A new family of modules with 2-dimensional 1-cohomology

John N. Bray,
School of Mathematical Sciences,
Queen Mary, University of London,
Mile End Road,
London E1 4NS
E-mail: J.N.Bray@qmul.ac.uk.

27th July 2007

Abstract

It is known that for finite simple groups it is possible for a faithful absolutely irreducible module to have 1-cohomology of dimension at least 3. However, even faithful absolutely irreducible modules with 2-dimensional 1-cohomology are rare. We exhibit a new infinite family of such modules.

1 Introduction

Over the past few decades, a number of first cohomology groups have been computed, see for example [1, 2, 8, 5, 6]. The first cohomology group $H^1(G; M)$ of a group G at a module M has two fundamental interpretations: first, it parametrises the complements of M in the split extension $M:G$ of M by G; and second, it parametrises the extensions of M by the trivial G-module. In what follows we assume that M is a faithful absolutely irreducible module for G, since $\dim H^1(G; M)$ can be made arbitrarily large if either of these conditions fails.

In most cases which have been calculated up to now, $H^1(G; M)$ has dimension 0 or 1, and in the few remaining cases it has dimension 2 or 3. The known examples of 3-dimensional 1-cohomology are given in Bray and Wilson [4] and Scott [9]. The two examples of [4] are explicit, whilst despite the infinitude of examples in [9], the results therein do not allow one to give an explicit example of a module with 3-dimensional 1-cohomology.
The results of this paper were discovered when I was carrying out a systematic calculation of 1-cohomologies (and 2-cohomologies) of (absolutely) irreducible modules of simple (and almost simple) groups, in connection with the Web-Atlas project [10]. Many of the 2-dimensional 1-cohomologies seen have an exceptional feel to them, such as $\dim H^1(A_6; F_4^3) = 2$ (the smallest such example). During the course of this search I found that $\dim H^1(L_3(7); F_5^{19}) = 2$, while for other irreducible $L_3(7)$-modules the 1-cohomology is at most 1-dimensional. This looked odd, especially when you compare the complexity of the Sylow 3-subgroup (3^2) with that of the Sylow 7-subgroup (7^{1+2}), and led to the Main Theorem. The smallest example which is part of this series, namely that $\dim H^1(L_3(4); F_3^{19}) = 2$, was discovered earlier but somehow did not raise any eyebrows.

Main Theorem. Let $n \geq 3$, let p be a prime such that $p \mid n$, let q be a prime power such that $q \equiv 1 \pmod{p}$, and let k be a field of characteristic p. Then $\dim kH^1(L_n(q); M) = 2$ where M is a certain absolutely irreducible $kL_n(q)$-module of dimension $\frac{q^n - 1}{q - 1} - 2$. We obtain M as the non-trivial composition factor of the permutation module of degree $\frac{q^n - 1}{q - 1}$ for $L_n(q)$ over k, corresponding to the action of $SL_n(q)$ on the projective points (or hyperplanes) of the natural n-dimensional $F_qSL_n(q)$-module.

In addition to the above family of cross characteristic examples, the following examples of 2-dimensional 1-cohomology in defining characteristic are also known. Cline, Jones, Parshall and Scott [8, 5] give the examples of $\Omega^+_{4m}(q)$ for q even, $q > 2$ and $m \geq 2$ acting on a module M of dimension $2m(4m - 1) - 2$, where M is the non-trivial composition factor of $\Lambda^2(V)$, with V being a natural module of $\Omega^+_{4m}(q)$. They also point out that the ‘corresponding’ (i.e. 26-dimensional) module of $3D_4(q)$ for q even, $q > 2$ also has 2-dimensional 1-cohomology. The above results probably hold when $q = 2$. For the groups $\Omega^+_{4m}(2), m \geq 2$ see [8, 5], while we have done explicit computations for the relevant modules of $\Omega^-_{4m}(2)$ for $4m \in \{8, 12, 16, 20, 24, 28\}$ and $3D_4(2)$. In all cases, a subquotient of the tensor square of the natural module exhibits the 2-dimensional 1-cohomology.

