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ON THE ORDERS OF AUTOMORPHISM GROUPS OF FINITE
GROUPS

JOHN N. BRAY and ROBERT A. WILSON

Abstract

In the Kourovka Notebook, Deaconescu asks if |AutG| > φ(|G|) for all finite groups G, where φ
denotes the Euler totient function; and whether G is cyclic whenever |AutG| = φ(|G|). We answer
both questions in the negative. Moreover we show that |AutG|/φ(|G|) can be made arbitrarily
small.

1. The question, and some answers

Conventions. Throughout this paper, we shall only consider finite groups.
The notation for group structures is based on that used in the Atlas [2]. The
notation O2(G), O2′(G) and AutG is standard.

Let φ denote the Euler totient function, so that φ(n) is the number of integers
m with 1 6 m 6 n such that m and n are coprime, and

φ(n)
n

=
r∏
i=1

pi − 1
pi

,

where p1 < p2 < . . . < pr are the prime factors of n. It is easy to see that for finite
abelian groups G, we have |AutG| > φ(|G|), with equality if and only if G is cyclic.
In Problem 15.43 of the Kourovka Notebook [3], Deaconescu asks if the same is
true for arbitrary finite groups G. More specifically:

Let G be a finite group of order n.
a) Is it true that |AutG| > φ(n) where φ is Euler’s function?
b) Is it true that G is cyclic if |AutG| = φ(n)?

In this note we show that the answer to both questions is no. Indeed, we shall prove:

Main Theorem. For all ε > 0 there exists a group G such that |AutG| <
ε.φ(|G|).

In the course of this paper, it will transpire that there are infinitely many groups
G satisfying |AutG| < φ(|G|), and infinitely many non-cyclic groups G which satisfy
|AutG| = φ(|G|).
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Part (a)

Examining some quasisimple groups, we quickly found that the perfect groups
G ∼= (3× 4× 2)·L3(4), 12·M22 and (32 × 4)·U4(3) satisfy |AutG| < φ(|G|), answer-
ing this part of the question in the negative. More precisely:

group G primes dividing |G| AutG
|AutG|
|G|

φ(|G|)
|G|

(3× 4× 2)·L3(4) 2, 3, 5, 7 L3(4):22 1
6

8
35

12·M22 2, 3, 5, 7, 11 M22 :2 1
6

16
77

(32 × 4)·U4(3) 2, 3, 5, 7 U4(3):D8
2
9

8
35

Part (b)

One non-cyclic group G satisfying |AutG| = φ(|G|) is G ∼= 2× 3× 5× 11×M11.
Each of the five direct factors of G is characteristic, and we obtain

AutG ∼= Aut 2×Aut 3×Aut 5×Aut 11×Aut M11
∼= 1× 2× 4× 10×M11,

a group of order φ(|G|). More generally, if 2.3.5.11 = 330 | m, then the non-cyclic
group G ∼= Cm ×M11 has automorphism group AutG ∼= (Aut Cm) ×M11, and is
thus a group of order φ(|G|).

The smallest non-cyclic group G we know of that satisfies |AutG| = φ(|G|) is a
group of order 56448, namely the group G ∼= 24 :L3(2)×3×7, where the 24 :L3(2) is
isomorphic to the centraliser of an involution in M23. In the direct factor 24 :L3(2),
when we consider the normal 24 as an F2-module for a complementary L3(2), it is
uniserial with a single non-zero proper submodule; this submodule has dimension
1. We have AutG ∼= 23 :L3(2) × 2 × 6. We may take G to be the group 〈g1, g2, g3〉
where:

g1 = (1, 3)(2, 4)(5, 15, 6, 16)(7, 9)(8, 10)(11, 13, 12, 14),
g2 = (1, 3, 5)(2, 4, 6)(7, 15, 11)(8, 16, 12),
g3 = (17, 18, 19)(20, 21, 22, 23, 24, 25, 26).

In fact, this group G is a special case of the groups we construct in the next section.

2. Proof of the Main Theorem

Let P be a non-empty finite set of primes such that p ≡ 7 (mod 8) for all p ∈ P .
We shall consider groups of the form

G = C ×
∏
p∈P

Mp,

where C is a cyclic subgroup of odd order and Mp is a perfect group of shape
2f(p) :L2(p). (We shall define the groups Mp below.)

Lemma 1. For all p ∈ P , the subgroups C and Mp are characteristic in G. Thus

AutG ∼= AutC ×
∏
p∈P

AutMp.
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Proof. First, note that C = O2′(G), so is characteristic in G. Let N = F(G),
the Fitting subgroup of G, so that N is also characteristic in G. Now G/N ∼=∏
p∈P L2(p) is a direct product of non-isomorphic simple groups. For each p ∈ P ,

G/N has a unique normal subgroup Np/N such that Np/N ∼= L2(p). Thus Np/N is
characteristic in G/N , and since N is characteristic in G, we get (for each p ∈ P )
that Np is a characteristic subgroup of G. In fact, Np = 〈N,Mp〉, and we have

Np = C ×Mp ×
∏

q∈P\{p}

O2(Mq).

Since C and O2(Mq) are abelian and Mp is perfect, we obtain N ′p = Mp, and thus
Mp is also a characteristic subgroup of G.

Since C is cyclic, AutC is an abelian group of order φ(|C|). We now concentrate
on the groups Mp (where we may now fix p ≡ 7 (mod 8)). The order of AutMp

depends crucially on the structure of O2(Mp) as an F2L2(p)-module. We aim to
construct a uniserial module with composition factors of dimensions 1 and 1

2 (p −
1), so that Mp has centre of order 2, in such a way that Mp has trivial outer
automorphism group. It will then follow that |AutMp| = 1

2 |Mp|. In what follows,
we shall use V1 · V2 to denote a non-split extension of modules V1 by V2 where V1

is the submodule and V2 is the quotient.

