives one of
the simplest proofs of Turán’s theorem.) A caveat is that this induction argument
depends on being able to prove a base case, which is not always convenient, as the
desired bound may not even be true for small n. Then the following proposition is
a more convenient method for obtaining a minimum degree condition. (The proof
is to repeatedly delete vertices with degree less than the stated bound: a simple
calculation shows that this process terminates and that the final graph has many
vertices.)

Proposition 4.2 For any δ, ε > 0 and n0 ≥ r ≥ 2 there is n1 so that any r-graph
on n ≥ n1 vertices with at least (δ + 2ε)

(
n
r

)
edges contains an r-graph on m ≥ n0

vertices with minimum degree at least (δ + ε)
(
m−1
r−1

)
.

Our next example using links is by de Caen and Füredi [42], who were the
originators of the method. They gave a surprisingly short proof of a conjecture of
Sós [183] on the Turán number of the Fano plane. The Fano plane is an ubiquitous
object in combinatorics. It is the unique 3-graph on 7 vertices in which every pair
of vertices is contained in exactly one edge. It can be constructed by identifying the
vertices with the non-zero vectors of length 3 over F2 (the field with two elements),
and the edges with triples {x, y, z} with x+ y = z. It is easy to check that the Fano
plane is not bipartite, in that for any partition of its vertex set into two parts, at
least one of the parts must contain an edge. Thus a natural construction of a Fano-
free 3-graph on n vertices is to take the balanced complete bipartite 3-graph: the
vertex set has two parts of size bn/2c and dn/2e, and the edges are all triples that
intersect both parts. Sós conjectured that this construction gives the exact value
for the Turán number of the Fano plane. The following result from [42] verifies this
conjecture asymptotically (see Section 5 for the exact result).

Theorem 4.3 ex(n,Fano) ∼ 3
4

(
n
3

)
.

As in the previous example, the construction starts with a single edge e = xyz.
We combine the links to create a 3-edge-coloured link multigraph L = G(x)+G(y)+
G(z), where + denotes multiset union; note that unlike the previous example the
links need not be edge-disjoint. To find a Fano plane we need to find the same
object which appeared in the previous proof: a properly 3-edge-coloured K4. (Since
an edge may have more than one colour, this means we can select a colour for each
edge to obtain the required colouring.) To prove an asymptotic result we can assume
that G has at least (3/4 + 2ε)

(
n
3

)
edges for some small ε > 0, and then that G has

minimum degree at least (3/4 + ε)
(
n
2

)
by Proposition 4.2. However, the argument

now seems to get stuck at the point of using this lower bound on the links to find a
properly 3-edge-coloured K4.

The key idea is to instead start with a copy of K3
4 , with the intention of using

one of its edges as the edge e above. Since G has edge density more than 3/4,
averaging shows that it has a 4-set wxyz of density more than 3/4, i.e. spanning K3

4

(we will see better bounds later on the Turán density of K3
4 ). Now we consider the

4-edge-coloured link multigraph L, obtained by restricting G(w)+G(x)+G(y)+G(z)
to V (G) \ {w, x, y, z}. It suffices to find a properly 3-edge-coloured K4. This can
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be achieved by temporarily forgetting the colours of the edges and just counting
multiplicities. Thus we consider L as a multigraph with edge multiplicities at most
4 and at least (3+4ε)

(
n
2

)
edges. Such a multigraph must have a 4-set abcd that spans

at least 21 edges in L: this is a special case of a theorem of Füredi and Kündgen
[80]. Finally we put the colours back. We may consider the bipartite graph B in
which one part B1 is the 4-set wyxz, the other part B2 is the 3 matchings of size 2
formed by abcd, and edges in B correspond to edges of G in the obvious way, e.g. we
join w to {ab, cd} if wab and wcd are edges. Since L[abcd] is at most 3 edges from
being complete, the same is true of B. This implies (e.g. using Hall’s theorem) that
B has a matching that covers B2. This gives the proper 3-edge-colouring of abcd
required to prove the theorem.

5 Stability

Many extremal problems have the property that there is a unique extremal ex-
ample, and moreover any construction of close to maximum size is structurally close
to this extremal example. For example, in the Turán problem for the complete
graph Kt, Turán’s theorem determines ex(n, Kt) and describes the unique extremal
example as the balanced complete (t − 1)-partite graph on n vertices. More struc-
tural information is given by the Erdős-Simonovits Stability Theorem [182], which
may be informally stated as saying that any Kt-free graph G on n vertices with
e(G) ∼ ex(n, Kt) is structurally close to the extremal example. More precisely, we
have the following statement.

Theorem 5.1 For any ε > 0 there is δ > 0 such that if G is a Kt-free graph
with at least (1 − δ)ex(n, Kt) edges then there is a partition of the vertices of G as
V1 ∪ · · · ∪ Vt−1 with

∑
i e(Vi) < εn2.

As well as being an interesting property of extremal problems, this phenomenon
gives rise to a surprisingly useful tool for proving exact results. This stability method
has two stages. First one proves a stability theorem, that any construction of close to
maximum size is structurally close to the conjectured extremal example. Armed with
this, we can consider any supposed better construction as being obtained from the
extremal example by introducing a small number of imperfections into the structure.
The second stage is to analyse any possible imperfection and show that it must lead
to a suboptimal configuration, so in fact the conjectured extremal example must be
optimal.

This approach can be traced back to work of Erdős and Simonovits in the 60’s
in extremal graph theory (see [182]). More recently it was applied independently
by Keevash and Sudakov [110] and by Füredi and Simonovits [84] to prove the
conjecture of Sós mentioned above in an exact form: for large n the unique largest
Fano-free 3-graph on n vertices is the balanced complete bipartite 3-graph. Since
then it has been applied to many problems in hypergraph Turán theory and more
broadly in combinatorics as whole. We will discuss the other Turán applications
later; we refer the reader to [107] for an application in extremal set theory and some
further references using the method.

To understand how the method works in more detail, it is helpful to consider
the ‘baby’ case of the Turán problem for the 5-cycle C5. This is not hard to
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handle by other means, but is sufficiently simple to illustrate the method with-
out too many technicalities. Since χ(C5) = 3, the Erdős-Stone theorem gives
ex(n, C5) ∼ ex(n, K3) = bn2/4c. In fact ex(n, C5) = bn2/4c for n ≥ 5. We will
sketch a proof of this equality for large n. This is a special case of a theorem of
Simonovits, that if F is a graph with χ(F ) = t and χ(F \ e) < t for some edge e of
F then ex(n, F ) = ex(n, Kt) for large n. (We say that such graphs F are critical :
examples are cliques and odd cycles.) The first step is the following stability result
(we state it informally, the precise statement is similar to that in Theorem 5.1).

Lemma 5.2 Suppose G is a C5-free graph on n vertices with e(G) ∼ n2/4. Then
G is approximately complete bipartite.

Proof (Sketch.) First we claim that we can assume G has minimum degree δ(G) ∼
n/2. This is a similar statement to that in Proposition 4.2, although we cannot
apply that result, as we cannot remove too many vertices if we want to obtain the
structure of G. The solution is to use the same vertex deletion argument and use
the bound from the Erdős-Stone theorem to control the number of vertices deleted.
The calculation is as follows, for some small δ > 0. If e(G) > (1 − δ)n2/4 then
we can delete at most δ1/2n vertices of proportional degree less than 1/2 − δ1/2,
otherwise we arrive at a C5-free graph G′ on n′ = (1− δ1/2)n vertices with e(G′) >

e(G)−
∑n

i=(1−δ1/2)n+1(1/2−δ1/2)i > (1−δ)n2/4−δ1/2n2/2+δ1/2
((

n+1
2

)
−

(
n′+1

2

))
=

n′2/4− δn2/2 + δ(1− δ1/2/2)n2 −O(n) > (1 + δ)n′2/4, contradiction.
Thus we can assume that δ(G) ∼ n/2. Next we choose a 4-cycle abcd in G. These

are plentiful, as G has edge density about 1/2, whereas the 4-cycle is bipartite, so has
zero Turán density. Now we note that the neighbourhoods N(a) and N(b) cannot
share a vertex x other than c or d, otherwise axbcd is a 5-cycle. Furthermore each
of these neighbourhoods does not contain a path of length 3, e.g. if wxyz is a path
of length 3 in N(a) then awxyz is a 5-cycle. Thus each is very sparse, e.g. N(a)
cannot have average degree at least 6, as it is not hard to show that it would then
have a subgraph of minimum degree at least 3, and so a path of length 3. Thus we
have found two disjoint sets of size about n/2 containing only O(n) edges. �

The second step is to refine the approximate structure and deduce an exact
result.

Theorem 5.3 ex(n, C5) = bn2/4c for large n.

Proof (Sketch.) Suppose G is a maximum size C5-free graph on n vertices. We
claim that we can assume G has minimum degree δ(G) ≥ bn/2c. For suppose we
have proved the result under this assumption for all n ≥ n0. Then suppose that
n is much larger then n0 and repeatedly delete vertices while the minimum degree
condition fails. A similar calculation to that in the lemma shows that this process
terminates with a C5-free graph G′ on n′ ≥ n0 vertices with δ(G′) ≥ bn′/2c, and
moreover if any vertices were deleted we have e(G′) > bn′2/4c, contradiction. Thus
we can assume δ(G) ≥ bn/2c.

By the lemma G is approximately complete bipartite. Consider a bipartition
V (G) = A∪B that is optimal, in that e(A)+e(B) is minimised. Then e(A)+e(B) <
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εn2, for some small ε > 0. Also, A and B each have size about n/2, say (1/2±ε1/2)n,
otherwise e(G) < |A||B|+ εn2 < n2/4, contradicting G being maximum size. Write
dA(x) = |N(x) ∩ A| and dB(x) = |N(x) ∩ B| for any vertex x. Note that for any
a ∈ A we have dA(a) ≤ dB(a), otherwise we could improve the partition by moving
a to B. Similarly, dB(b) ≤ dA(b) for any b ∈ B.

Next we claim that the ‘bad degrees’ must be small, e.g. that dA(a) < cn for
all a ∈ A where c = 2ε1/2. For suppose this fails for some a. Then N(a) ∩ A and
N(a) ∩B both have size at least cn. Moreover they span a bipartite graph with no
path of length 3, so only O(n) edges. This gives (cn)2−O(n) > e(A)+e(B) ‘missing
edges’ between A and B, so e(G) < |A||B| ≤ n2/4, contradiction.

Finally we claim that there are no ‘bad edges’, i.e. that (A,B) gives a bipartition
of G. For suppose that aa′ is an edge in A. Then |NB(a) ∩NB(a′)| > d(a) − cn +
d(a′) − cn − |B| > (1/2 − 5ε1/2)n. But there is no path ba′′b′ with b, b′ ∈ B′ =
NB(a)∩NB(a′) and a′′ ∈ A′ = A \ {a, a′}, so A′ and B′ span a bipartite graph with
only O(n) edges - a very emphatic contradiction! �

The above proof illustrates a template that is followed by many (but not all)
applications of the stability method. In outline, the steps are: (i) G has high
minimum degree, (ii) G has approximately correct structure, so consider an optimal
partition, (iii) the bad degrees are small, (iv) there are no bad edges. For example,
the deduction in [110] of the exact result for the Fano plane from the stability result
follows this pattern. It is instructive to note that as well as the link multigraph
method of the previous section, considerable use is made of an additional property
of the Fano plane: there is a vertex whose deletion leaves a 3-partite 3-graph (any
vertex has this property). It is an intriguing problem to understand what properties
of an r-graph F make it amenable to either of the two steps of the stability method,
i.e. whether a stability result holds, and whether it can be used to deduce an exact
result.

A variant form of the stability approach is to prove a statement analogous to the
following theorem of Andrásfai, Erdős and Sós [7]: any triangle-free graph G on n
vertices with minimum degree δ(G) > 2n/5 is bipartite. The approach taken in [84]
to the exact result for the Fano plane is to prove the following statement: if δ > 0,
n is large, and G is a Fano-free 3-graph on n vertices with δ(G) > (3/4− δ)

(
n
2

)
then

G is bipartite. One might think that this is a stronger type of statement than the
stability result, but in fact it is equivalent in difficulty: it follows by exactly the
same proof as that of the refinement argument sketched above (the second stage of
the stability method). It would be interesting, and probably rather more difficult,
to determine the smallest minimum degree for which this statement holds. For
example, in the Andrásfai-Erdős-Sós theorem the bound 2n/5 is tight, as shown by
the blowup of a 5-cycle; what is the analogous ‘second-best’ construction for the
Fano plane? (Or indeed, for other hypergraph Turán results...?)

We conclude this section by mentioning a nice application of the stability method
to showing the ‘non-principality’ of Turán densities. If F is a set of graphs then it
is clear that π(F) = minF∈F π(F ); one can say that the Turán density for a set of
graphs is ‘principal’, in that it is determined by just one of its elements. However,
Balogh [10] showed that this is not the case for hypergraphs, confirming a conjecture
of Mubayi and Rödl [143]. Mubayi and Pikhurko [142] showed that even a set of two
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hypergraphs may not be principal. Let F denote the Fano plane and let F ′ be the
‘cone’ of Kt, i.e. the 3-graph on {0, · · · , t} with edges 0ij for 1 ≤ i < j ≤ t. Note that
F ′ is not contained in the blowup of K3

t , so π(F ′) → 1 as t →∞. Thus we can choose
t so that min{π(F ), π(F ′)} = π(F ) = 3/4. Now we claim that π({F, F ′}) < 3/4. To
see this, consider a large Fano-free 3-graph G with edge density 3/4− o(1). Then G
is approximately a complete bipartite 3-graph. But the complete bipartite 3-graph
contains many copies of F ′, and these cannot all be destroyed by the approximation,
so G contains a copy of F ′, as required.

6 Counting

The arguments in this section deduce bounds on the edge density of an F -free r-
graph G from counts of various small subgraphs. The averaging argument discussed
in Section 2 gives the essence of this idea, but this uses F -freeness only to say that r-
graphs containing F have a count of zero in G. However, there are various methods
that can extract information about other counts. Arguments using the Cauchy-
Schwartz inequality or non-negativity of squares play an important role here. We
will illustrate this in the case when F is the (unique) 3-graph on 4 vertices with 3
edges (we called this F4 in Section 4). First consider what can be obtained from a
basic averaging argument. If G is an F -free 3-graph then every 4-set of G has at
most 2 edges, i.e. density at most 1/2. It follows that the density of G is at most
1/2.

For an improvement, consider the sum S =
∑

xy

(
d(x,y)

2

)
, where the sum is over

unordered pairs of vertices xy and d(x, y) denotes the number of edges containing
xy. Note that S counts the number of unordered pairs ab such that axy and bxy are
edges. Since we are assuming that every 4-set has at most 2 edges, this is exactly
the number of 4-sets abxy with 2 edges. On the other hand, the Cauchy-Schwartz
inequality (more precisely, convexity of the function f(t) =

(
t
2

)
) gives S ≥

(
n
2

)(
d
2

)
,

where d is the average value of d(x, y). We have
(
n
2

)
d =

∑
xy d(x, y) = 3e(G) =

3θ
(
n
3

)
, where θ denotes the edge density of G, so S ≥ 1

4θ2n4 + O(n3). For an upper
bound on S, we can double-count pairs (T, e) where T is a 4-set with 2 edges and
e is an edge of T . This gives 2S ≤ (n− 3)e(G), so S ≤ 1

12θn4 + O(n3). Combining
the bounds on S we obtain θ ≤ 1/3 + O(1/n) as a bound on the density of G.

It is remarkable that the Turán problem is still open for such a seemingly sim-
ple 3-graph – we do not even know its Turán density! For many years the above
argument (due to de Caen [38]) gave the best known upper bound. More recently
it has been improved in a series of papers [134, 136, 186, 144, 158]; the current
best bound is 0.2871 due to Baber and Talbot [9]. The best known lower bound is
π(F ) ≥ 2/7 = 0.2857 · · · , due to Frankl and Füredi [67]. It is worth noting their
unusual iterative construction. For most Turán problems, the known or conjectured
optimal construction is obtained by dividing the vertex set into a fixed number of
parts and defining edges by consideration only of intersection sizes with the parts.
However, this construction is obtained by first blowing up a particular 3-graph on
6 vertices, then iteratively substituting copies of the construction inside each of the
6 parts. The 3-graph in question has the 10 edges 123, 234, 345, 451, 512, 136, 246,
356, 416, 526. This has blowup density 3!10

63 = 5
18 , so the overall density is given by

the geometric series 5
18

∑
i≥0(1/36)i = 2

7 . If this is indeed the optimal construction,
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as conjectured in [136], then its complicated nature gives some indication as to why
it has so far eluded proof. It is also an intriguing example from the point of view of
the finiteness questions discussed in [123, 156] (see Section 7).

