Algebraic Geometry

Ivan Tomašić

Queen Mary, University of London

LTCC 2012

Outline

Varieties and schemes

Affine varieties Sheaves Schemes Projective varieties First properties of schemes

Local properties

Nonsingular schemes Divisors Riemann-Roch Theorem

Weil conjectures

What is algebraic geometry?

Intuition

Algebraic geometry is the study of geometric shapes that can be (locally/piecewise) described by polynomial equations.

Why restrict to polynomials?

Because they make sense in any field or ring, including the ones which carry no intrinsic topology. This gives a 'universal' geometric intuition in areas where classical geometry and topology fail. Applications in number theory: Diophantine geometry. Even in positive characteristic.

Example

A plane curve X defined by

$$x^2 + y^2 - 1 = 0.$$

- Over \mathbb{R} , this defines a circle.
- Over C, it is again a quadratic curve, even though it may be difficult to imagine (as the complex plane has real dimension 4).

k-valued points

But we can consider the solutions

$$X(k) = \{(x, y) \in k^2 : x^2 + y^2 = 1\}$$

for any field k.

- What can be said about X(Q)? It is infinite, think of Pythagorean triples, e.g. (3/5, 4/5) ∈ X(Q).
- How about $X(\mathbb{F}_q)$? With certainty we can say

$$|X(\mathbb{F}_q)| < q \cdot q = q^2,$$

but this is a very crude bound. We intend to return to this issue (Weil conjectures/Riemann hypothesis for varieties over finite fields) at the end of the course.

Problems with non-algebraically closed fields

Example

Problem: for a plane curve Y defined by $x^2 + y^2 + 1 = 0$,

 $Y(\mathbb{R}) = \emptyset.$

(Historical) approaches

- Thus, if we intend to pursue the line of naïve algebraic geometry and study algebraic varieties through their sets of points, we better work over an algebraically closed field.
 - Italian school: Castelnuovo, Enriques, Severi–intuitive approach, classification of algebraic surfaces;
 - American school: Chow, Weil, Zariski–gave solid algebraic foundation to above.
- For the scheme-theoretic approach, we can work over arbitrary fields/rings, and the machinery of schemes automatically performs all the necessary bookkeeping.
 - French school: Artin, Serre, Grothendieck–schemes and cohomology.

Affine space

Definition

Let k be an algebraically closed field.

► The affine *n*-space is

$$\mathbb{A}_k^n = \{(a_1,\ldots,a_n): a_i \in k\}.$$

Let

$$A = k[x_1, \ldots, x_n]$$

be the polynomial ring in *n* variables over *k*.

• Think of an $f \in A$ as a function

$$f: \mathbb{A}_k^n \to k;$$

for $P = (a_1, \ldots, a_n) \in \mathbb{A}^n$, we let $f(P) = f(a_1, \ldots, a_n)$.

Vanishing set

Definition

For $f \in A$, we let

$$V(f) = \{ P \in \mathbb{A}^n : f(P) = 0 \}.$$

Let

$$D(f) = \mathbb{A}^n \setminus V(f).$$

• More generally, for any subset $E \subseteq A$,

$$V(E) = \{P \in \mathbb{A}^n : f(P) = 0 \text{ for all } f \in E\} = \bigcap_{f \in E} V(f)$$

Properties of V

Proposition (@)

•
$$V(0) = \mathbb{A}^n$$
, $V(1) = \emptyset$;

• $E \subseteq E'$ implies $V(E) \supseteq V(E')$;

• for a family $(E_{\lambda})_{\lambda}$, $V(\cup_{\lambda}E_{\lambda}) = V(\sum_{\lambda}E_{\lambda}) = \cap_{\lambda}V(E_{\lambda})$;

•
$$V(EE') = V(E) \cup V(E');$$

V(E) = V(√⟨E⟩), where ⟨E⟩ is an ideal of A generated by E and √· denotes the radical of an ideal, √I = {a ∈ A : aⁿ ∈ I for some n ∈ ℕ}.

This shows that sets of the form V(E) for $E \subseteq A$ (called algebraic sets) are closed sets of a topology on \mathbb{A}^n , which we call the Zariski topology. Note: D(f) are basic open.