Lemma 2. Let H denote the simple group L2(p), where p ≡ 7 (mod 8), and
let V denote the permutation module over F2 of H on the p + 1 cosets of the
Borel subgroup. Then V is isomorphic to the trivial PIM (projective indecomposable
module) for H, and has structure 1 · (U1 ⊕ U2) · 1, where U1 and U2 are absolutely
irreducible.

Proof. First we need some notation for some elements of H. We use t to denote
any element of order p; all elements of order p in H are conjugate to t or t−1. The
other elements of H have order dividing 1

2 (p− 1) or 1
2 (p+ 1); all such non-identity

elements can be notated by x, y or z where:

x 6= 1 has order dividing 1
2 (p− 1).

y 6= 1 has order dividing 1
4 (p+ 1).

z 6= 1 has order dividing 1
2 (p+ 1), but does not have order dividing 1

4 (p+ 1).

Four ordinary irreducible characters of L2(p) are

Element 1 x y z t t−1

χ0 1 1 1 1 1 1
χ1

1
2 (p− 1) 0 −1 1 β γ

χ2
1
2 (p− 1) 0 −1 1 γ β

χ3 p 1 −1 −1 0 0

where β and γ denote the irrationalities 1
2 (−1±

√
−p); thus β and γ have minimal

polynomialX2+X+ 1
4 (p+1). Since χ0, χ1 and χ2 remain irreducible on restriction to

the Borel subgroup of shape p:(p−1
2 ) (which has odd order because p ≡ 3 (mod 4)),

they remain irreducible on reduction modulo 2. Moreover, since p ≡ 7 (mod 8),
X2 + X + 1

4 (p + 1) reduces modulo 2 to X2 + X, which has roots in F2, so the
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corresponding representations can be written over F2. For i ∈ {0, 1, 2} let ϕi denote
the 2-modular Brauer character which is the restriction of χi to 2-regular classes,
and let Ui be a module affording the character ϕi.

Now let P(1) denote the PIM of the trivial representation in characteristic 2, and
let Perm(p+ 1) denote the characteristic 2 permutation module of L2(p), of degree
p + 1, on the cosets of the Borel subgroup p:(p−1

2 ). Since p:(p−1
2 ) has odd order,

Perm(p+ 1) is projective, and thus, since it contains a trivial submodule, contains
a copy of P(1). Since the corresponding characteristic 0 permutation module of
degree p+ 1 has character χ0 + χ3 and any element z is necessarily 2-singular, we
see that Perm(p + 1) has Brauer character 2ϕ0 + ϕ1 + ϕ2, and thus composition
factors U0, U0, U1, U2.

Now P(1) has a unique simple submodule, and unique simple quotient, and thus
(since 4 | |L2(p)|) has the form 1 · U · 1 where U is a non-zero module. Since U1

and U2 are conjugate under an outer automorphism of L2(p) while U0 = 1 remains
invariant, we obtain that P(1) ∼= Perm(p+ 1) ∼= 1 · (U1 ⊕ U2) · 1. This structure is
valid over any field of characteristic 2.

Since modules with simple socle M embed in the PIM corresponding to M , there
are unique F2L2(p)-modules of shapes 1 ·U1 and 1 ·U2 while there are no F2L2(p)-
modules of shapes 1 · U1 · 1 or 1 · U2 · 1. We now define Mp

∼= 2f(p) :L2(p) to be the
split extension of the F2L2(p)-module 1 ·U1 by L2(p); in particular f(p) = 1

2 (p+1).
It remains to prove:

Lemma 3. With this definition, Mp has trivial outer automorphism group.

Proof. Since O2(Mp) is a characteristic subgroup of Mp, any automorphism of
Mp permutes the complements to O2(Mp) in Mp. Now let S denote a complemen-
tary L2(p) in Mp. We have ensured that the module 1 · U1 has zero 1-cohomology;
thus Mp has just one class of complements, so we may assume that our automor-
phism α of Mp normalises S. Since the module 1 · U1 is not invariant under outer
automorphisms of S, α|S must be an inner automorphism of S, and adjusting by an
inner automorphism of Mp that is conjugation by an element of S, we may assume
that α centralises S. So now α is an F2S-module automorphism of 1 ·U1, and thus
is a scalar, and therefore trivial.

It follows that |AutMp| = 1
2 |Mp| and therefore

|AutG|
|G|

=
φ(|C|)
|C|

× 1
2|P |

whence
|AutG|
φ(|G|)

=
φ(|C|)
|C|

× |G|
φ(|G|)

× 1
2|P |

.

Now if for all p ∈ P and odd prime divisors q of p(p+ 1)(p− 1) we have that q | |C|
then it follows that φ(|C|)/|C| = 2φ(|G|)/|G|, and therefore

|AutG|
φ(|G|)

=
φ(|C|)
|C|

× |G|
φ(|G|)

× 1
2|P |

=
1

2|P |−1
.

In particular, this holds if |C| is the product of all the odd primes which divide
p(p + 1)(p − 1) for some p ∈ P . To complete the proof of the Main Theorem,



on the orders of automorphism groups of finite groups 5

we invoke Dirichlet’s Theorem that there are infinitely many primes p such that
p ≡ 7 (mod 8) to conclude that |P | can be made arbitrarily large.

3. Further work

We have now extended our constructions and have been able to show that the
Main Theorem holds when G is restricted to being soluble, and also when G is
restricted to being perfect. Moreover, there are infinitely many perfect groups G
and infinitely many non-cyclic soluble groups G such that |AutG| = φ(|G|). These
results are the subject of a forthcoming publication [1].
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