Our next example of a counting argument, due to Sidorenko [175], gives a bound
on the Turán density that depends only on the number of edges. If F is an r-graph
with f edges then the bound is π(F ) ≤ f−2

f−1 . Before proving this we set up some
notation. Suppose that G is an r-graph on n vertices. Label the vertices of F as
{v1, · · · , vt} for some t and the edges as {e1, · · · , ef}. Let x = (x1, · · · , xt) denote
an arbitrary t-set of vertices in G. We think of the map πx : vi 7→ xi as a potential
embedding of F in G. Write ei(x) for the indicator function that is 1 if πx(ei) is an
edge of G or 0 otherwise. Then F (x) =

∏f
i=1 ei(x) is 1 if πx is a homomorphism

from F to G or 0 otherwise. Now suppose that G is F -free. Then F (x) can only
be non-zero if xi = xj for some i 6= j. If we choose x randomly this has probability
O(1/n), so EF (x) = O(1/n).

Now comes a trick that can only be described as pulling a rabbit out of a
hat. We claim that the following inequality holds pointwise: F (x) ≥ e1(x) +∑f

i=2 e1(x)(ei(x)− 1). To see this, note that since F (x) and all the ei(x) are {0, 1}-
valued, the only case where the inequality is not obvious is when F (x) = 0 and
e1(x) = 1. But then F (x) = 0 implies that ei(x) = 0 for some i, and then the term
e1(x)(ei(x)−1) gives a −1 to cancel e1(x), so the inequality holds. Taking expected
values gives EF (x) ≥

∑f
i=2 Ee1(x)ei(x)− (f − 2)Ee1(x). Now Ee1(x) = θ + O(1/n),

where θ is the edge density of G. Also, the Cauchy-Schwartz inequality implies
that Ee1(x)ei(x) ≥ θ2 + O(1/n) for each i (this is similar to the lower bound on
S in the previous example). We deduce that (f − 1)θ2 − (f − 2)θ ≤ O(1/n), i.e.
θ ≤ f−2

f−1 + O(1/n), as required.
It is an interesting question to determine the extent to which this bound can

be improved. When f = 3 no improvement is possible for general r, as the bound
of 1/2 is achieved by the triangle for r = 2, or the ‘expanded triangle’ for even r
(see [111]). For r = f = 3 there are only two non-degenerate cases to consider,
namely the 3-graphs F4 and F5 discussed in Section 4. The Turán number of F5

is given by the complete 3-partite 3-graph, which has density 2/9. Then from the
discussion of F4 above we see that when r = f = 3 the bound of 1/2 is quite far
from optimal. We do not know if 1/2 can be achieved when f = 3 and r ≥ 5 is
odd. A refinement of Sidorenko’s argument given in [102] shows that the bound
π(F ) ≤ f−2

f−1 can be improved if r is fixed and f is large. One might think that the
worst case is when F is a complete r-graph, which would suggest an improvement to
π(F ) ≤ 1 − Ω(f−(r−1)/r) (see [102] for further discussion). Another general bound
obtained by the Local Lemma will be discussed later in the section on probabilistic
methods.

The above two examples show that the ‘right’ counting argument can be sur-
prisingly effective, but they do not give much indication as to how one can find this
argument. For a general Turán problem there are so many potential inequalities that
might be useful that one needs a systematic approach to understand their capabili-
ties. The most significant steps in this direction have been taken by Razborov [158],
who has obtained many of the sharpest known bounds on Turán densities using his
theory of flag algebras [156]. We will describe this in Section 7, but first we note that
earlier steps in this direction appear in the work of de Caen [39] and Sidorenko [172].
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We briefly describe the quadratic form method in [172], as it has some additional
features that are not exploited by other techniques. Suppose G is an r-graph on
[n]. Let y be the vector in R( n

r−1), where co-ordinates correspond to (r − 1)-sets of
vertices, and the entry for a given (r − 1)-set is its degree, i.e. the number of edges
containing it. Let u be the all-1 vector. Writing (·, ·) for the standard inner product,
we have (u, u) =

(
n

r−1

)
, (y, u) = r|G| and (y, y) = r|G|+ p, where p is the number of

ordered pairs of edges that intersect in r−1 vertices. Let G = {[n]\e : e ∈ E(G)} be
the complementary (n− r)-graph and define y, u, p similarly. Note that the degree
of an (n− r−1)-set in G is equal to the number of edges of G in the complementary
(r + 1)-set. Note also that p = p. Let Qi be the number of (r + 1)-sets that contain
at least i edges. Thus y has Qi − Qi+1 co-ordinates equal to i. For any t ≥ 1 we
have the inequality (y− (r + 1)u, y− tu) ≤

∑t
i=0(r + 1− i)(t− i)(Qi−Qi+1). Then

come some algebraic manipulations which we will just summarise: (i) use summation
by parts, (ii) substitute Q0 = (u, u) =

(
n

r+1

)
, (iii) rewrite in terms of y and u. The

resulting inequality is (y, y)+((1+t/r)(n−r)+1)(y, u)+
∑t

i=1(t+r+2−2i)Qi ≤ 0.
Now we come to the crux of the method, which is an inequality for (y, u) for

general vectors y, u satisfying a quadratic inequality as above. The inequality is that
if (y, y) − 2a(y, u) + b(u, u) ≤ 0 then (y, u) ≥ (a −

√
a2 − b)(u, u). To see this add

−(y−su, y−su) ≤ 0 to the first inequality, which gives 2(s−a)(y, u) ≤ (s2−b)(u, u),
so (y, u) ≥ b−s2

2(a−s)(u, u) for s ≤ a; the optimal choice is s = a −
√

a2 − b (note that
the first inequality implies a2 − b ≥ 0). For example, let us apply the inequality to
3-graphs in which every 4-set spans at least t edges, where t ∈ {1, 2, 3} (it turns out
that we should choose the same t above). Then Qi =

(
n
4

)
for 0 ≤ i ≤ t. We apply the

general inequality with a = 1
2((1 + t/3)(n− 3) + 1) ∼ 1

2(1 + t/3)n and b =
∑t

i=1(t +
5 − 2i)

(
n
4

)(
n
2

)−1 ∼ 1
3 tn2. Then s/n ∼ (1 + t/3)/2 −

√
(1 + t/3)2/4− t/3 = t/3, so

|G| = 1
3(y, u) ≥ tn

9

(
n
2

)
∼ t

3

(
n
3

)
. In particular we have re-proved the earlier example

(in complementary form). An interesting additional feature of this method is that
one can obtain a small improvement by exploiting integrality of the vectors y and
u. Instead of adding the inequality −(y − su, y − su) ≤ 0 above, one can use
−(y − bscu, y − (bsc+ 1)u) ≤ 0. This does not alter the asymptotic bound, but can
be used to improve Turán bounds for small n, which in turn can be used in other
asymptotic arguments.

7 Flag algebras

A systematic approach to counting arguments is provided by the theory of flag
algebras. This is abstract and difficult to grasp in full generality, but for many
applications it can be boiled down to a form that is quite simple to describe. Our
discussion here will be mostly based on the nice exposition given in [9]. The starting
point is the following description of the averaging bound. Given r-graphs H and G
we write iH(G) for the ‘induced density’ of H in G. This is defined as the probability
that a random v(H)-set in V (G) induces a subgraph isomorphic to H; we think of
H as fixed and G as large. For example, if H is a single edge then iH(G) = d(G) is
the edge density of G. Fix some ` ≥ r, and let G` denote the set of all r-graphs on `
vertices (up to isomorphism). Then we can write d(G) =

∑
H∈G`

iH(G)d(H). Now
suppose F is an r-graph and let F` denote the set of all F -free r-graphs on ` vertices.
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If G is F -free then iH(G) = 0 for H ∈ G` \ F`, so d(G) =
∑

H∈F`
iH(G)d(H). In

particular we have the averaging bound d(G) ≤ maxH∈F`
d(H), but this is generally

rather weak. The idea of the method is to generate further inequalities on the
densities iH(G) that improve this bound. If we have an inequality

∑
H∈F`

cHiH(G) ≥
0 then we have d(G) ≤

∑
H∈F`

iH(G)(d(H) + cH) ≤ maxH∈F`
(d(H) + cH), which

may be an improvement if some coefficients cH are negative.
These inequalities can be generated by arguments similar to that used on the

sum S =
∑

xy

(
d(x,y)

2

)
in Section 6 when F is the 3-graph with 4 vertices and 3

edges. In this context, one should view that argument as generating an inequality
for a 4-vertex configuration (two edges) from two 3-vertex configurations (edges)
that overlap in two points. We will use this as a running example to illustrate the
flag algebra definitions. In general, we will consider overlapping several pairs of r-
graphs along a common labelled subgraph. To formalise this, we define a type σ to
consist of an F -free r-graph on k vertices together with a bijective labelling function
θ : [k] → V (σ) for some k ≥ 0 (if k < r then σ has no edges, and if k = 0 it has no
vertices). Then we define a σ-flag to be an F -free r-graph H containing an induced
copy of σ, labelled by θ. In our example we take σ = xy to be a 3-graph with 2
verties and no edges, labelled as θ(1) = x and θ(2) = y. Then we take H = eσ to
be a single edge xyz, with the same labelling θ(1) = x and θ(2) = y.

Next we define induced densities for flags. Let Φ be the set of all injective maps
φ : [k] → V (G). For any fixed φ ∈ Φ we define iH,φ(G) as the probability that a
random v(H)-set S in V (G) containing the image of φ induces a σ-flag isomorphic
to H. Note that iH,φ(G) can only be non-zero if φ([k]) induces a copy of σ that can
be identified with σ in such a way that φ = θ. If this holds, then iH,φ(G) is the
probability that G[S] induces a copy of the underlying r-graph of H consistent with
the identification of φ([k]) with σ. We can relate flag densities to normal densities
by averaging over φ ∈ Φ; we have EφiH,φ(G) = pσ(H)iH(G), where we also let H
denote the underlying r-graph of the σ-flag H, and pσ(H) is the probability that a
random injective map φ : [k] → V (H) gives a copy of the type σ. In our example,
for any u, v ∈ V (G) we consider the function φ defined by φ(1) = u and φ(2) = v;
we denote this function by uv. Then ieσ ,uv(G) is the probability that a random
vertex w ∈ V (G) \ {u, v} forms an edge with uv, i.e. ieσ ,uv(G) = d(u,v)

n−2 . Then we

have Euvieσ ,uv(G) = 1
n(n−1)

∑
u

∑
v 6=u

d(u,v)
n−2 = 6e(G)

n(n−1)(n−2) = d(G) = ie(G); note that
pσ(e) = 1.

Given two σ-flags H and H ′ we have the approximation iH,φ(G)iH′,φ(G) =
iH,H′,φ(G)+ o(1), where we define iH,H′,φ(G) to be the probability that when we in-
dependently choose a random v(H)-set S and a random v(H ′)-set S′ in V (G) subject
to S ∩ S′ = φ([k]) we have G[S] ∼= H and G[S′] ∼= H as σ-flags. Here the o(1) term
tends to zero as v(G) → ∞: this expresses the fact that random embeddings of H
and H ′ are typically disjoint outside of φ([k]). Note that we can compute iH,H′,φ(G)
by choosing a random `-set L containing S ∪ S′ for some ` ≥ v(H) + v(H ′) − k
and conditioning on the σ-flag J induced by L. Writing Fσ

` for the set of σ-flags
on ` vertices we have iH,H′,φ(G) =

∑
J∈Fσ

`
iH,H′,φ(J)iJ,φ(G). Thus we can express

iH,H′,φ(G) as a linear combination of flag densities iJ,φ(G), where the coefficients
iH,H′,φ(J) are given by a finite computation.

In our running example we consider H = H ′ = eσ. Then ieσ ,eσ ,uv(G) is the
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probability that a random pair w,w′ of vertices in V (G) \ {u, v} each form an edge
with uv, i.e. ieσ ,eσ ,uv(G) =

(
d(u,v)

2

)(
n−2

2

)−1
. We can also compute this by conditioning

on J = G[L] for a random 4-set L containing uv. Let J denote the σ-flag on 4
vertices where 2 vertices are labelled x and y, and there are 2 edges, both containing
x and y. Then ieσ ,eσ ,uv(G) = iJ,uv(G); note that this uses our particular choice
of F , otherwise we would have additional terms corresponding to the 3-edge and
4-edge configurations. Averaging over uv we get 1

n(n−1)

∑
u

∑
v 6=u

(
d(u,v)

2

)(
n−2

2

)−1
=

pσ(J)iJ(G) = 1
6 iJ(G), i.e. iJ(G) =

(
n
4

)−1 ∑
uv

(
d(u,v)

2

)
, similarly to the calculation of

S =
∑

uv

(
d(u,v)

2

)
in Section 6.

Now we consider several σ-flags F1, · · · , Fm, assign them some real coefficients
a1, · · · , am and consider the inequality (

∑m
i=1 aiiFi,φ(G))2 ≥ 0. Expanding the

square and using the identity for overlapping flags we obtain
∑m

i,j=1 aiajiFi,Fj ,φ(G) ≥
o(1). Then we convert this into an inequality for densities of subgraphs (rather than
flags) by averaging over φ ∈ Φ. Provided that we have chosen ` ≥ v(Fi) + v(Fj)− k
we can compute the average EφiFi,Fj ,φ(G) by choosing a random `-set L and condi-
tioning on the subgraph H ∈ F` induced by L. Let ΦH be the set of all injective
maps φ : [k] → V (H). Then EφiFi,Fj ,φ(G) =

∑
H∈F`

bij(H)iH(G), where bij(H) =
Eφ∈ΦH

iFi,Fj ,φ(H). In any application H and F1, · · · , Fm are fixed small r-graphs, so
these coefficients bij(H) can be easily computed. Finally we have an inequality of
the required form:

∑
H∈F`

cHiH(G) ≥ o(1), where cH =
∑m

i,j=1 aiajbij(H).
Continuing the previous example, let σ = xy, let F0 be the σ-flag on 3 vertices

with no edges, taken with coefficient a0 = −1, and let F1 = eσ be the σ-flag on 3
vertices with one edge, taken with coefficient a1 = 2. There are three 3-graphs in F4,
which we label H0, H1 and H2 according to the number of edges. The coefficients
bij(Hk) may be computed as follows: b00(H0) = 1, b00(H1) = 1/2, b00(H2) = 1/6,
b01(H0) = 0, b01(H1) = 1/4, b01(H2) = 1/3, b11(H0) = 0, b11(H1) = 0, b11(H2) =
1/6. Then we obtain the coefficients cH0 = 1, cH1 = −1/2, cH2 = −1/2, so the
inequality iH0(G)−iH1(G)/2−iH2(G)/2 ≥ o(1). We also have the averaging identity
d(G) = iH1(G)/4 + iH2(G)/2. Adding the inequality o(1) ≤ iH0(G)/3− iH1(G)/6−
iH2(G)/6 gives d(G) ≤ iH0(G)/3+ iH1(G)/12+ iH2(G)/3 ≤ 1/3+o(1), so we recover
the previous bound.

The reader may now be thinking that this is more obscure than the earlier
argument and we are no nearer to a systematic approach! Indeed, there is no
obvious way to choose σ and the σ-flags F1, · · · , Fm; in results so far these have
been obtained by guesswork and computer experimentation. However, once these
have been fixed an optimal inequality can be determined by solving a semidefinite
program. (We refer the reader to [122] for background information on semidef-
inite programming that we will use below.) We first remark that once we have
chosen σ and the σ-flags F1, · · · , Fm we can sum several inequalities of the form
(
∑m

i=1 aiiFi,φ(G))2 ≥ 0. Equivalently, we can fix a positive semidefinite m by m
matrix Q = (qij)m

i,j=1 and use the inequality
∑m

i,j=1 qijiFi,φ(G)iFj ,φ(G) ≥ 0. Averag-
ing over φ gives

∑
H∈F`

cH(Q)iH(G) ≥ o(1), where cH(Q) =
∑m

i,j=1 qijbij(H). We
can write cH(Q) = Q · B(H), where B(H) is the matrix (bij(H))m

i,j=1 (note that
it is symmetric) and X · Y = tr(XY ) denotes inner product of symmetric matri-
ces. We obtain a bound π(F ) ≤ V + o(1), where V is the solution of the following
optimisation problem in the variables {qij}m

i,j=1 and {iH(G)}H∈F`
:
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V = inf
Q≥0

sup
(iH(G))∈S

∑
H∈F`

(d(H) + cH(Q))iH(G).