Example

Algebraic subsets of \mathbb{A}^1 are just finite sets.

Thus any two open subsets intersect, far from being Hausdorff.

Proof.

A = k[x] is a principal ideal domain, so every ideal \mathfrak{a} in A is principal, $\mathfrak{a} = (f)$, for $f \in A$. Since k is ACF, f splits in k, i.e.

$$f(x)=c(x-a_1)\cdots(x-a_n).$$

Thus $V(a) = V(f) = \{a_1, ..., a_n\}.$

Affine varieties

Definition

An affine algebraic variety is a closed subset of \mathbb{A}^n , together with the induced Zariski topology.

Associated Ideal

Definition

Let $Y \subseteq \mathbb{A}^n$ be an arbitrary set (not necessarily closed). The ideal of Y in A is

$$I(Y) = \{ f \in A : f(P) = 0 \text{ for all } P \in Y \}.$$

Proposition

- 1. $Y \subseteq Y'$ implies $I(Y) \supseteq I(Y')$;
- 2. $I(\cup_{\lambda}Y_{\lambda}) = \cap_{\lambda}I(Y_{\lambda});$
- 3. for any $Y \subseteq \mathbb{A}^n$, $V(I(Y)) = \overline{Y}$, the Zariski closure of Y in \mathbb{A}^n ;
- 4. for any $E \subseteq A$, $I(V(E)) = \sqrt{\langle E \rangle}$.

Proof.

3. Clearly, V(I(Y)) is closed and contains Y. Conversely, if $V(E) \supseteq Y$, then, for every $f \in E$, f(y) = 0 for every $y \in Y$, so $f \in I(Y)$, thus $E \subseteq I(Y)$ and $V(E) \supseteq V(I(Y))$.

4. Is commonly known as Hilbert's Nullstellensatz. Let us write $\mathfrak{a} = \langle E \rangle$. It is clear that $\sqrt{\mathfrak{a}} \subseteq I(V(\mathfrak{a}))$. For the converse inclusion, we shall assume:

the weak Nullstellensatz (in (n + 1) variables):

for a proper ideal J in $k[x_0, ..., x_n]$, we have $V(J) \neq 0$ (it is crucial here that k is algebraically closed).

Suppose $f \in I(V(\mathfrak{a}))$. The ideal $J = \langle 1 - x_0 f \rangle + \mathfrak{a}$ in $k[x_0, \ldots, k_n]$ has no zero in k^{n+1} so we conclude $J = \langle 1 \rangle$, i.e. $1 \in J$. It follows (by substituting 1/f for x_0 and clearing denominators) that $f^n \in \mathfrak{a}$ for some *n*. For a complete proof see Atiyah-Macdonald.

Quasi-compactness

Corollary

D(f) is quasi-compact. (not Hausdorff)

Proof.

If $\cup_i D(f_i) = D(f)$, then $V(f) = \cap_i V(f_i) = V(\{f_i : i \in I\})$, so $f \in \sqrt{\{f_i : i \in I\}}$, so there is a finite $I_0 \subseteq I$ with $f \in \sqrt{\{f_i : i \in I_0\}}$.

Corollary

There is a 1-1 inclusion-reversing correspondence

 $egin{array}{lll} Y\longmapsto \mathit{I}(Y) \ V(\mathfrak{a}) \xleftarrow{} \mathfrak{a} \end{array}$

between algebraic sets and radical ideals.

Given a point $P = (a_1, ..., a_n) \in \mathbb{A}^n$, the ideal $\mathfrak{m}_P = I(P)$ is maximal (because the set $\{P\}$ is minimal), and $\mathfrak{m}_P = (x_1 - a_1, ..., x_n - a_n)$. Weak Nullstellensatz tells us that every maximal ideal is of this form. Thus,

$$I(V(\mathfrak{a})) = \bigcap_{P \in V(\mathfrak{a})} I(P) = \bigcap_{P \in V(\mathfrak{a})} \mathfrak{m}_P = \bigcap_{\substack{\mathfrak{m} \supseteq \mathfrak{a} \\ \mathfrak{m} \text{ maximal}}} \mathfrak{m}.$$

On the other hand, it is known in commutative algebra that

$$\sqrt{\mathfrak{a}} = \bigcap_{\substack{\mathfrak{p} \supseteq \mathfrak{a} \\ \mathfrak{p} \text{ prime}}} \mathfrak{p}$$

Thus, Nullstellensatz in fact claims that the two intersections coincide, i.e., that *A* is a Jacobson ring.