Other than the above families of examples we know explicitly of only finitely many faithful absolutely irreducible modules for which the 1-cohomology is at least 2-dimensional.

2 Proof of the Main Theorem

Firstly, we establish some notation. The ATLAS [7] notation is used for group structures, with E_q denoting an elementary abelian group of order q. For G a group and k a field, we also use k to denote the trivial kG-module. If V, U and W are modules, we write $V \cong U \cdot W$ to mean that V has a submodule (isomorphic to) U and $V/U \cong W$; and we write $V \cong U \cdot W$ if $V \cong U \cdot W$ and U does not have a complement isomorphic to W. The standard results we quote here can be found, for example, in Benson’s book [3] (which states them in more generality).

Our example involves a certain module of $L_n(q)$ in characteristic p, where $n \geq 3$, $p \mid n$ and $q \equiv 1 \pmod{p}$. We first recall some well-known facts about the groups $L_n(q) = PSL_n(q)$.
and \(SL_n(q) \). Firstly, for \(n \geq 2 \) and \((n, q) \neq (2, 2) \) or \((2, 3) \) the groups \(L_n(q) \) are simple and the groups \(SL_n(q) \) are perfect and quasi-simple. Secondly, the Schur multiplier of \(SL_n(q) \) is always trivial, except for the cases \((n, q) = (2, 4), (2, 9), (3, 2), (3, 4) \) or \((4, 2) \), and the \(r' \)-part of the Schur multiplier of \(SL_n(q) \) is always trivial where \(r \) is the prime such that \(r \mid q \).

It is known that the stabiliser of a projective point (i.e. 1-space) in \(SL_n(q) \) is a subgroup \(H \) of shape \(E_q^{n-1}.GL_{n-1}(q) \), which contains a subgroup \(E_q^{n-1}.SL_{n-1}(q) \cong ASL_{n-1}(q) \) to index \(q - 1 \). We note that \(H \) need not be isomorphic to \(AGL_{n-1}(q) \); in particular, we have non-isomorphism in the cases of interest.\(^1\) Since \(n \) and \(n - 1 \) are coprime, the subgroup of scalars of \(SL_n(q) \) intersects the said subgroup \(ASL_{n-1}(q) \) trivially, and thus the image of this subgroup in any of the images \(C.L_n(q) \) of \(SL_n(q) \) is still isomorphic to \(ASL_{n-1}(q) \). Thus any non-trivial representation of \(SL_n(q) \) restricts faithfully to the subgroup \(ASL_{n-1}(q) \).

So now let \(n \geq 3, p \mid n, p \mid (q - 1) \), \(G \cong SL_n(q) \), \(H \cong E_q^{n-1}.GL_{n-1}(q) \) (the point stabiliser), and let \(k \) be a field of characteristic \(p \). Let \(P \) be the permutation module over \(k \) of the cosets of \(H \). Thus \(P \) is obtained by inducing the trivial \(kH \)-module up to \(G \). Since \(Z(G) \leq H \), \(Z(G) \) acts trivially on \(P \), and thus \(P \) is a (permutation) module for \(L_n(q) \). The dimension of \(P \) is \(m := q^{n-1}.q - 1 \). Permutation modules for transitive groups have a unique trivial submodule, \(U \) say, generated by the all 1s vector \(u = \sum_{i=1}^{m} e_i \); and a unique trivial quotient, whose kernel is the augmentation submodule, \(W \) say, where \(W = \{ \sum_{i=1}^{m} a_i e_i : a_i \in k \mid \sum_{i=1}^{m} a_i = 0 \} \). We have \(U \leq W \) since \(p \nmid m \), and we let \(M := W/U \). Now \(SL_n(q) \) is perfect and so there are no non-split modules of type \(k \cdot k \) for \(SL_n(q) \), and thus \(M \) has no trivial submodules or quotients. From Clifford Theory we find that a faithful representation of \(ASL_{n-1}(q) \) in characteristic \(p \) has dimension at least \(q^{n-1} - 1 \), since \(SL_{n-1}(q) \) has a single orbit on non-zero vectors of (the dual of) its natural module. But \(2(q^{n-1} - 1) > \dim M = \frac{q^{n-1} - 1}{q - 1} - 2 \) and so \(M \) is absolutely irreducible. Therefore \(P \) is a uniserial module of shape \(k \cdot \tilde{M} \cdot k \).