Here we write Q ≥ 0 to mean that Q is positive semidefinite and S for the set
of vectors (iH(G)) with iH(G) ≥ 0 for all H and

∑
H∈F`

iH(G) = 1. We can also
compute V by the same expression in which the infimum and supremum are inter-
changed: this follows from Sion’s minmax theorem, as S is compact and convex, and
the set of positive semidefinite matrices is convex. Now the inner infimum over Q ≥ 0
has a ‘hidden constraint’ in the term

∑
H cH(Q)iH(G) = Q ·

∑
H iH(G)B(H); this

term is unbounded below unless
∑

H iH(G)B(H) ≥ 0, in which case it is minimised
at 0 when Q = 0. Here we are using the fact that X ≥ 0 if and only if X · Y ≥ 0 for
all Y ≥ 0. Thus we can express our bound in the following semidefinite program:

V = max
∑

H∈F`

d(H)iH(G) s.t. (iH(G)) ∈ S and
∑
H

iH(G)B(H) ≥ 0.

This formulation is amenable to solution by computer, at least when ` is small,
so that F` is not too large. Razborov [158] has applied this method to re-prove many
results on Turán densities that were obtained by other methods, and to obtain the
sharpest known bounds for several Turán problems that are still open. At this point
we recall the question of Turán mentioned earlier: what is the largest 3-graph on
n vertices with no tetrahedron? Turán proposed the following construction: form
a balanced partition of the n vertices into sets V0, V1, V2, and take the edges to
be those triples that either have one vertex in each part, or have two vertices in
Vi and one vertex in Vi+1 for some i, where V3 := V0. One can check that this
construction gives a lower bound π(K4

3 ) ≥ 5/9. Until recently, the best known upper
bound was π(K3

4 ) ≤ 3+
√

17
12 = 0.593592 · · · , given by Chung and Lu [32]. Razborov

[158] announced computations that suggest the bound π(K3
4 ) ≤ 0.561666. These

computations were also verified in [9], so the bound is probably correct. Here we
should stress that, unlike some computer-aided mathematical arguments where there
is potential to doubt whether they are really ‘proofs’, the flag algebra computations
described here can in principle be presented in a form that can be verified (very
tediously) by hand. However, there is not much point in doing this for a bound that
is very unlikely to be tight, so this bound is likely to remain unrigorous!

The main result of [158] is the following asymptotic result for the tetrahedron
problem under an additional assumption: if G is a 3-graph on n vertices in which no
4-set of vertices spans exactly 1 edge or exactly 4 edges then e(G) ≤ (5/9+o(1))

(
n
3

)
.

This is given by an explicit flag computation that can be verified (laboriously) by
hand.4 This was subsequently refined by Pikhurko [154] using the stability method to
give an exact result: for large n, the Turán construction for no tetrahedron gives the
unique largest 3-graph on n vertices in which no 4-set of vertices spans exactly 1 edge
or exactly 4 edges. It is interesting to contrast the uniqueness and stability of this
restricted problem with the full tetrahedron problem, where there are exponentially
many constructions that achieve the best known bound, see [26, 117, 64, 78].

4It is easy to verify that the matrices used in the argument are positive definite without the
floating point computations referred to in [158]; for example one can just verify that all symmetric
minors have positive determinant (symmetric Gaussian elimination is a more efficient method).
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We briefly describe the elegant Fon-der-Flaass construction [64]
here. Suppose that Γ is an oriented graph with no induced ori-
ented 4-cycle. Let G be the 3-graph on the same vertex set in
which abc is an edge if it induces a subgraph of Γ which either has
an isolated vertex or a vertex of outdegree 2. It is not hard to see
that any 4-set contains at least one edge of G, so the complement
of G is K3

4 -free. The picture (from [64]) illustrates a suitable class
of orientations of a complete tripartite graph. The parts A, B,
C are represented by line segments. They are partitioned into
subparts, represented by subsegments, e.g. A is partitioned into
parts labelled by `1, `2, · · · . The direction of edges is represented
by an arrow in the appropriate rhombus. A weakened form of
Turán’s conjecture raised in [64] is whether all constructions of
this type have density at least 4/9. Some progress towards this
was recently made by Razborov [159].

m = 0 if and only if T contains no vertices at a distance 2 from one another. This is pos- 

sible only if every connected component of T is a complete graph. This proves the lemma. 

2. Construction of Kostochka'S (3, 4)-Graphs. THEOREM 2. In the notation of the pre 

vious section, let n = 3k; let F be a digraph satisfying the conditions of Theorem i and T 

the union of three complete graphs of dimension k. Then G(F) has at least ~(n) edges. If 

]E I = ~(n), then G(F) is isomorphic to one of the graphs constructed by Kostochka in [i], 

and any of the latter graphs is G(F) for some F. 

Proof. Let a I ..... a, be the inner semidegrees of the vertices of F. We have a I + ... 

+ a n = 3k 2 a n d  b y  Lemma 1 

]El= $ 2 ,  ((~a.) +_yt (~) )  = -g-t ~ri=,~ ~ai -- + k ' +  k(k-l)(k-2)2  9 

This expression achieves its minimum when a~ ---- . . . = a .  =k 

to 3k k (k -- ~ (k -- 1) (k -- 2) 
2 + k 2 = q) (n).  

and the minimum is equal 

Now let F satisfy the conditions of the theorem and assume that exactly k arcs are in- 

cident into each of its vertices. 

We introduce the following notation: A, B, C are the connected components of T (by 

assumption, IAI = IBI = IC] = k). If v EV, X E V, then F v is the set of endpoints of ar- 

rows incident out of v, X v = X flr v. 

Denote the elements of the sets A, B, C by symbols ai, bi, c i in such a way that 

lB, , l>lB,, l>. . .  ~>lB,k[, 

ICb, l ~ . . .  >lCbkl, IAc, I ~ . - .  >IAo~I. 

Then B a , ~ B . , ~ . . . ~ B %  (and s i m i l a r l y  f o r  b i and c i ) .  I ndeed ,  i f  t h e r e  e x i s t e d  e lements  

x~Bai" \ Bai+l and y~Bai+l ~ B  % then t h e r e  would be a d i r e c t e d  c y c l e  o f  l e n g t h  4 on the  

vertices x, y, a i ,  ai+l 

Partition the set A into sets A, = {at ..... as,}, A s = {al,+x ..... az,+6} etc., in such a way 

that a i and uj are in the same A s if and only if Bai=Ba j. Similarly we form sets 

and 

B1 = {bl . . . . .  br~,}, 

C ,  = { c l  . . . . .  c . ,},  

B= ----- {b,,,,+l . . . . .  b.,,+,,,,} . . . .  

C= = {c,,,+1 . . . . .  c.,+.,} . . . . .  

We shall prove that s = mi = ni for any i. (In particular, A, B, and C are partitioned 

into the same number of subsets.) The graph F can be represented visually as follows. 

Represent the sets A, B, and C by segments of length k, as in the figure. The direc- 

tion of an arrow between ai, bj is indicated in the appropriate cell of a rhombus construc- 

ted on sides A and B. 

Do the same for B and C, and for C and A. It follows from the previously established 

properties of F that the rhombus on sides A and B is divided by a polygonal line into two 

B 

A 

i JF~ L 

k 

Fig. i 

C 
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It is natural to ask whether all hypergraph Turán problems can be solved using
flag algebras (at least in principle, given enough computation). A related general
question posed by Lovász [123] is whether every linear inequality

∑
H cHiH(G) ≥ 0

valid for all graphs G can be expressed as a finite sum of squares. Razborov [156]
posed a similar question in terms of a certain ‘Cauchy-Schwartz’ calculus. Both
these questions were recently answered in the negative by Hatami and Norine [92].
Furthermore, they proved that the problem of determining the validity of a linear
inequality is undecidable. Their proof is a reduction to Matiyasevich’s solution to
Hilbert’s tenth problem, which shows undecidability of the problem of determining
whether a multivariate polynomial with integer coefficients is non-negative for every
assignment of integers to its variables. There does not seem to be a direct conse-
quence of their results for deciding inequalities of the form aπ(F ) ≤ b for r-graphs
F and integers a and b, but perhaps this problem may also be ‘difficult’, or even
undecidable.

8 The remaining exact results

Exact results for hypergraph Turán numbers are so rare that we can finish off
a description of the known results in this section. By exact results we mean that
the Turán number is determined for large n (it would be of course be nice to know
it for all n, but then this section would already be finished!) We have mentioned
earlier the exact results for F5 (which implies that for cancellative 3-graphs), the
Fano plane, extended complete graphs and generalised fans. Sidorenko [175, 176]
and Frankl [65] considered the Turán problem for the following 2k-graph which we
call the expanded triangle C2k

3 . The vertex set is K1 ∪K2 ∪K3 where K1, K2 and
K3 are disjoint k-sets, and there are three edges K1 ∪ K2, K1 ∪ K3 and K2 ∪ K3.
Thus the expanded triangle is obtained from a graph triangle by expanding each
vertex into a k-set. Suppose that G is a 2k-graph on n vertices with no expanded
triangle. There is a natural auxiliary graph J on k-sets of vertices, where we join
two k-sets in J if their union is an edge of G. Then J is triangle-free, and applying
Mantel’s theorem gives the bound π(C2k

3 ) ≤ 1/2. For a construction, consider a
partition of n vertices into two roughly equal parts, and take the edges to be all
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2k-sets that intersect each part in an odd number of vertices: we call this complete
oddly bipartite. To see that this does not contain the expanded triangle, consider
an attempted embedding and look at the intersection sizes of the k-sets K1, K2 and
K3 with one of the parts. Some two of these have the same parity, so combine to
form an edge with an even intersection with this part. This gives a lower bound
that matches the upper bound asymptotically, so π(C2k

3 ) = 1/2.
Keevash and Sudakov [111] proved an exact result, confirming a conjecture of

Frankl, that for large n, the unique largest 2k-graph on n vertices with no expanded
triangle is complete oddly bipartite. One should note that the number of edges is this
construction is maximised by a partition that is slightly unbalanced (by an amount of
order

√
n). Finding the optimal partition sizes is in fact an open problem, equivalent

to finding the minima of binary Krawtchouck polynomials. Nevertheless, known
bounds on this problem are sufficient to allow an application of the stability method,
with the conclusion that the optimal construction is complete oddly bipartite, even
if we do not know the exact part sizes. Sidorenko also considered the expanded
clique C2k

r , obtained by expanding each vertex of Kr into a k-set. Applying Turán’s
theorem to the auxiliary graph J on k-sets gives π(C2k

r ) ≤ r−2
r−1 . On the other hand,

Sidorenko only gave an asymptotic matching lower bound in the case when r is of
the form 2p +1. The construction is to partition n vertices into 2p parts, labelled by
the vector space Fp

2, and take edges to be all 2k-sets whose labels have a non-zero
sum. This is C2k

r -free, as for any r k-sets, the labels of some two will have the
same sum (by the pigeonhole principle), so form an edge whose labels sum to zero.
This raised the question of what happens for r not of this form. One might think
that a combinatorial problem of this nature will not depend on a number theoretic
condition, so there ought to be other constructions. However, we showed in [111]
that this is not the case, in a somewhat different application of the stability method.
We studied structural properties of a putative C4

r -free 4-graph with density close
to r−2

r−1 and showed that they give rise to certain special proper edge-colourings of
Kr−1. It then turns out that these special edge-colourings have a natural F2 vector
space structure on the set of colours, so we get a contradiction unless r is of the
form 2p + 1.

It would be interesting to give better bounds for other r. We present here a new
construction showing that π(C4

4 ) ≥ 9/14 = 0.6428 · · · ; this is not far from the upper
bound of 2/3 (which we know is not sharp). Partition a set V of n vertices into sets
A, B, C, where A is further partitioned as A = A1 ∪A2. We will optimise the sizes
of these sets later. We say that S ⊆ V has type ijk if |S ∩ A| = i, |S ∩ B| = j,
|S∩A| = k. Let G be the 4-graph in which 4-tuples of the following types are edges:
(i) all permutations of 310, (ii) 121 and 112 (but not 211), (iii) 400 with 3 vertices in
one Ai and 1 vertex in the other. We claim that G is C4

4 -free. To see this, suppose
for a contradiction that we can choose 4 pairs of vertices such that any pair of these
pairs forms an edge of G. We can naturally label each pair as AA, BB, CC, AB,
AC or BC. Since every pair of pairs forms an edge, we see that each label apart
from AA can occur at most once, and at most one of AA, BB, CC can occur. Now
consider cases according to how many times AA occurs. If AA does not occur, then
BB and CC can account for at most one pair, so the other 3 pairs must be AB,
AC, BC; however, AB and AC do not form an edge. If AA occurs once or twice
then BB, CC and BC cannot occur, so we must have AB and AC; however, again
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these do not form an edge. If AA occurs at least 3 times then some two AA’s do
not form an edge, as the restriction of G to A is C4

3 -free. In all cases we have a
contradiction, so G is C4

4 -free. Computations show that the optimal set sizes are
|A1| = |A2| = (7 −

√
21)/28 and |B| = |C| = (7 +

√
21)/28, and that then G has

density 9/14. Since this relatively simple construction gives a density quite close to
the easy upper bound, we conjecture that it is optimal.

The question of improving the auxiliary graph bound described above gives rise
to the following ‘coloured Turán problem’ that seems to be of independent interest.
(A similar problem is also discussed in Section 13.4.) Suppose H is a C4

4 -free 4-
graph on n vertices with α

(
n
4

)
. Let J be the K4-free auxiliary graph on pairs: J has

N =
(
n
2

)
vertices and ∼ α

(
N
2

)
edges. If α is close to 2/3 then for a ‘typical’ triangle

xyz in J the common neighbourhoods Nxy, Nxz, Nyz partition most of V (J) into
3 independent sets. These must account for almost all of the missing edges. Going
back to the original set of n vertices, we can interpret Nxy, Nxz, Nyz as a 3-edge-
colouring of (most of) the

(
n
2

)
pairs, such that any choice of a pair of disjoint pairs

of the same colour gives a non-edge of H. Counting then implies that almost all
non-edges are properly 3-edge-coloured. It is not hard to see that this is impossible,
but the question is to quantify the extent to which this property is violated. For
example, what is the minimum number of 4-cycles in which which precisely one pair
of opposite edges has both edges of the same colour?

Now we will return to cancellative r-graphs. Bollobás conjectured that the natu-
ral generalisation of his theorem for cancellative 3-graphs should hold, namely that
the largest cancellative r-graph on n vertices should be r-partite. This was proved
by Sidorenko [173] in the case r = 4. Note that there are four configurations that are
forbidden in a cancellative 4-graph, there is the 4-graph expanded triangle mentioned
above, and another three which are formed by taking two edges as abcx, abcy and a
third edge that contains xy and intersects abc in either 0, 1 or 2 vertices. Sidorenko
showed that even just forbidding these last three configurations but allowing the
expanded triangle one obtains the same result, that the largest such 4-graph is 4-
partite. This was further refined by Pikhurko [152] who showed that it is enough to
forbid just one configuration, the generalised triangle {abcx, abcy, uvxy}: for large
n, the largest 4-graph with no generalised triangle is 4-partite.