Affine coordinate ring

Definition

If Y is an affine variety, its affine coordinate ring is $\mathscr{O}(Y) = A/I(Y)$.

 $\mathscr{O}(Y)$ should be thought of as the ring of polynomial functions $Y \to k$. Indeed, two polynomials $f, f' \in A$ define the same function on Y iff $f - f' \in I(Y)$.

Remark

- If Y is an affine variety, 𝒫(Y) is a finitely generated k-algebra.
- Conversely, any finitely generated reduced (no nilpotent elements) k-algebra is a coordinate ring of an irreducible affine variety.

Indeed, suppose *B* is generated by b_1, \ldots, b_n as a *k*-algebra, and define a morphism $A = k[x_1, \ldots, x_n] \rightarrow B$ by $x_i \mapsto b_i$. Since *B* is reduced, the kernel is a radical ideal \mathfrak{a} , so $B = \mathcal{O}(V(\mathfrak{a}))$.

Maximal spectrum

Remark

Let Specm(*B*) denote the set of all maximal ideals of *B*. Then we have 1-1 correspondences between the following sets:

- 1. (points of) Y;
- 2. $Y(k) := \operatorname{Hom}_k(\mathscr{O}(Y), k);$
- 3. Specm(𝒫(𝒫));
- 4. maximal ideals in A containing I(Y).

Let $P \in Y$, $P = (a_1, ..., a_n)$. We know $I(P) \supseteq I(Y)$, so the morphism $a : \mathcal{O}(Y) = A/I(Y) \rightarrow k$, $x_i + I(Y) \mapsto a_i$ is well-defined. Since the range is a field, $\mathfrak{m}_P = \ker(a)$ is maximal in $\mathcal{O}(Y)$, and its preimage in A is exactly $I(P) = \{f \in A : f(P) = 0\}.$

Irreducibility

Definition

A topological space X is irreducible if it cannot be written as the union $X = X_1 \cup X_2$ of two proper closed subsets.

Proposition

An algebraic variety is irreducible iff its ideal is prime iff $\mathcal{O}(Y)$ is a domain.

Proof.

Suppose *Y* is irreducible, and let $fg \in I(Y)$. Then

$$Y \subseteq V(fg) = V(f) \cup V(g) = (Y \cap V(f)) \cup (Y \cap V(g)),$$

both being closed subsets of *Y*. Since *Y* is irreducible, we have $Y = Y \cap V(f)$ or $Y = Y \cap V(g)$, i.e., $Y \subseteq V(f)$ or $Y \subseteq V(g)$, i.e., $f \in I(Y)$ or $g \in I(Y)$. Thus I(Y) is prime. Conversely, let \mathfrak{p} be a prime ideal and suppose $V(\mathfrak{p}) = Y_1 \cup Y_2$. Then $\mathfrak{p} = I(Y_1) \cap I(Y_2) \supseteq I(Y_1)I(Y_2)$, so we have $\mathfrak{p} = I(Y_1)$ or $\mathfrak{p} = I(Y_2)$, i.e., $Y_1 = V(\mathfrak{p})$ or $Y_2 = V(\mathfrak{p})$, and we conclude that $V(\mathfrak{p})$ is irreducible.

Examples

- ► Aⁿ is irreducible; Aⁿ = V(0) and 0 is a prime ideal since A is a domain.
- if $P = (a_1, \ldots, a_n) \in \mathbb{A}^n$, then $\{P\} = V(\mathfrak{m}_P)$, $\mathfrak{m}_P = (x_1 - a_1, \ldots, x_n - a_n)$ is a max ideal, hence prime, so $\{P\}$ is irreducible.
- Let f ∈ A = k[x, y] be an irreducible polynomial. Then V(f) is an irreducible variety (affine curve); (f) is prime since A is an unique factorisation domain.
- ► $V(x_1x_2) = V(x_1) \cup V(x_2)$ is connected but not irreducible.