Now \(SL_n(q) \) is perfect, and so \(\dim H^1(SL_n(q); k) = 0 \), and \(\dim H^2(SL_n(q); k) \) is the \(p \)-rank of the Schur multiplier of \(SL_n(q) \), which is 0. Now \(\dim H^1(H; k) = 1 \), which is the \(p \)-rank of \(H/H' \). The Eckmann–Shapiro Lemma then implies that \(\dim H^1(SL_n(q); P) = 1 \). A well-known long exact sequence of cohomologies, applied to the permutation module \(P \cong k \cdot \tilde{M} \cdot k \), with (trivial) submodule \(U \cong k \cdot \tilde{H} \cdot k \) and quotient \(Q \cong \tilde{M} \cdot k \) is given below. The dimensions of these cohomology groups for \(SL_n(q) \) are given below. (The dimensions for \(L_n(q) \) differ from these, and also depend on whether the \(p \)-part of \(q - 1 \) is greater than the \(p \)-part of \(n \).)

\[
\begin{array}{cccccccc}
0 & \to & H^0(k) & \to & H^0(P) & \to & H^0(Q) & \to & H^1(k) & \to & H^1(P) & \to & H^1(Q) & \to & H^2(k) & \to & \cdots \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & & & a(= 1) & 0
\end{array}
\]

\(^1\)We note that the action of \(GL_{n-1}(q) \) on \(E_q^{n-1} \) is the [dual of] the tensor product of the natural representation and the determinant representation. As a result \(H \cong E_q^{n-1}.GL_{n-1}(q) \) is isomorphic to \(AGL_{n-1}(q) \) if and only if \(H \) has trivial centre, which is if and only if \((n, q - 1) = 1 \). In the cases of interest, we have \((n, q - 1) \neq 1 \), and thus \(H \not\cong AGL_{n-1}(q) \).
We are interested in $a := \dim \text{H}^1(\text{SL}_n(q); Q)$, and the emboldened figures, which we justified earlier, ensure that $a = 1$. There is no module $k \cdot k$ for $\text{SL}_n(q)$ and thus $\dim \text{H}^1(\text{SL}_n(q); M) = 2$. But any module $M \cdot k$ for $\text{SL}_n(q)$ actually represents the quotient group $L_n(q)$, since k is not a submodule of $M \otimes k^* \cong M$. (Alternatively, note that the centraliser algebra of the module $M \cdot k$ consists just of scalar matrices. Thus central elements of $\text{SL}_n(q)$ act as scalars on $M \cdot k$, and since they act trivially on the quotient k of this, they act trivially on $M \cdot k$.) Therefore we conclude that $\dim \text{H}^1(L_n(q); M) = 2$, thus completing the proof of the Main Theorem.

The corresponding construction does not work when $n = 2$ (and thus $p = 2$). This is because the module M is not absolutely irreducible, splitting into two (absolutely irreducible) non-isomorphic summands of dimension $\frac{1}{2}(q - 1)$. This splitting always occurs over \mathbb{F}_4, and will even occur over \mathbb{F}_2 if $q \equiv \pm 1 \pmod{8}$. The above argument gives $\dim \text{H}^1(L_2(q); M) = 2$, and thus each constituent of M has 1-dimensional 1-cohomology.

Acknowledgements

We gratefully acknowledge the support of EPSRC grant GR/S41319. Robert Wilson has made suggestions that have improved the exposition of this paper.

References