Sidorenko’s argument is an instructive application of hypergraph Lagrangians.
We will sketch the proof that if G is a cancellative 4-graph then e(G) ≤ (n/4)4,
which is tight when n is divisible by 4. Since e(G)/n4 = pG(1/n, · · · , 1/n) ≤ λ(G)
it suffices to prove that the Lagrangian λ(G) is at most 4−4. We can assume that
G covers pairs; then it follows that any two vertices in G have disjoint link 3-
graphs (or we get one of Sidorenko’s three forbidden configurations). Recall that
λ(G) = maxx∈S pG(x) where S is the set of all x = (x1, · · · , xn) with xi ≥ 0 for
all i and

∑
i xi = 1. Suppose that the maximum occurs at some x with xi >

0 for 1 ≤ i ≤ m and xi = 0 for i > m (without loss of generality). We can
discard all i > m and then regard the maximum as being at an interior point of the
corresponding region Sm defined for the vector x = (x1, · · · , xm). Next comes an
ingredient from the theory of optimisation we have not yet mentioned: the gradient
of pG(x) is normal to the constraint plane

∑
i xi = 1, i.e. the partial derivatives

∂ipG(x), 1 ≤ i ≤ m are all equal to some constant c. We can compute it by c =
c
∑

i xi =
∑

xi∂ipG(x) = rpG(x) = rλ(G). Also, since vertices have disjoint links,
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any monomial xaxbxc occurs at most once in
∑

i ∂ipG(x), so mrλ(G) =
∑

i ∂ipG(x) ≤
maxx∈S

∑
1≤a<b<c<m xaxbxc = m−3

(
m
3

)
. This gives the required bound if m = 4 or

m ≥ 6, and we cannot have m = 5 if G covers pairs, so we are done.
Pikhurko’s proof is an ingenious combination of Sidorenko’s argument with the

stability method. And what happens for larger r? Shearer [170] showed that the
Bollobás conjecture is false for r ≥ 10. The intermediate values are still open.
Suppose now that we alter the general problem and just forbid the configurations
analogous to those in Sidorenko’s result; thus we consider r-graphs such that there
do not exist two edges that share an (r − 1)-set T and a third edge containing
the two vertices not in T . When r = 5 and r = 6 this problem was solved by
Frankl and Füredi [70]: the extremal constructions are the blowups of the small
Witt designs, the (11, 5, 4)-design for r = 5 and the (12, 6, 5)-design for r = 6. They
obtain the bounds e(G) ≤ 6

114 n5 when r = 5, with equality only when 11|n, and
e(G) ≤ 11

125 n6 when r = 6, with equality only when 12|n. (The exact result for
all large n remains open.) The proofs involve some intricate computations with
hypergraph Lagrangians. They make the following appealing conjecture that would
have greatly simplified some of these computations were it known. Consider the
problem of maximising the Lagrangian λ(G) for r-graphs G on m edges. Is the
maximum attained when G is an initial segment of the colexicographic order?

Some further exact results can be grouped under the general umbrella of ‘books’.
The r-book with p pages is the r-graph obtained by taking p ≤ r edges that share
a common (r − 1)-set T , and one more edge that is disjoint from T and contains
the vertices not in T . For example, the generalised triangle of Pikhurko’s result
mentioned above is the 4-book with 2 pages. Füredi, Pikhurko and Simonovits [83]
gave an exact result for the 4-book with 3 pages: for large n the unique extremal
4-graph is obtained by a balanced partition into two parts and taking edges as all
4-sets with 2 vertices in each part. Next consider r-graphs that do not have an
r-book with r pages. A nice reformulation of this property is to say that such r-
graphs G have independent neighbourhoods: for any (r−1)-set T , the neighbourhood
N(T ) = {x ∈ V (G) : T ∪ {x} ∈ E(G)} does not contain any edges of G. Füredi,
Pikhurko and Simonovits [82] gave an exact result for 3-graphs with independent
neighbourhoods: for large n, the unique extremal 3-graph is obtained by taking
a partition into two parts A, B and taking edges as all 3-sets with 2 vertices in
A and 1 vertex in B (the optimal class sizes are |A| = 2n/3, |B| = n/3 when n
is divisible by 3). Füredi, Mubayi and Pikhurko [81] gave an exact result for 4-
graphs with independent neighbourhoods: for large n, the unique extremal 4-graph
is complete oddly bipartite (the same construction as for the expanded triangle).
There is a conjecture in [81] for general r that the largest r-graphs with independent
neighbourhoods are obtained by a partition into two parts A, B and taking edges
as all r-sets that intersect B in an odd number of vertices, but are not contained in
B. The results mentioned above confirm this for r = 3 and r = 4. However, the
conjecture was disproved for r ≥ 7 by Bohman, Frieze, Mubayi and Pikhurko [17].
The conjecture would have implied that r-graphs with independent neighbourhoods
have edge density at most 1/2. In fact, the construction in [17]. shows that the
maximum edge density is roughly 1 − 2 log r

r , which approaches 1 for large r. The
authors of [17] believe that the conjecture is true for r = 5 and r = 6.

There is one more exact result (to the best of this author’s knowledge). We ask
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the expert readers to take note, as it seems to be have been overlooked in earlier
bibliographies on this subject. The motivating problem is the Turán problem for
K3

5 , where Turán conjectured that the complete bipartite 3-graph gives the extremal
construction. This was disproved for n = 9 by Surányi (the affine plane over F3) and
for all odd n ≥ 9 by Kostochka and Sidorenko (see construction 5 in [180]). However,
they did not disprove the asymptotic conjecture, so it may be that π(K3

5 ) = 3/4.
Zhou [192] obtained an exact result when one forbids a larger class of 3-graphs that
includes K3

5 . Say that two vertices x, y in a 3-graph G are t-connected if there are
vertices a, b, c such that every triple with 2 vertices from abc and 1 from xy is an
edge. Say that xyz is a t-triple if xyz is an edge and each pair in xyz is t-connected.
For example, K3

5 is a t-triple. The result of [192] is that the unique largest 3-graph
on n vertices with no t-triple is complete bipartite. Note that the 3-graph F (3, 3)
mentioned earlier is an example of a t-triple, so the result of [143] strengthens the
asymptotic form of Zhou’s result (but not the exact result).

9 Bounds for complete hypergraphs

We return now to the original question of Turán, concerning the Turán numbers
for the complete hypergraphs Kr

t . None of the Turán densities π(Kr
t ) with t > r > 2

has yet been determined, so here we have a more modest goal of giving reasonable
bounds. Most of these can be found in an excellent survey of Sidorenko [180], to
which we refer the reader for full details. We will not reproduce this here, but
instead outline the ideas behind the main bounds, summarise the other bounds,
and also mention a few more recent developments. For the purpose of this section
it is convenient to change to the ‘complementary’ notation that was preferred by
many early writers on Turán numbers. They define the ‘Turán number’ T (n, k, r)
to be the minimum number of edges in an r-graph G on n vertices such that any
subset of k vertices contains at least one edge of G. Note that G has this property
if and only if the ‘complementary’ r-graph of r-sets that are not edges of G is
Kr

k-free; thus T (n, k, r) + ex(n, Kr
k) =

(
n
r

)
. They also define the density t(k, r) =

limn→∞
(
n
r

)−1
T (n, k, r); thus t(k, r) + π(Kr

k) = 1.
We start with the lower bound on t(k, r), which is equivalent to an upper bound

on π(Kr
k). The trivial averaging argument gives t(k, r) ≥

(
k
r

)−1
. In general, the best

known bound is t(k, r) ≥
(
k−1
r−1

)−1
, due to de Caen [38]. This follows from his exact

bound of T (n, k, r) ≥ n−k+1
n−r+1

(
k−1
r−1

)−1(n
r

)
. This in turn is deduced from a hypergraph

generalisation of a theorem of Moon and Moser that relates the number of cliques
of various sizes in a graph. Suppose that G is an r-graph on n vertices and let Nk

be the number of copies of Kr
k in G. Then the inequality is

Nk+1 ≥
k2Nk

(k − r + 1)(k + 1)

(
Nk

Nk−1
− (r − 1)(n− k) + k

k2

)
, (9.1)

provided that Nk−1 6= 0. Given this inequality, the bound on T (n, k, r) follows
from some involved calculations; the main step is to show by induction on k that

Nk ≥ Nk−1
r2(k

r)
k2( n

r−1)
(e(G)−F (n, k, r)), where F (n, k, r) = (r−1(n−r+1)−

(
k−1
r−1

)−1
(n−

k + 1))
(

n
r−1

)
. Inequality (9.1) is proved by the following double counting argument.
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Let P be the number of pairs (S, T ) where S and T are each sets of k vertices, such
that S spans a Kr

k , T does not span a Kr
k , and |S∩T | = k−1. For an upper bound on

P , we enumerate the Nk−1 copies of Kr
k−1 and let ai be the number of Kr

k ’s containing
the ith copy. Since

∑Nk−1

i=1 ai = kNk we have P =
∑Nk−1

i=1 ai(n − k + 1 − ai) ≤
(n− k + 1)kNk −N−1

k−1k
2N2

k . For a lower bound, we enumerate the copies of Kr
k as

B1, · · · , BNk
, and let bi be the number of Kr

k+1’s containing the ith copy. For each
Bj , there are n − k − bj ways to choose x /∈ Bj such that Bj ∪ {x} does not span
a Kr

k+1. Given such an x, there is some C ⊆ Bj of size k − 1 such that C ∪ {x} is
not an edge. Then for each y ∈ Bj \ C the pair (Bj , Bj ∪ x \ y) is counted by P .
This gives P ≥

∑Nk
j=1(n− k− bj)(k− r− 1) = (k− r− 1)((n− k)Nk − (k + 1)Nk+1.

Combining with the lower bound and rearranging gives the required inequality.
Next we consider the upper bound on t(k, r), which is equivalent to a lower

bound on π(Kr
k). The best general construction is due to Sidorenko [171]; it implies

the bound t(k, r) ≤
(

r−1
k−1

)r−1
. For comparison with the lower bound, note that(

r−1
k−1

)r−1 (
k−1
r−1

)
=

∏r−1
i=1

k−i
k−1

r−1
r−i ; if k is large compared to r, the ratio of the bounds

is roughly (r − 1)r−1(r − 1)!−1, which is exponential in r, but independent of k. To
explain the construction, we will rephrase it here using the following simple fact.

The lorry driver puzzle. A lorry driver needs to follow a certain closed route.
There are several petrol stations along the route, and the total amount of fuel in
these stations is sufficient for the route. Show that there is some starting point from
which the route can be completed.

The construction is to divide n vertices into k−1 roughly equal parts A1, . . . , Ak−1,
and say a set B of size r is an edge of G if there is some j such that

∑s
i=1 |B∩Aj+i| ≥

s + 1 for each 1 ≤ s ≤ r − 1 (where Ai := Ai−k+1 if i > k − 1). To interpret this in
the lorry driver framework, consider any set K of size k, imagine that each element
of K represents a unit of fuel, and that it takes k

k−1 units of fuel to drive from Ai to
Ai+1. Then K contains enough fuel for a complete circuit, so the lorry driver puzzle
tells us that there is some starting point from which a complete circuit is possible.
(For completeness we now give the solution to the puzzle. Imagine that the driver
starts with enough fuel to drive around the route and consider the journey starting
from an arbitrary point, in which she still picks up all the fuel at any station, even
though she doesn’t need it. Then the point at which the fuel reserves are lowest
during this route can be used as a starting point for another route which satisfies
the requirements.) Let B be the set of the first r elements of K that are encoun-
tered on this circuit (breaking ties arbitrarily). Since r ≥ (r − 1) k

k−1 , the lorry can
advance distance r − 1 using just the fuel from B. This implies that B is an edge,
as ds k

k−1e = s + 1 for 1 ≤ s ≤ r − 1. Thus any set of size k contains an edge, as
required.

It is not obvious how to estimate the number of edges in the construction without
tedious calculations, so we will give a simple combinatorial argument here. It is
convenient to count edges together with an order of the vertices in each edge, thus
counting each edge r! times. We can form an ordered edge B = x1 . . . xr using the
following three steps: (i) choose the starting index j, (ii) assign each x` to one of
the parts Aj+i, 1 ≤ i ≤ r − 1, (iii) choose a vertex for each x` within its assigned

part. Clearly there are k − 1 choices in step (i) and
(

n
k−1

)r
+ O(nr−1) choices in
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step (iii). In step (ii) there are (r − 1)r ways to assign the parts if we ignore the
required inequalities on the intersection sizes (i.e. that there should be enough fuel
for the lorry). Now we claim that given any assignment, there is exactly one cyclic
permutation that satisfies the required inequalities. More precisely, if we assign bi of
the x`’s to Aj+i for 1 ≤ i ≤ r−1, then there is exactly one c with 1 ≤ c ≤ r−1 such
that the shifted sequence b′i = bc+i (where bi := bi−r+1 for i > j + r − 1) satisfies∑s

i=1 b′i ≥ s + 1 for each 1 ≤ s ≤ r − 1. To see this consider a lorry that makes a
circuit of Aj+i, 1 ≤ i ≤ r − 1, where as before each of the x`’s is a unit of fuel, but
now it takes one unit of fuel to advance from Ai to Ai+1, and the lorry is required
to always have one spare unit of fuel. Clearly a valid starting point for the lorry
is equivalent to a shifted sequence satisfying the required inequalities. As in the
solution to the original puzzle, we imagine that the driver starts with enough fuel
to drive around the route and consider the journey starting from an arbitrary point.
Then the point at which the fuel reserves are lowest during this route is a starting
point for a route where there is always one spare unit of fuel. Furthermore, this is
the unique point at which the fuel reserves are lowest, and so it gives the unique
cyclic permutation satisfying the required inequalities. We deduce that there are
(r − 1)r−1 valid assignments in step (ii). Putting everything together, the number

of edges is r!−1 · (k − 1) · (r − 1)r−1 · (1 + O(1/n))
(

n
k−1

)r
∼

(
r−1
k−1

)r−1 (
n
r

)
.

Having discussed the general case in detail, we now summarise some better
bounds that have been found in specific cases. One natural case to focus on is
t(r + 1, r) = 1 − π(Kr

r+1). For large r, a construction of Sidorenko [181] gives the
best known upper bound, which is t(r +1, r) ≤ (1+ o(1)) log r

2r . Other known bounds
are effective for small r; these are t(r + 1, r) ≤ 1+2 ln r

r by Kim and Roush [114] and
t(2s+1, 2s) ≤ 1/4+2−2s by de Caen, Kreher and Wiseman [43]. On the other hand,
the known lower bounds are very close to the bound t(r+1, r) ≥ 1/r discussed above
in the general case. Improvements to the second order term were given by Chung
and Lu [32], who showed that t(r + 1, r) ≥ 1

r + 1
r(r+3) + O(r−3) when r is odd, and

by Lu and Zhao [129], who obtained some improvements when r is even, the best
of which is t(r + 1, r) ≥ 1

r + 1
2r3 + O(r−4) when r is of the form 6k + 4. Thus the

known upper and lower bounds are separated by a factor of (1/2 + o(1)) log r. As a
first step towards closing this gap, de Caen [41] conjectured that r · t(r + 1, r) →∞
as r →∞.

We have already discussed the known bounds for K3
4 in Section 7. For K4

5 the
following nice construction was given by Giraud [85]. Suppose M is an m by m
matrix with entries equal to 1 or 0. We define a 4-graph G on n = 2m vertices
corresponding to the rows and columns of M . Any 4-set of rows or 4-set of columns
is an edge. Also, any 4-set of 2 rows and 2 columns inducing a 2 by 2 submatrix with
even sum is an edge. We claim that any 5-set of vertices of G contains an edge. This
is clear if we have at least 4 rows or at least 4 columns, so suppose without loss of
generality that we have 3 rows and 2 columns. Then in the induced 3 by 2 submatrix
we can choose 2 rows whose sums have the same parity, i.e. a 2 by 2 submatrix with
even sum, which is an edge. To count edges in G, first note that we have 2

(
m
4

)
from

4-sets of rows and 4-sets of columns. Also, for any pair i, j of columns, we can divide
the rows into two classes Oij and Eij according to whether the entries in columns i
and j have odd or even sum. Then the number of 2 by 2 submatrices using columns
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i and j with even sum is
(|Oij |

2

)
+

(|Eij |
2

)
≥ 2

(
m/2

2

)
. Furthermore, for some values of

m there is a construction that achieves equality for every pair i, j: take a Hadamard
matrix, i.e. a matrix with ±1 entries in which every pair of columns is orthogonal,
then replace the −1 entries by 0.

This shows that t(5, 4) ≤ limm→∞
(
2m
4

)−1
(
2
(
m
4

)
+ 2

(
m/2

2

)(
m
2

))
= 5/16; equiva-

lently π(K4
5 ) ≥ 11/16 = 0.6875. Sidorenko [180] conjectured that equality holds.

Markström [131] gave an upper bound π(K4
5 ) ≤ 1753

2380 = 0.73655 · · · . This was
achieved by an extensive computer search to find all extremal 4-graphs for n ≤ 16.
Based on this evidence, he made the stronger conjecture that this construction (mod-
ified according to divisibility conditions) is always optimal for n ≥ 12. Markström
[133] has also compiled a web archive of small constructions for various hypergraph
Turán problems. For K3

5 the Turán numbers were computed for n ≤ 13 by Boyer,
Kreher, Radziszowski and Sidorenko [25]. The collinear triples of points of the
projective plane of order 3 form the unique 3-graph on 13 vertices such that ev-
ery 5-set contains at least one edge. It follows that t(5, 3) ≥ 52/

(
13
3

)
= 2/11, i.e.

π(K3
5 ) ≤ 9/11. As we mentioned in Section 8, Turán conjectured that π(K3

5 ) = 3/4,
corresponding to the complete bipartite 3-graph.

More generally, Turán conjectured that π(K3
t+1) = 1 − (2/t)2. Together with

Mubayi we found the following family of examples establishing the lower bound
(previously unpublished). It is convenient to work in the complementary setting;
thus we describe 3-graphs of density (2/t)2 such that every (t + 1)-set contains at
least one edge. Let D be any directed graph on {1, . . . , t} that is the vertex-disjoint
union of directed cycles (we allow cycles of length 2, but not loops). Let V1, · · · , Vt

be a balanced partition of a set V of n vertices. Let G be the 3-graph on V where
the edges consist of all triples that are either contained within some Vi or have 2
points in Vi and 1 point in Vj , for every directed edge (i, j) of D. Then G has
t
(
n/t
3

)
+ t

(
n/t
2

)
n/t ∼ (2/t)2

(
n
3

)
edges. Also, if S ⊆ V does not contain any edge of G,

then S has at most 2 points in each part, and whenever it has 2 points in a part it
is disjoint from the next part on the corresponding cycle, so we must have |S| ≤ t.
Thus G has the required properties.

10 The infinitary perspective

A new perspective on extremal problems can be obtained by stepping outside of
the world of hypergraphs on finite vertex sets, and viewing them as approximations
to an appropriate ‘limit object’. This often leads to more elegant formulations of
results from the finite world, after one has put in the necessary theoretical ground
work to make sense of the ‘limit’. That alone may justify this perspective for those
of a theoretical bent, though others will ask whether it can solve problems not
amenable to finite methods. Since the theory itself is quite a recent development, it
is probably too soon to answer this latter question, other than to say that elegant
reformulations usually lead to progress in mathematics.

We will approach the subject by first returning to flag algebras (see Section 7),
which we will now describe in the theoretical framework of [156]. Recall that the aim
when applying flag algebras to Turán problems was to generate a ‘useful’ inequality
of the form

∑
H cHiH(G) ≥ 0, valid for any F -free r-graph G. We can package
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the coefficients cH as a ‘formal sum’
∑

H cHH in RF , by which we mean the real
vector space of formal finite linear combinations of F -free r-graphs. We can think
of any F -free r-graph G as acting on RF via the map

∑
H cHH 7→

∑
H cHiH(G);

we will identify this map with G. Our goal will be to understand F -free r-graphs
purely as appropriate maps on formal finite linear combinations. First we note that
certain elements always evaluate to zero, so they should be factored out. If H is
an F -free r-graph and ` ≥ v(H) then iH(G) =

∑
J∈F`

iH(J)iJ(G), so the linear
combination H −

∑
J∈F`

iH(J)J is mapped to zero by G. Let K be the subspace
generated by all such combinations in the kernel, and let A = RF/K be the quotient
space. Now we make A into an algebra by defining a multiplication operator: we
let HH ′ =

∑
J∈Fv(H)+v(H′)

iH,H′(J)J , where iH,H′(J) is the probability that when
V (J) is randomly partitioned as S ∪ S′ with |S| = v(H) and |S′| = v(H ′) we have
J [S] ∼= H and J [S′] ∼= H ′. (One needs to prove that this is well-defined.) Then
we have G(HH ′) = G(H)G(H ′) + o(1) when v(G) is large, so the map G is an
‘approximate homomorphism’ from A to R. One final property to bear in mind is
that G(H) := iH(G) is always non-negative. (A similar construction gives rise to an
algebra Aσ = RFσ/Kσ for any type σ; we have just described the case when |σ| = 0
for simplicity.)

Now we come to the point of the above discussion: it gives an approximate
characterisation of F -free r-graphs, in the following sense. Given an r-graph G, we
can identify the map G : RF → R defined above with the vector (iH(G))H∈F ∈
[0, 1]F ; we will also identify this vector with G. The space [0, 1]F is compact in the
product topology, so any sequence of r-graphs contains a convergent subsequence.
Let Φ be the set of homomorphisms φ from A to R such that φ(H) ≥ 0 for every
H in F . The following key result is Theorem 3.3 in [156]: for any convergent
sequence of F -free r-graphs, the limit is in Φ; conversely, any element of Φ is the
limit of some sequence of F -free r-graphs. (For simplicity, we have stated this result
just for F -free r-graphs, but there is a much more general form that applies to
flags in theories.) This result establishes a correspondence between the finite world
inequalities

∑
H cHiH(G) ≥ o(1) for r-graphs G (which we were interested in above)

and inequalities φ(
∑

H cHH) ≥ 0 for φ in Φ in the infinitary world. In particular, the
Turán density π(F ) = lim supG∈F d(G) can be rewritten as π(F ) = maxφ∈Φ φ(e).
Note the maximum value π(F ) is achieved by some extremal homomorphism φ ∈ Φ
(this is because Φ is compact and φ 7→ φ(e) is continuous). This permits ‘differential
methods’ (see section 4.3 of [156]), i.e. deriving inequalities from the fact that any
small perturbations of φ must reduce φ(e), which are potentially very powerful. For
example, perturbation with respect to a single vertex is analogous to the deletion
argument in Proposition 4.2, but general perturbations do not have any obvious
analogue in the finite setting.

Graph limits were first studied by Borgs, Chayes, Lovász, Sós and Vesztergombi
(2003 unpublished and [24]) and by Lovász and Szegedy [126]. A substantial theory
has been developed since then, of which we will only describe a couple of ingredients
here: a convenient description of limit objects and the equivalence of various notions
of convergence. The starting point is a very similar notion of convergence to that
used by [156]. Let tH(G) denote the homomorphism density of H in G, defined
as the probability that a random map from VH to VG is a homomorphism. Say
that a sequence G1, G2, . . . is left-convergent if tH(Gi) converges for every H. (It is
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not hard to see via inclusion-exclusion that using induced densities is equivalent.)
The limit objects can be described as graphons, which are symmetric measurable5

functions W : [0, 1]2 → [0, 1]. For such a function we can define the homomorphism
density of H in W as tH(W ) =

∫ ∏
ij∈E(H) W (xi, xj)dx, where x = (x1, · · · , xv(H))

and the integral is over [0, 1]v(H). We can recover tH(G) as a case of this definition
by defining a graphon WG as a step function based on the adjacency matrix of G.
Label V (G) by [n], partition [0, 1]2 into n2 squares of side 1/n, and set WG equal
to 1 on subsquare (i, j) if ij is an edge, otherwise 0. Then tH(G) = tH(WG). The
main result of [126] is that for any left-convergent sequence (Gi) there is a graphon
W such that tH(Gi) → tH(W ) for every graph H, and conversely, any graphon W
can be obtained in this way from a left-convergent sequence (Gi). This gives an
intuitive picture of a graph limit as an ‘infinite adjacency matrix’. A more formal
justification of this intuition is given by the W -random graph G(n, W ). This is a
random graph on [n] defined by choosing independent X1, · · · , Xn uniformly in [0, 1]
and connecting vertices i and j with probability W (Xi, Xj). Corollary 2.6 of [126]
shows that G(n, W ) converges to W with probability 1.

An alternative description of convergence is given by the cut-norm on graphons,
defined by ‖W‖2 = supS,T⊆[0,1]

∣∣∣∫S×T W (x, y) dx dy
∣∣∣. First we need to take account

of the lack of uniqueness in graphons. Suppose φ : [0, 1] → [0, 1] is a measure-
preserving bijection and define W φ by W φ(x, y) = W (φ(x), φ(y)). Then W φ is
equivalent to W in the sense that tH(W φ) = tH(W ) for any H. We define the
cut-distance between two graphons as δ2(W,W ′) = infφ ‖W φ − W ′‖2, where the
infimum is over all measure-preserving bijections. Then another equivalent definition
of convergence for (Gi), given in [24], is to say that δ2(WGi ,W ) → 0 for some
graphon W . Furthermore, W is essentially unique, in that if Gn → W and Gn → W ′

then δ2(W,W ′) = 0. The equivalence classes [W ] = {W ′ : δ2(W,W ′) = 0} are
named graphits by Pikhurko [153], in a paper that introduces an analytic approach
to stability theorems. Theorem 15 in [153] contains a characterisation of stability
that can be informally stated as follows: an extremal graph problem is stable if and
only if there is a unique graphit that can be obtained by limits of approximately
extremal graphs. (We say that an r-graph F is stable if for any ε > 0 there is δ > 0
and n0 such that for any two F -free r-graphs G and G′ on n > n0 vertices, each
having at least (π(F )− δ)

(
n
r

)
edges, we can obtain G′ from G by adding or deleting

at most εnr edges.) The analytic proof of the Erdős-Simonovits stability theorem
given in [153] is much more complicated than a straightforward approach, but may
point the way to other stability results that cannot be obtained by simpler methods.

The limit theory above also has close connections with the theory of regularity
for graphs and hypergraphs, which are explored by Lovász and Szegedy [127]. We
start with the Szemerédi’s Regularity Lemma, which is a fundamental tool in modern
graph theory. Our discussion here will be rather brief; for an extensive survey we
refer the reader to [116]. Roughly speaking, the regularity lemma allows any graph
G to be approximated by a weighted graph R, in which the size of R depends only

5We will assume in this discussion that the reader is familiar with the basics of measure theory.
A careful exposition for the combinatorial reader that fills in much of this background is given
in [153]. Note also that we are using a more restricted definition of ‘graphon’ than the original
definition given in [126].
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the desired accuracy of approximation, but is independent of the size of G. A precise
statement of the lemma (in its simplest form) is as follows: for any ε > 0, there is
a number m = m(ε), such that for any number n, and any graph G on n vertices,
there is a partition of V (G) as V1 ∪ · · · ∪ Vr for some r ≤ m, so that all but at most
εn2 pairs of vertices belong to induced bipartite subgraphs Gij := G(Vi, Vj) that
are ‘ε-regular’. We have not yet defined ‘ε-regular’: this is a notion that captures
the idea that the bipartite subgraph G(Vi, Vj) looks like a random bipartite graph.
The formal definition is as follows. Suppose G is a bipartite graph with parts A
and B. The density of G is d(G) = |E(G)|

|A||B| . We say that G is ε-regular if for any
A′ ⊆ A, B′ ⊆ B with |A′| > ε|A|, |B′| > ε|B|, writing G′ for the bipartite subgraph
of G induced by A′ and B′ we have d(G′) = d(G) ± ε. Note that the definition fits
well with the randomness heuristic: standard large deviation estimates imply that
a random bipartite graph is ε-regular with high probability.

After applying Szemerédi’s Regularity Lemma, we can use the resulting partition
to define an approximation of G. This is the reduced graph R, defined on the vertex
set [r] = {1, · · · , r}. The vertices of R correspond to the parts V1, · · · , Vr (which are
also known as clusters). The edges of R correspond to pairs of clusters that induce
bipartite subgraphs that look random and are sufficiently dense: we fix a ‘density
parameter’ d, and include an edge ij in R with weight dij := d(Gij) whenever Gij

is ε-regular with dij ≥ d. A key property of this approximation of G by R is that
it satisfies a ‘counting lemma’, whereby the number of copies of any fixed graph
in G can be accurately predicted by the weighted number of copies of this graph
in R. For example, we have the following Triangle Counting Lemma. Suppose
1 ≤ i, j, k ≤ r and write Tijk(G) for the set of triangles in G with one vertex
in each of Vi, Vj and Vk. Write dijk = |Tijk(G)|

|Vi||Vj ||Vk| for the corresponding ‘triangle
density’, i.e. the proportion of all triples with one vertex in each of Vi, Vj and Vk

that are triangles. Suppose 0 < ε < 1/2 and Gij , Gik and Gjk are ε-regular. Then
dijk = dijdikdjk ± 20ε. Note that this corresponds well to the randomness intuition:
if the graphs were indeed random, with each edge being independently selected with
probability equal to the corresponding density, then the probability of any particular
triple uvw being a triangle would be the product of the probabilities for each of its
three pairs uv, uw, vw being edges. Furthermore, there is a Counting Lemma for
general subgraphs along similar lines, which starts to indicate the connection with
the notion of convergence discussed above using subgraph densities.

The following weaker form of the regularity lemma was obtained by Frieze and
Kannan [77]. Given a partition P of V (G) as V1 ∪ · · · ∪ Vr, for S, T ⊆ V (G) we
write eP (S, T ) =

∑r
i,j=1 dij |Vi∩S||Vj ∩T |. Note that eP (S, T ) is the expected value

of eG(S, T ) (the number of edges of between S and T ) if each Gij were a random
bipartite graph of density dij . The result of [77] is that there is a partition P into r ≤
22/ε2 classes such that |eG(S, T )−eP (S, T )| ≤ εn2 for all S, T ⊆ V (G). This is rather
weaker than the regularity lemma, as it has replaced a uniformity condition holding
locally for most pairs of classes by a global uniformity condition. The compensation
is that the number of classes needed is much smaller, only an exponential function, as
opposed to the tower bound that is necessary in the regularity lemma (see [87]). The
weak regularity lemma can be reformulated in analytic language as follows (Lemma
3.1 of [127]): for any graphon W and ε > 0 there is a graphon W ′ that is a step
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function with at most 22/ε2 steps such that ‖W − W ′‖2 ≤ ε. The full regularity
lemma, indeed even a stronger form due to Alon, Fischer, Krivelevich and Szegedy
[4], can also be obtained from an analytic form. The key fact is that graphits form
a compact metric space with the distance δ2 defined above (Theorem 5.1 of [127]).
This implies the following (Lemma 5.2 of [127]): let h(ε, r) > 0 be an arbitrary fixed
function; then for any ε there is m = m(ε) such that any graphon W can be written
as W = U + A + B, where U is a step function with r ≤ m steps, ‖A‖2 ≤ h(ε, r)
and ‖B‖1 ≤ ε. Informally, this says that one can change W by a small function
B to obtain a function U + A which corresponds to an extremely regular partition.
Regular approximation results of this type were first obtained in [162, 187].

Regularity theory for hypergraphs is much more complicated, so we will only
make a few comments here and refer the reader to the references for more infor-
mation. The theory was first developed independently in different ways by Rödl et
al. [148, 163, 162] and Gowers [89]. Alternative perspectives and refinements were
given in [8, 94, 187, 188]. The analytic theory discussed above is generalised to
hypergraphs by Elek and Szegedy [46, 47] as follows. For any sequence of r-graphs
G1, G2, . . . which is convergent in the sense that tH(Gi) converges for every r-graph
H, there is a limit object W , called a hypergraphon, such that tH(Gi) → tH(W ) for
every r-graph H. Hypergraphons are functions of 2r − 1 variables, corresponding
to the non-empty subsets of [r], that are symmetric under permutations of [r]. The
need for 2r−1 variables (actually 2r−2, as [r] is unnecessary) reflects the fact that a
complete theory of hypergraph regularity needs to consider the simplicial r-complex
generated by an r-graph, and regularise k-sets with respect to (k − 1)-sets for each
2 ≤ k ≤ r (see Section 5 of [88] for further explanation of this point).

In the case of 3-graphs we consider a function W (x1, x2, x3, x12, x13, x23) from
[0, 1]6 to [0, 1] that is symmetric under permutations of 123. Given a fixed 3-graph
H, we can define the homomorphism density of H in W similarly to above by
tH(W ) =

∫ ∏
e∈H Wedx, where x = (x1, · · · , xv(H)) and the integral is over [0, 1]v(H)

as before, and We is evaluated according to some fixed labelling e = e1e2e3 by We =
W (xe1 , xe2 , xe3 , xe1e2 , xe1e3 , xe2e3). Similarly to the graph case, any 3-graph G can
be realised by a hypergraphon WG that is a step function (which need only depend
on the first 3 co-ordinates). Some intuition for hypergraphons can be obtained
by consideration of the W -random 3-graph G(n, W ). This can be defined as a
random 3-graph on [n] by choosing independent random variables Xi, 1 ≤ i ≤ n
and Xij , 1 ≤ i < j ≤ n uniformly in [0, 1] and including the edge ijk for i <
j < k with probability W (Xi, Xj , Xk, Xij , Xik, Xjk). Theorem 12 of [47] shows
that G(n, W ) converges to W with probability 1. If we approximate W by a step
function then this gives us the following informal picture of a regularity partition
of a 3-graph G: a piece of the partition is obtained by taking three classes Vi,
Vj , Vk, then three ‘random-like’ bipartite graphs Vij ⊆ Vi × Vj , Vik ⊆ Vi × Vk,
Vjk ⊆ Vj × Vk, and then a ‘random-like’ subset of the triangles formed by Vij , Vik

and Vjk. Further generalisations of the theory from graphs to hypergraphs given in
[47] are the equivalence of various definitions of convergence (Theorem 14), and a
formulation of regularity as compactness (Theorem 4).

We conclude this section with a concrete situation where hypergraph regularity
theory gives some insight into Turán problems. This is via the removal lemma,
a straightforward consequence of hypergraph regularity theory that can be easily
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stated as follows. For any b > 0 and r-graph F there is a > 0, so that if G is a
r-graph on n vertices with fewer than anv(F ) copies of F , then one can delete at
most bnr edges from G to obtain an F -free r-graph. This was used by Pikhurko [155,
Lemma 4] to show that if the Turán problem for F is stable then so is the Turán
problem for any blowup F (t). A sketch of the proof is as follows. Suppose that
0 < 1/n � a � b � c, and G1 and G2 are F (t)-free r-graphs on n vertices, each
having at least (π(F (t))−b)

(
n
r

)
edges. Since G1 and G2 are F (t)-free, supersaturation

implies that they each have at most anv(F ) copies of F . The removal lemma implies
that one can delete at most bnr edges from G1 and G2 to obtain F -free r-graphs
G′

1 and G′
2, each having at least (π(F )− 2b)

(
n
r

)
edges (recall that π(F (t)) = π(F )).

Now by stability of F we can obtain G′
2 from G′

1 by adding or deleting at most cnr

edges. Thus we can obtain G2 from G1 by adding or deleting at most 2cnr edges,
so F (t) is stable. In particular, this enables the application of the stability method
in [155] to the extended complete graph Hr

t (see Section 3); stability of Hr
t follows

from stability of Hr
t , which was proved by Mubayi [138].

11 Algebraic methods

Kalai [98] proposed the following conjecture generalising Turán’s tetrahedron
problem. Suppose that G is a 3-graph on [n] = {1, · · · , n} such that every 4-set of
vertices spans at least one edge (thus G is the complement of a K3

4 -free 3-graph).
Fix s ≥ 1 and consider the following matrix Ms(G). The rows are indexed by edges
of G. The columns are divided into s blocks, each of which contains

(
n
2

)
columns

indexed by all pairs of vertices. The entry in row e and column uv in block i is ±xi,w

if e = uvw for some w or is 0 otherwise, where {xi,w : 1 ≤ i ≤ s, w ∈ V (G)} are
indeterminate variables, and the sign is positive if w lies between u and v, otherwise
negative. Let rs(G) be the rank of Ms(G). The conjecture is that

rs(G) ≥
s∑

i=1

((
n− 2i

2

)
−

(
i

2

))
= s

(
n

2

)
− 2

(
s + 1

2

)
n + 3

(
s + 2

3

)
.

Note that the sum in the conjecture is maximised when s = bn/3c, and the value
obtained is the number of edges in (the complementary form of) Turán’s conjecture.

What is the motivation for this conjecture? The definition of Ms(G) is reminis-
cent of the incidence matrices, which have seen many applications in Combinatorics
(see [75]). The (pair) incidence matrix for G has rows indexed by edges of G,
columns by pairs of vertices, and the entry in row e and column uv is 1 if e = uvw
for some w or is 0 otherwise. Thus Ms(G) is obtained by concatenating s copies of
the incidence matrix and replacing the 1’s by certain weights. In the case s = 1,
we can set all the variables xw := x1,w equal to 1 without changing the rank: to
see this note that the variables cancel if we multiply each column uv by xuxv and
divide each row uvw by xuxvxw. Thus we obtain the signed incidence matrix , which
is obtained from the incidence matrix by attaching signs according to the order of
u, v, w as above.

To understand signed incidence matrices it is helpful to start with graphs. Sup-
pose G is a graph on [n]. Then the signed incidence matrix has rows indexed by
edges of G, columns indexed by [n], and a row ij with i < j has −1 in column i, 1
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in column j, and 0 in the other columns. Note that the set of rows corresponding
to a cycle in G can be signed so that the sum is zero, so is linearly dependent. Con-
versely, it is not hard to show by induction that a set of rows corresponding to an
acyclic subgraph is linearly independent. Another way to say this is that the signed
incidence matrix is a linear representation of the cycle matroid of G. (We refer the
reader to [149] for an introduction to Matroid Theory.) Thus the maximum rank is
n− 1, with equality if and only if G is connected.

Kalai [97] developed a ‘hyperconnectivity’ theory for graphs using generalised
signed incidence matrices. Similarly to the 3-graph case, when G is a graph, we
define the matrix Ms(G), which has rows indexed by E(G), s blocks of columns
each indexed by [n], and a row uv with u < v has xi,v in column u of block i, −xi,u

in column v of block i, and is 0 otherwise. The resulting matrix is then considered to
be a linear representation of the s-hyperconnectivity matroid . The maximum possible
rank is sn−

(
s+1
2

)
. Any G achieving this maximum is called s-hyperconnected . One

result of [97] is that any s-hyperconnected graph is s-connected, in the usual sense
that deleting any s − 1 vertices leaves a connected graph. Another is that Ks+2

is a circuit, i.e. a minimally dependent set in the matroid, which leads us to an
interesting digression on saturation problems.

The saturation problem for H is to determine s(n, H), defined as the minimum
number of edges in a maximal H-free graph on n vertices. Thus we want an H-free
graph G such that adding any new edge to G creates a copy of H, and G has as few
edges as possible. Suppose that G is Ks+2-saturated. Then for any pair uv /∈ E(G)
there is a copy of Ks+2 in G ∪ uv, which is a circuit, so uv is in the span of G. It
follows that G spans the entire s-hyperconnectivity matroid. In particular, G has
at least sn −

(
s+1
2

)
edges. This bound is tight, as may be seen from the example

Ks+En−s, i.e. a clique of size s completely joined to an independent set of size n−s.
More generally, the same argument applies to any G that has the weaker property
that there is a sequence G = G0, G1, . . . , Gt = Kn, where each Gi+1 is obtained from
Gi by adding an edge that creates a copy of Ks+2 in Gi+1 that was not present in
Gi. Thus Kalai showed that such G also must have at least sn−

(
s+1
2

)
edges, giving

a new proof of a conjecture of Bollobás [19, Exercise 6.17]. See the recent survey
[63] for more information on saturation problems.

Now we return to consider the meaning of the signed incidence matrix for 3-
graphs. First we give another interpretation for graphs. We can think of the signed
incidence matrix for Kn as a linear map from F(n

2) to Fn, for some field F, acting
on row vectors from the right. Then an edge uv with u < v is mapped to the vector
v − u, where we are identifying edges and vertices with their corresponding basis
vectors. Geometrically, this is a boundary operation: we think of the line segment
from u to v as having boundary points u and v, with the sign indicating the order.
Similarly, we can think of the signed incidence matrix for K3

n as a linear map from
F(n

3) to F(n
2), where an edge uvw with u < v < w is mapped to −vw + uw − uv. It

is convenient to write vu = −uv. Then we can think of the boundary operation as
taking a 2-dimensional triangle uvw to its bounding cycle, oriented cyclically as wv,
vu, uw. This cycle has ‘no boundary’, in that if we apply the boundary operation
to wv + vu + uw we get v−w + w− u + u− v = 0. In general, an oriented cycle has
no boundary, which conforms to the geometric picture of it as a closed loop. The
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cycles generate the cycle space, which is the subspace of F(n
3) of vectors that have

no boundary, i.e. are mapped to zero by the signed incidence matrix.
Now consider a 3-graph G on [n]. We can create a simplicial complex C which has

G as its two-dimensional faces, and the complete graph Kn as its one-dimensional
faces; i.e. we take the 1-skeleton of the n-simplex and glue in triangles according to
the edges of G. We interpret the rows of the signed incidence matrix of G as the
boundary cycles of the triangles. These generate the boundary space of G, which is
a subspace of the cycle space of Kn. The quotient space is the first homology space
H1(C): it is a measure of the number of 1-dimensional ‘holes’ in the complex C.
A lower bound on r1(G) is equivalent to an upper bound on the first Betti number
β1(C) = dim H1(C), so the case s = 1 of Kalai’s conjecture can be rephrased as say-
ing that β1(C) ≤ n−2: this was proved by Kalai (unpublished). He also established
the corresponding algebraic generalisation of Turán’s theorem on complete graphs.

Kalai also introduced a procedure of algebraic shifting , which is an intriguing
and potentially powerful tool for a variety of combinatorial problems. In general,
‘shifting’ or ‘compression’ refers to a commonly employed technique in extremal set
theory, where a problem for general families is reduced to the problem for an initial
segment in some order; e.g. most proofs of the Kruskal-Katona theorem have this
flavour. We refer the reader to [99] for a survey; here we just give a very brief taste of
the operation and its properties. Suppose G is a k-graph on [n] and X = (xij)n

i,j=1

is a matrix of indeterminates. Let X∧k be the
(
n
k

)
by

(
n
k

)
matrix indexed by k-

sets, in which the (S, T )-entry is the determinant of the k by k submatrix of X
corresponding to S and T . Let M(G) be the submatrix of X∧k formed by the
rows corresponding to edges of G. Now construct a basis for the column space of
M(G) by the greedy algorithm, at each step choosing the first column not in the
span of those chosen previously. The k-sets indexing the chosen columns give the
(exterior) shifted family ∆(G). This rather obscure process has some remarkable
properties. Björner and Kalai [16] showed that it preserves the face numbers and
Betti numbers of any simplicial complex. Even for a graph G, the presence of certain
edges in ∆(G) encodes non-trivial information. For example, 23 appears iff G has a
cycle, 45 appears iff G is non-planar, and dn appears iff G is d-hyperconnected. It
seems computationally hard to compute ∆(G), although the randomised algorithm
of substituting random constants for the variables and using Gaussian elimination is
very likely to give the correct result. Potential applications are discussed in Section
6 of [99], but they still are yet to be realised!

Another application of homological methods was given by Csakany and Kahn
[37]. A d-simplex is a collection of d+1 sets with empty intersection, every d of which
have nonempty intersection. A few examples serve to illustrate that many common
extremal problems have a forbidden configuration that is a simplex: the Erdős-Ko-
Rado theorem [57] forbids 2 disjoint sets, which is a 1-simplex; the Ruzsa-Szemerédi
(6, 3)-theorem [165] forbids the special triangle {123, 345, 561}, which is a 2-simplex;
the Turán tetrahedron problem forbids the 3-simplex K3

4 . Chvátal [33] posed the
problem of determining the largest r-graph on n vertices with no d-simplex (Erdős
[52] had posed the triangle problem earlier). He conjectured that when r ≥ d+1 ≥ 2
and n > r(d+1)/d the maximum number of edges is

(
n−1
r−1

)
, with equality only for a

star (all sets containing some fixed vertex). The known cases are r = d+1 (Chvátal
[33]), fixed r, d and large n (Frankl and Füredi [68]), d = 2 (Mubayi and Verstraëte
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[145]), and Ω(n) < r < n/2−O(1) (Keevash and Mubayi [107]).
Csakany and Kahn gave new proofs of Chvátal’s result (and also a similar result

of Frankl and Füredi on the special triangle). They work with homology over the field
F2, which has the advantage that there is no need to worry about signs (+1 = −1),
so boundary maps are given by incidence matrices. They note that a star G is
acyclic, meaning that the boundary map is injective on the space generated by the
edges of G. Furthermore, for any acyclic G the size of G is equal to the dimension of
its boundary space, which is at most

(
n−1
r−1

)
, as this is the dimension of the boundary

space of the complete r-graph Kr
n. Thus it suffices to consider the case when G has

a non-trivial cycle space. Next they show that all minimal cycles in G are copies
of Kr

r+1, and that no edge can overlap a Kr
r+1 in precisely r − 1 points. Thus each

cycle substantially reduces the dimension of the boundary space for the acyclic part
of G, and (omitting some substantial details) the result follows after some rank
computations.

We mention one final application of algebraic methods with a different flavour.
Suppose G is a graph on [n]. Assign variables x1, · · · , xn to the vertices and consider
the polynomial fG(x) =

∏
ij∈E(G)(xi − xj). Thus fG vanishes iff xi = xj for some

edge ij. Note that G has independence number α(G) < k iff fG belongs to the
ideal I of polynomials in Z[x] that vanish on any assignment x with at least k equal
variables. Li and Li [121] showed that I is generated by the polynomials fG(x) for
graphs G that are a disjoint union of k − 1 cliques, and moreover the sizes of the
cliques may be taken as equal as possible. One can also show that the degree of any
polynomial in I is at least the degree of the generators. Applying this to fG for any
G with α(G) < k, the resulting lower bound on the number of edges gives a proof of
Turán’s theorem (in complementary form). It would be interesting to obtain similar
generalisations for other Turán problems.

12 Probabilistic methods

While probabilistic methods are generally very powerful in Combinatorics, they
seem to be less effective for Turán problems, perhaps because the extremal construc-
tions tend to be quite orderly. Some exceptions to this are random constructions for
the tetrahedron codegree problem (see Section 13.2) and the bipartite link problem
(see Section 13.6). For certain bipartite Turán problems the best known construc-
tions are random, although these are in cases where the upper bound is quite far
from the lower bound, so it is by no means an indication that the best construction is
random. Consider the Turán problem for the complete bipartite graph Kr,r. Kövari,
Sós and Turán [105] obtained the upper bound ex(n, Kr,r) = O(n2−1/r). A simple
probabilistic lower bound due to Erdős and Spencer [61] is obtained by taking the
random graph Gn,p and deleting an edge from each copy of Kr,r. Then the expected
number of edges has order Θ(pn2)−Θ(pr2

n2r), so choosing p = Θ(n−2/(r+1)) gives
a lower bound of order Ω(n2−2/(r+1)). Recently, Bohman and Keevash [18] obtained
a small improvement to Ω(n2−2/(r+1)(log n)1/(r2−1)) from the analysis of the H-free
process. However, there is still a polynomial gap between the bounds.

Lu and Székely [128] applied the Lovász Local Lemma to Turán problems (among
others). The general framework is as follows. Suppose that A1, · · · , An are ‘bad’
events. A graph G on [n] is a negative dependency graph for the events if P(Ai |
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∩j∈SAj) ≤ P(Ai) for any i and S such that there are no edges from i to S and
P(∩j∈SAj) > 0. The general form of the local lemma states that if there are
x1, · · · , xn ∈ [0, 1) such that P(Ai) ≤ xi

∏
j:ij∈E(G)(1−xj) for all i then P(∩n

i=1Ai) ≥∏n
i=1(1−xi) > 0, i.e. there is a positive probability that none of the bad events occur.

This is applied to give the following packing result for hypergraphs. Suppose that
H1 and H2 are r-graphs such that Hi has mi edges and every edge of Hi intersects
at most di other edges of Hi, for i = 1, 2. Suppose that n ≥ max{v(H1), v(H2)} and
(d1 + 1)m2 + (d2 + 1)m1 ≤ 1

e

(
n
r

)
, where e is the base of natural logarithms. Then

there are edge-disjoint embeddings of H1 and H2 on the same set of n vertices. This
result is in turn used to deduce several results, including the following Turán bound.
Suppose that F is an r-graph such that every edge intersects at most d other edges.
Then π(F ) ≤ 1− 1

e(d+1) . This may be compared with the result of Sidorenko men-
tioned above (Section 6) that bounds π(F ) in terms of the number of edges in F .
In many cases the bound in terms of d is an improvement, but the appearance of e
makes it seem very unlikely that it is ever tight!

13 Further topics

This section gives a brief taste of a few areas of research closely related to the
Turán problem. It is necessarily incomplete, both in the selection of topics and in
the choice of references for each topic. The topics by subsection are 13.1: Jumps,
13.2: Minimum degree problems, 13.3: Different host graphs, 13.4: Coloured Turán
problems, 13.5: The speed of properties, 13.6: Local sparsity, 13.7: Counting sub-
graphs.

13.1 Jumps

Informally speaking, ‘jumps’ refer to the phenomenon that r-graphs of a certain
density are often forced to have large subgraphs with a larger density. For example,
the Erdős-Stone theorem implies that a large graph of density bigger than 1 − 1/t
contains blowups Kt+1(m) of Kt+1, so has large subgraphs of density more than
1− 1/(t + 1). Another example is the result of Erdős mentioned earlier (Section 2)
that a large r-graph of positive density contains complete r-partite r-graphs Kr

r (m),
so has large subgraphs of density more than r!/rr. Formally, the density d is a jump
for r-graphs if there is some c > 0 such that for any ε > 0 and m ≥ r there is n0

sufficiently large such that any r-graph on n vertices with density at least d + ε has
a subgraph on m vertices with density at least d+ c. For example, every d ∈ [0, 1) is
a jump for graphs, and every d ∈ [0, r!/rr) is a jump for r-graphs. Deciding whether
r!/rr is a jump for r-graphs is a long-standing open problem of Erdős [53]. In fact,
Erdős made the stronger conjecture that every d ∈ [0, 1) is a jump for r-graphs, but
this was disproved by Frankl and Rödl [72]. The distribution of jumps and non-
jumps is not at all understood, and very few specific examples are known. Further
examples of non-jumps are given by Frankl, Peng, Rödl and Talbot [71] and Peng,
e.g. [150]. On the positive side, Baber and Talbot [9] recently applied flag algebras
to show that every d ∈ [0.2299, 0.2316) is a jump for 3-graphs.

We give a brief sketch of the Frankl-Rödl method, as applied in [71] to prove that
5/9 is not a jump for 3-graphs. One uses the following reformulation: d is a jump
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for r-graphs if and only if there is a finite family F of r-graphs with Turán density
π(F) ≤ d and blowup density b(F ) > d for all F ∈ F . Suppose for a contradiction
that 5/9 is a jump for 3-graphs. Choose F with π(F) ≤ 5/9 and b(F ) > 5/9 for
all F ∈ F . Let t be large and G be the Turán construction with parts of size t.
Now the idea is to add O(t2) random edges inside each part, obtaining G∗ such that
b(G∗) > 5/9, but b(H) ≤ 5/9 for any small subgraph H of G∗ (here we are omitting
a lot of the proof). Since b(G∗) > 5/9 and π(F) ≤ 5/9, a sufficiently large blowup
G∗(m) must contain some F ∈ F . We can write F ⊆ H(m) for some small subgraph
H of G∗. But then b(F ) ≤ b(H(m)) = b(H) ≤ 5/9 contradicts the choice of F , so
5/9 is not a jump for 3-graphs.

13.2 Minimum degree problems

Turán problems concern the maximum number of edges in an F -free r-graph,
but it is also natural to ask about the maximum possible minimum degree. More
precisely, there is a minimum s-degree parameter δs(G) for each 0 ≤ s ≤ r−1, defined
as the minimum over all sets S of s vertices of the number of edges containing S.
Then we can define a generalised Turán number exs(n, F ) as the largest value of
δs(G) attained by an F -free r-graph G on n vertices. Note that δ0(G) = e(G), so
ex0(n, F ) = ex(n, F ) is the usual Turán number. We can also define generalised
Turán densities πs(F ) = lims→∞ exs(n, F )

(
n−s
r−s

)−1 (it is non-trivial to show that
the limit exists). A simple averaging argument shows that πi(F ) ≥ πj(F ) when
i ≤ j. The vertex deletion method in Proposition 4.2 shows that π1(F ) = π0(F ) =
π(F ), so minimum 1-degree problems are not essentially different to Turán problems.
However, in general we obtain a rich source of new problems, and it is not apparent
how they relate to each other. The case s = r−1 was introduced by Mubayi and Zhao
[146] under the name of codegree density . Their main result is that for r ≥ 3 there
are no jumps for codegree problems. In particular, the set of codegree densities is
dense in [0, 1). Moreover, they conjecture that any d ∈ [0, 1) is the codegree density
of some family.

As for Turán problems, there are few known results for codegree problems, even
asymptotically. The tetrahedron K3

4 is again one of the first interesting examples.
Here the asymptotically best known construction is to take a random tournament
on [n] and say that a triple ijk with i < j < k is an edge if i has one edge coming in
and one edge coming out. This shows that the codegree density of the tetrahedron
is at least 1/2. For an upper bound, nothing better is known than the bounds for
the usual Turán density, which are also upper bounds on the codegree density by
averaging. One known result is for the Fano plane, where Mubayi [137] showed
that the codegree density is 1/2. Turán and codegree problems for other projective
geometries were considered in [103, 113, 104]. An exact codegree result for the Fano
plane was obtained by Keevash [104]: if G is a Fano-free 3-graph on n vertices, where
n is large, and δ2(G) ≥ n/2, then n is even and G is a balanced complete bipartite
3-graph. The argument used a new ‘quasirandom counting lemma’ for regularity
theory, which extends the usual counting lemma by not only counting copies of
a particular subgraph, but also showing that these copies are evenly distributed.
Even for graphs, this quasirandom counting lemma has consequences that are not
immediately obvious; for example, given a tripartite graph G in which each bipartite
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graph is dense and ε-regular (for some small ε), for any choice of dense graphs
H1,H2,H3 inside the parts V1, V2, V3 of G, there are many copies of K3(2) in G in
which the pairs inside each part are edges of the graphs H1,H2,H3. Results of this
type are potentially very powerful in assembling hypergraphs from smaller pieces.

Minimum degree conditions also lead to the study of spanning configurations.
Here we look for conditions on a hypergraph G on n vertices that guarantee a
particular subgraph F that also has n vertices. The prototype is Dirac’s theorem
[44] that every graph on n ≥ 3 vertices with minimum degree at least n/2 contains
a Hamilton cycle. Other classical minimum degree result for graphs is the Hajnal-
Szemerédi theorem [91] that minimum degree (1 − 1/t)n gives a perfect packing
by copies of Kt (when t divides n). A generalisation by Kómlos, Sarközy and
Szemerédi [115] states that the same minimum degree even gives the (t−1)th power
of a Hamilton cycle (when n is large). Another generalisation by Kühn and Osthus
[120] determines the threshold for packing an arbitrary graph H up to an additive
constant (the precise statement is technical). An example result for hypergraphs is
a theorem of Rödl, Ruciński and Szemerédi [160] that any r-graph on n vertices with
minimum codegree (1 + o(1))n/2 has a ‘tight’ Hamilton cycle, i.e. a cyclic ordering
of the vertices such that every consecutive r-set is an edge. We refer the reader to
the surveys [119] for graphs and [161] for hypergraphs.

13.3 Different host graphs

A range of new problems open up when we consider additional properties for
Turán problems, besides that of not containing some forbidden r-graph. For any host
r-graph H and fixed r-graph F , we may define ex(H,F ) as the maximum number
of edges in an F -free subgraph of H. Thus the usual Turán number ex(n, F ) =
ex(Kr

n, F ) is the case when H is complete. We stick to graphs (r = 2) for simplicity.
In principle one can consider any graph H, but some host graphs seem particular

natural. An important case is when H is given by a random model, e.g. the Erdős-
Rényi random graph Gn,p. This is motivated by considerations of resilience of
properties. Here we consider some property of Gn,p (i.e. a property that holds with
high probability) and ask how resilient it is when some edges are deleted. For
example, if p is not ‘too small’, Gn,p not only has a triangle, but one even needs
to delete asymptotically half of the edges to destroy all triangles. Equivalently, any
triangle-free subgraph of Gn,p has asymptotically at most half of its edges. This
is tight, as any graph has a bipartite subgraph that contains at least half of its
edges. To clarify what ‘too small’ means, note that if the number of triangles is
much smaller than the number of edges then such a result will not hold, as one can
delete one edge from each triangle with negligible effect. This suggests p = n−1/2 as
a threshold for the problem, which is indeed the case (this follows from a result of
Frankl and Rödl [74]). There is a large literature on generalising this result, which
we do not have space to go into here. A comprehensive generalisation to many
extremal problems was recently given independently by Schacht [169] and Conlon
and Gowers [36]. Among these results is Turán’s theorem for random graphs, that
when p is not too small the largest Kt+1-free subgraph of Gn,p has asymptotically
1 − 1/t of its edges; again the threshold for p is the value for which the number of
Kt’s is comparable with the number of edges. Similar results apply for hypergraph
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Turán problems, and to certain extremal problems from number theory, such as
Szemerédi’s theorem on arithmetic progressions. Another direction of research is
that started by Sudakov and Vu [185] on local resilience. Here the question is how
many edges one needs to delete from each vertex to destroy a certain property of
Gn,p. This is a better question for global properties such as Hamiltonicity, which
one can destroy by deleting all edges at one vertex: this is not a significant global
change, but a huge local change.

The above only concerns the case when the host graph H is random. Mubayi and
Talbot [144] consider Turán problems with colouring conditions, which could also
be viewed from the perspective of a constrained host graph. Say that an r-graph
G is strongly t-colourable if there is a t-colouring of its vertices such that no edge
has more than one vertex of the same colour. (They call this ‘t-partite’, but we use
this term differently in this paper; our use of ‘t-partite’ is equivalent to their use of
‘t-colourable’.) Their main result (in our language) is that the asymptotic maximum
density of an F -free r-graph on n vertices that is strongly t-colourable is equal to
the maximum blowup density b(G) over all hom-F -free r-graphs G on t vertices. For
example, the maximum density in a strongly 4-colourable K3

4 -free 3-graph is 8/27;
this is achieved by a construction with 4 parts of sizes n/3, 2n/9, 2n/9, 2n/9, with
edges equal to all triples with one vertex in the large part and the other two vertices
in two different smaller parts. Chromatic Turán problems were considered earlier
by Talbot [186] as a tool for obtaining bounds on Turán density of the 3-graph on
4 vertices with 3 edges. (These chromatic bounds were subsequently improved by
Markström and Talbot [132].) Here the problem is to estimate the maximum density
of an F -free r-graph on n vertices that is t-partite. Mubayi and Talbot solved this
problem for the extended complete graph, in the sense that they have a procedure for
computing the maximum density, which is in principle finite, although not practical
except in small cases. They conjecture that the natural example is optimal, but
can only prove this for r = 2 and r = 3. One example of their result shows that
chromatic Turán densities can be irrational: the maximum density of a bipartite
K3

6 -free 3-graph is (13
√

13− 35)/27 ≈ 0.4397, achieved by blowing up K3
5 − e.

Another case which has received a lot of attention is when H = Qn is the graph
of the n-cube, i.e. V (H) consists of all subsets of [n] and edges join sets that differ in
precisely one element. Erdős [55] posed the problem of determining the maximum
proportion of edges in a C4-free subgraph of Qn. Noting that any consecutive levels
of the cube span a C4-free subgraphs, a lower bound of 1/2 is obtained by taking
the union of the subgraphs spanned by levels 2i and 2i+1 for 0 ≤ i < n/2. The best
known upper bound is approximately 0.6226, due to Thomason and Wagner [189].
We will not attempt to survey the literature on these problems, but refer the reader
to Conlon [34] for a simpler proof of many of the known results and several references.
We draw the reader’s attention to the problem of deciding whether ex(Qn, C10) has
the same order of magnitude as e(Qn); this is the only unsolved instance of this
problem for cycles (the answer is ‘yes’ for C4 and C6; ‘no’ for C8 and longer cycles).

We also remark that even ‘vertex Turán problems’ in the cube seem to be hard.
For example, what is the smallest constant ad such that there is a set of ∼ ad2n

vertices in the n-cube that hits every subcube of dimension d? This problem was
introduced by Alon, Krech and Szabó [5], who showed log d

2d+2 ≤ ad ≤ 1
d+1 ; there

is a surprisingly large gap between the upper and lower bounds! A variant on
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this problem introduced by Johnson and Talbot [96] is to find a particular subset
F ⊆ V (Qd): what is the large constant λF such that there exists S ⊆ V (Qn) of size
|S| ∼ λF 2n such that there is no subgraph embedding i : Qd → Qn with i(F ) ⊆ S?
In particular, they conjecture that λF = 0 for |F | ≤

(
d

d/2

)
(it is not hard to see that

this can be false for larger F ). Bukh (personal communication) observed that this
conjecture is equivalent to the following hypergraph Turán problem. For r ≥ s > t
we define the following r-graph SrKt

s, which may be regarded as a ‘suspension’
of Kt

s. The vertex set of SrKt
s is the union of disjoint sets S of size s and A of

size r − t. The edges consist of all r-tuples containing A. The conjecture is that
limr→∞ π(SrKt

s) = 0 for any s > t ≥ 2. Even the case s = 4 and t = 2 is currently
open! The case s = 3 and t = 2 is straightforward: SrK2

3 just consists of (any)
3 edges on a set of r + 1 vertices, so π(SrK2

3 ) ≤ 2/(r + 1). However, it is an
interesting problem to determine the order of magnitude of π(SrK2

3 ) for large r:
Alon (communication via Bukh) gave a lower bound of order (log r)/r2. In general,
given the apparent difficulty of determining Turán densities exactly, it seems that
such problems involving additional limits may be a fruitful avenue for developing
the theory.

13.4 Coloured Turán problems

There are a variety of generalisations of the Turán problem that allow additional
structures, such as directed edges, multiple edges, or coloured edges. Even for
graphs this leads to rich theories and several unsolved problems. Brown, Erdős and
Simonovits initiated this field with a series of papers on problems for digraphs and
multigraphs. For multigraph problems, we fix some positive integer q and consider
multigraphs with no loops and edge multiplicity at most q. Then given a family F
of multigraphs, we want to determine ex(n,F), defined as the maximum number of
edges in a multigraph not containing any F in F . A further generalisation allows
directions on the edges; for simplicity we ignore this here. In the case q = 1 this
is the usual Turán problem. For q = 2 (or digraphs), it is shown in [27] that any
extremal problem has a blowup construction that is asymptotically optimal. Here a
blowup is defined by taking some symmetric t×t matrix A whose entries are integers
between 0 and q, dividing a vertex set into t parts, and putting aij edges between
any pair of vertices u, v with u in part i and v in part j (we may have i = j).

Similarly to the usual Turán problem, one can define the blowup density b(A)
which is the density achieved by this construction: formally b(A) is the maximum
value of xtAx over the standard simplex S of all x = (x1, · · · , xn) with xi ≥ 0
for 1 ≤ i ≤ n and

∑
xi = 1. Say that such a matrix is dense if any proper

principal submatrix has lower blowup density. It is shown in [28] that for any dense
matrix A there is a finite family F such that A is the unique matrix whose blowup
gives asymptotically optimal constructions of F-free multigraphs. Furthermore, for
q = 2 (or digraphs), in [29] they describe an algorithm that determines all optimal
matrices for a given family (the algorithm is finite, but not practical). Simpler
proofs of these results were given by Sidorenko [178], who also showed that analogous
statements do not hold for q > 2, thus disproving a conjecture of Brown, Erdős and
Simonovits. Brown, Erdős and Simonovits also conjectured that all densities are
jumps (as for graphs), but this was disproved by Rödl and Sidorenko [164] for q ≥ 4.
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The conjecture is true for q = 2, but is open for q = 3.
Another coloured variant on many problems of extremal set theory, including

Turán problems, was introduced by Hilton [93] and later by Keevash, Saks, Sudakov
and Verstraëte [109]. Given a list of set systems, which we think of as colours, we
call another set system multicoloured if for each of its sets we can choose one of the
colours it belongs to in such a way that each set gets a different colour. Given an
integer k and some forbidden configurations, the multicoloured extremal problem
is to choose k colours with total size as large as possible subject to containing no
multicoloured forbidden configuration. Let f be the number of sets in the forbidden
configuration. One possible extremal construction for this problem is to take f − 1
colours to consist of all possible sets, and the other colours to be empty. Another
construction is to take all k colours to be equal to some fixed family that is of
maximum size subject to not containing a forbidden configuration. In [109] we
solved the multicolour version of Turán’s theorem, by showing that one of these two
constructions is always optimal. In other words, if G1, · · · , Gk are graphs on the
same set of n vertices for which there is no multicoloured Kt, then

∑k
i=1 e(Gi) is

maximised either by taking
(

t
2

)
− 1 complete graphs and the rest empty graphs, or

by taking all k graphs equal to some fixed Turán graph Tt−1(n). Simple calculations
show that there is a threshold value kc so that the first option holds for k < kc and
the second option holds for k ≥ kc. This proved a conjecture of Hilton [93] (although
we were not aware of this paper at the time of writing). It would be interesting to
understand which other extremal problems exhibit this phenomenon of having only
two extremal constructions. It is not universal, as shown by an example in [109],
but it does hold for several other classical problems of extremal set theory, as shown
in [21] and [112].

A related problem posed by Diwan and Mubayi (unpublished) concerns the min-
imum size of a colour, rather than the total size of colour. Specifically, for any n
and a fixed graph F with edges coloured red or blue, they ask for the threshold m
such that, given any red graph and blue graph on the same set of n vertices each
with more than m edges, one can find a copy of F with the specified colouring.
They pose a conjecture when F is a coloured clique, and prove certain cases of their
conjecture. Their proof uses a stronger result which replaces the minimum size of
a colour by a weighted linear combination of the colours. Such problems have been
recently studied in a much more general context by Marchant and Thomason [130],
who gave applications to the probability of hereditary graph properties (see Section
13.5).

We conclude this subsection with another coloured generalisation studied by
Keevash, Mubayi, Sudakov and Verstraëte [108]. For a fixed graph H, we ask
for the maximum number of edges in a properly edge-coloured graph on n vertices
which does not contain a rainbow H, i.e. a copy of H all of whose edges have different
colours. This maximum is denoted ex∗(n, H), and we refer to it as the rainbow Turán
number of H. For any non-bipartite graph H we showed that ex∗(n, H) ∼ ex(n, H),
and for large n we have ex∗(n, H) = ex(n, H) when H is critical (e.g. a clique or
an odd cycle). Bipartite graphs H are a source of many open problems. The case
when H = C2k is an even cycle is particularly interesting because of its connection
to additive number theory. We conjecture that ex∗(n, C2k) = O(n1+1/k), which
would generalise a result of Ruzsa on B∗

k-sets in abelian groups. (We proved it for
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k = 2 and k = 3.) More generally, there is considerable scope to investigate number
theoretic consequences of extremal results on coloured graphs, as applied to Cayley
graphs.

13.5 The speed of properties

Suppose P is a graph property, i.e. a set of graphs that is closed under isomor-
phism. We consider properties P that are hereditary , meaning that they are closed
under taking induced subgraphs, or even monotone, meaning that they are closed
under taking arbitrary subgraphs. A monotone property can be characterised as the
set of F-free graphs, for some (possibly infinite) family F . Similarly, a hereditary
property can be characterised as the set of induced-F-free graphs, for some F , i.e.
graphs with no copy of any F in F as an induced subgraph. The speed s(n) of P is
the number of labelled graphs in P on [n]. There is a large literature on the speed
of properties, too large to adequately cite here, so we refer the reader to [3] as a
recent paper with many references.

Consider the problem of counting F -free graphs on [n], for some fixed graph
F . By taking all subgraphs of any fixed F -free graph of maximum size ex(n, F ) we
obtain at least 2ex(n,F ) distinct F -free graphs. In fact, this is essentially tight for
non-bipartite graphs F , as Erdős, Frankl and Rödl [56] showed an upper bound of
2(1+o(1))ex(n,F ). (The case when F is bipartite is another story, see [15] for some re-
cent results.) The corresponding generalisation to hereditary properties was proved
by Alekseev [1] and by Bollobás and Thomason [22]. They showed that the speed
of P is 2(1−1/r+o(1)n2/2, where r is a certain parameter of P known as the ‘colouring
number’ (informally, it is the maximum number of parts in a partite construction
for graphs in P, where each part is complete or empty, and the graph is otherwise
arbitrary). These results have been refined to give more precise error terms and
even a description of the structure of almost all graphs in a hereditary property. For
monotone properties the results are due to Balogh, Bollobás and Simonovits [11, 12],
and for hereditary properties to Alon, Balogh, Bollobás and Morris [3]. Bollobás
and Thomason [23] studied a generalisation in which a property is measured by its
probability of occurring in the random graph G(n, p) (thus the speed corresponds
to p = 1/2). This generalised problem exhibits extra complexities, analysed by
Marchant and Thomason [130] (see Section 13.4).

It is natural to pose the same questions for hypergraph properties. Dotson and
Nagle [45] and Ishigami [95] showed that the speed of a hereditary r-graph property
P is 2ex(n,P)+o(nr). Here ex(n,P) is the maximum size of an r-graph G on [n] on
n vertices such that there exists an r-graph H on [n] that is edge-disjoint from G
such that H ∪G′ ∈ P for every subgraph G′ of G. (In the case when P is monotone
this is the usual Turán number, i.e. the maximum size of an r-graph in P.) In
principle this is analogous to the Alexeev-Bollobás-Thomason result, but we lack
a concrete description of ex(n,P) analogous to the colouring number (even in the
monotone case, which is the point of this survey!) In the case of the Fano plane a
refined result was obtained by Person and Schacht [151], who showed that almost
every Fano-free 3-graph on n vertices is bipartite. One might expect similar results
to hold for other Turán problems where we know uniqueness and stability of the
extremal construction. This has been established by Balogh and Mubayi [13, 14] for
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cancellative 3-graphs and 3-graphs with independent neighbourhoods.

13.6 Local sparsity

Brown, Erdős and Sós [30] generalised the hypergraph Turán problem by asking
for the maximum number of edges in an r-graph satisfying a ‘local sparsity’ condition
that bounds the number of edges in any set of a given size. Write exr(n, v, e) for
the maximum number of edges in an r-graph on n vertices such that no set of v
vertices spans at least e edges. For example ex3(n, 4, 4) = ex(n, K3

4 ). A result of
[30] is exr(n, e(r− k) + k, e) = Θ(nk) for any 1 ≤ k ≤ r; the upper bound follows by
noting that any k-set belongs to at most e−1 edges, and the lower bound by taking
a random r-graph of small constant density and deleting all edges in e(r−k)+k-sets
with at least e edges. They described the case r = 3, v = 6, e = 3 as ‘the most
interesting question we were unable to answer’. This was addressed by the celebrated
‘(6,3)-theorem’ of Ruzsa and Szémeredi [165] that n2−o(1) < ex3(n, 6, 3) < o(n2). It
would be very interesting to tighten these bounds: this is connected with regularity
theory (see Section 10) and bounds for Roth’s theorem (see [90, 166].) Further
results on the general problem are n2−o(1) < exr(n, 3(r − 1), 3) < o(n2) in [56],
exr(n, e(r− k)+ k + blog2(e)c, e) < o(nk) in [167], exr(n, 4(r− k)+ k +1, 4) < o(nk)
for k ≥ 3 in [168], and nk−o(1) < exr(n, 3(r − k) + k + 1, 3) < o(nk) in [6]. An
interesting open problem is to determine whether ex3(n, 7, 4) is o(n2).

A weighted generalisation of this problem is to determine the largest total weight
exZ(n, k, r) that can be obtained by assigning integer weights to the edges of a graph
on n vertices such that any set of k vertices spans a subgraph of weight at most r.
(We stick to graphs for simplicity.) Note that negative weights are allowed, but for
comparison with multigraph problems one can also consider the analogous quantity
exN(n, k, r) in which weights have to be non-negative. We remarked earlier that
the example exN(n, 4, 20) ∼ 3

(
n
2

)
was crucial in determining the Turán density of

the Fano plane. In general, Füredi and Kündgen [80] have determined exZ(n, k, r)
asymptotically for all k and r, but there remain several interesting open problems,
such as determining exact values and extremal constructions, and obtaining similar
results for exN(n, k, r).

Another generalisation is to specify exactly what numbers of edges are allowed
in any set of a given size. In Section 7 we discussed the problem for 3-graphs in
which every 4-set spans 0, 2 or 3 edges. In Section 6 we mentioned the lower bound
π(F ) ≥ 2/7 given by Frankl and Füredi [67] when F is the 3-graph with 4 vertices
and 3 edges. The main result of [67] is an exact result for 3-graphs in any 4-set spans
0 or 2 edges. In fact they classify all such 3-graphs: they are either obtained by
(i) blowing up the 3-graph on 6 vertices described in Section 6, or (ii) by placing n
points on a circle and taking the edges as all triples that form a triangle containing
the centre (assume that the centre is not on the line joining any pair). It is easy to
check that the blowup construction (i) is larger for n ≥ 6. A related problem is a
conjecture of Erdős and Sós [60] that any 3-graph with bipartite links has density
at most 1/4. Construction (ii) is an example that would be tight for this conjecture.
Another example is to take a random tournament and take the edges to be all
triples that induce cyclic triangles. In Section 9 we mentioned the improvements
on π(Kr

r+1) given by Lu and Zhao [129]. These were based on a structural result
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for r-graphs in which every (r + 1)-set contains 0 or r edges, answering a question
of de Caen [41]: if r = 2 then G is a complete bipartite graph, and if r ≥ 3 and
n > r(p−1), where p is the smallest prime factor of r−1, then G is either the empty
graph or a star (all r-sets containing some fixed vertex).

13.7 Counting subgraphs

A further generalisation of the Turán problem is to look not only for the threshold
at which a particular r-graph F appears, but how many copies of F are guaranteed
by a given number of edges. Even the most basic case counting triangles in graphs is
a difficult problem that was open for many years. The following asymptotic solution
was recently given by Razborov [157] using flag algebras. Among graphs on n vertices
with edge density between 1−1/t and 1−1/(t+1), the asymptotic minimum number
of triangles is achieved by a complete (t + 1)-partite graph in which t parts are of
equal size and larger than the remaining part. (One can give an explicit formula
in terms of the edge density, but the resulting expression is rather unwieldy.) It is
conjectured that the same example minimises the number of copies of Ks for any s.
Nikiforov [147] established this for s = 4, and also re-proved Razborov’s result for
s = 3 by different means. In general, Bollobás (see [19, Chapter 6]) showed a lower
bound that is equal to the conjecture for densities of the form 1− 1/t, and a linear
function on each interval [1 − 1/t, 1 − 1/(t + 1)]. Very recently, Reiher announced
an asymptotic solution to the full conjecture.

The problem takes on a different flavour when one considers graphs where the
number of edges exceeds the Turán number, but is asymptotically the same. For
example, Rademacher (unpublished) extended Mantel’s result by showing that a
graph on n vertices with n2/4 + 1 edges contains at least bn/2c triangles (which is
tight). This was extended by Erdős [49] and then by Lovász and Simonovits [125],
who showed that if q < n/2 then n2/4+ q edges guarantee at least qbn/2c triangles.
Mubayi [139, 140] has extended these results in several directions. For a critical
graph F he showed that there is δ > 0 such that if n is large and 1 ≤ q < δn then
any graph on n vertices with ex(n, F )+q edges contains at least qc(n, F ) copies of F .
Here c(n, F ) is the minimum number of copies of F created by adding a single edge
to the Turán graph, which is easy to compute for any particular example, although a
general formula is complicated. The bound is sharp up to an error of O(qc(n, F )/n).
For hypergraphs he obtains similar results in many cases where uniqueness and
stability of the extremal example is known.

For bipartite graphs F there is an old conjecture of Sidorenko [177] that random
graphs achieve the minimum number of copies of F . A precise formulation may be
given in terms of homomorphisms. Recall that the homomorphism density tF (G) is
the probability that a random map from V (F ) to V (G) is a homomorphism. Then
the conjecture is that tF (G) ≥ d(G)e(F ), where d(G) = te(G) is the edge density
of G. This may be viewed as a correlation inequality for the events that edges of
F are embedded as edges of G. It also has an equivalent analytic formulation as
tF (W ) ≥ te(W )e(F ) for any graphon W , which is worth noting as integrals similar to
tF (W ) appear in other contexts (e.g. Feynmann integrals in quantum field theory).
Sidorenko was a pioneer of the analytic approach, and surveyed many of his results
in [179]. Recent partial results on the Sidorenko conjecture include a local form by
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Figure 1: The exact results

Lovász [124] and an approximate form by Conlon, Fox and Sudakov [35]. Note that
examples in [177] show that the natural hypergraph generalisation of the conjecture
is false.

In the other direction, one may ask to maximise the number of copies of a fixed
r-graph F in an r-graph G, given the number of edges and vertices in G. We start
with the case when F = Kr

t is a clique. This turns out not to depend on the
number of vertices in G. For example, when e(G) =

(
m
r

)
the extremal example is

Kr
m, which has

(
m
t

)
copies of Kr

t . In general the extremal example is determined by
the Kruskal-Katona theorem [118, 100]. Results for general graphs were obtained
by Alon [2] and for hypergraphs by Friedgut and Kahn [76]. Here we do not expect
precise answers, but just seek the order of magnitude. The result of [76] is that the
maximum number of copies of an r-graph F in an r-graph G with e edges has order
eα∗(F ), where α∗(F ) is the fractional independence number of F .

Going back to cliques in graphs, Sós and Straus [184] proved the following (gen-
eralisation of a) conjecture of Erdős [48]. Suppose G is a graph and let Nt de-
note the number of Kt’s in G. If Nk+1 = 0 (i.e. G is Kk+1-free) and t ≥ 0 then
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Nt+1 ≤
(

k
t+1

)(
k
t

)−(t+1)/t
N

(t+1)/t
t . Note that equality holds if G is a blowup of Kk.

Repeated application gives a bound for the number of Kt’s in a Kk+1-free graph in

terms of the number of edges N2: we have Nt ≤
(
k
t

)(
k
2

)−t/2
N

t/2
2 . The proof uses

a far-reaching generalisation of the Lagrangian method considered in Section 3. In
fact, it is hard to appreciate the scope of the method in the generality presented
in [184], and it may well have applications in other contexts yet to be discovered.
The idea is to assign a variable xT to each Kt in G and consider the polynomial
fG(x) =

∑
S

∏
T⊆S xT in the variables x = (xT ), where the sum is over all Kt+1’s

S in G. Let λ be the maximum value of fG(x) over all x with every xT ≥ 0 and∑
T xt

T = 1 (note the power). A general transfer lemma in [184] implies that a
maximising x can be chosen with the property that the vertices incident to variables
of positive weight induce a complete subgraph. This implies that x is supported on
the Kt’s contained in some clique, which has size at most k, since Nk+1 = 0. The

maximum is achieved with equal weights
(
k
t

)−1/t
, which gives λ =

(
k

t+1

)(
k
t

)−(t+1)/t
.

On the other hand, setting every xT equal to N
−1/t
t is a valid assignment, and gives

a lower bound λ ≥ Nt+1N
−(t+1)/t
t , so the result follows.

14 Summary of results

This survey has been organised by methods, so for easy reference we summarise
the results here. The exact results are illustrated in Figure 1 (some infinite families
are indicated by a representative example). A list follows: F5 [66] (generalising
cancellative 3-graphs [20]), Fano plane [84, 110], expanded triangle [111], generalised
4-graph triangle = 4-book with 2 pages [152] (generalising cancellative 4-graphs
[173]), 4-book with 3 pages [83], 3-graphs with independent neighbourhoods [82],
4-graphs with independent neighbourhoods = 4-book with 4 pages [81], extended
complete graphs [155] (refining [138]), generalised fans [141], extended trees [174], 3-
graph 4-sets with 1, 3 or 4 edges [67] 3-graph 4-sets with 1 or 4 edges [154] (refining
[158]), 3-graph t-triples [192]. Besides these, there is an ‘almost exact’ result for
generalised 5-graph and 6-graph triangles [70], and asymptotic results (i.e. exact
Turán densities) for expanded cliques [176] and 5 3-graphs related to F (3, 3) [143].
Many further asymptotic results follow from Theorem 3.1.
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[60] P. Erdős and V. T. Sós, On Ramsey-Turán type theorems for hypergraphs,
Combinatorica 2 (1982), 289–295.
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[70] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blowups
of the small Witt-designs, J. Combin. Theory Ser. A 52 (1989), 129–147.
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[126] L. Lovász and B. Szegedy, Limits of dense graph sequences, J. Combin. Theory
Ser. B 96 (2006), 933–957.

[127] L. Lovász and B. Szegedy, Szemerédi’s lemma for the analyst, Geom. Funct.
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