Noetherian topological spaces

Definition

A topological space *X* is noetherian, if it has the descending chain condition (or DCC) on closed subsets: any descending sequence $Y_1 \supseteq Y_2 \supseteq \cdots$ of closed subsets eventually stabilises, i.e., there is an $r \in \mathbb{N}$ such that $Y_r = Y_{r+i}$ for all $i \in \mathbb{N}$.

Proposition (@)

In a noetherian topological space X, every nonempty closed subset Y can be expressed as an irredundant finite union

$$Y = Y_1 \cup \cdots \cup Y_n$$

of irreducible closed subsets Y_i (irredundant means $Y_i \not\subseteq Y_j$ for $i \neq j$). The Y_i are uniquely determined, and we call them the irreducible components of Y.

Noetherian rings

Definition

A ring *A* is noetherian if it satisfies the following three equivalent conditions:

- A has the ascending chain condition on ideals: every ascending chain *I*₁ ⊆ *I*₂ ⊆ · · · of ideals is stationary (eventually stabilises);
- 2. every non-empty set of ideals in A has a maximal element;
- 3. every ideal in A is finitely generated.

Hilbert's Basis Theorem

Theorem (Hilbert's Basis Theorem)

If A is noetherian, then the polynomial ring $A[x_1, ..., x_n]$ is noetherian.

Corollary

If A is noetherian and B is finitely generated A-algebra, then B is also noetherian.

Remark

This means that any algebraic variety $Y \subseteq \mathbb{A}^n$ is in fact a set of solutions of a finite system of polynomial equations:

$$f_1(x_1,\ldots,x_n)=0$$

$$f_m(x_1,\ldots,x_n)=0$$

Irreducible components

Corollary

Every affine algebraic variety is a noetherian topological space and can be expressed uniquely as an irredundant union of irreducible varieties.

Proof.

 $\mathscr{O}(Y)$ is a finitely generated *k*-algebra and a field *k* is trivially noetherian, so $\mathscr{O}(Y)$ is a noetherian ring. A descending chain of closed subsets $Y_1 \supseteq Y_2 \supseteq \cdots$ in *Y* gives rise to an ascending chain of ideals $I(Y_1) \subseteq I(Y_2) \subseteq \cdots$ in $\mathscr{O}(Y)$, which must be stationary. Thus the original chain of closed subsets must be stationary too.

Finding/computing irreducible components in a concrete case is a non-trivial task, which can be made efficient by the use of Gröbner bases.

Example (Exercise)

Let $Y = V(x^2 - yz, xz - x) \subseteq \mathbb{A}^3$. Show that Y is a union of 3 irreducible components and find their prime ideals.

Dimension

Definition

The dimension of a topological space X is the supremum of all n such that there exists a chain

$$Z_0 \subset Z_1 \subset \cdots \subset Z_n$$

of distinct irreducible closed subsets of X.

The dimension of an affine variety is the dimension of its underlying topological space.

 \mathbf{Y} not every noetherian space has finite dimension.

Definition

- In a ring A, the height of a prime ideal p is the supremum of all n such that there exists a chain p₀ ⊂ p₁ ⊂ · · · ⊂ p_n = p of distinct prime ideals.
- The Krull dimension of A is the supremum of the heights of all the prime ideals.

Fact

Let B be a finitely generated k-algebra which is a domain. Then

- dim(B) = tr.deg(k(B)/k), where k(B) is the fraction field of B;
- 2. for any prime ideal p of B,

 $\mathsf{height}(\mathfrak{p}) + \mathsf{dim}(B/\mathfrak{p}) = \mathsf{dim}(B).$

Topological and algebraic dimension

Proposition

For an affine variety Y,

$$\dim(Y) = \dim(\mathscr{O}(Y)).$$

By the previous Fact, the latter equals the number of algebraically independent coordinate functions, and we deduce:

Proposition

 $\dim(\mathbb{A}^n) = n.$

Proposition (@)

Let Y be an affine variety.

- If Y is irreducible and Z is a proper closed subset of Y, then dim(Z) < dim(Y).
- 2. If $f \in \mathscr{O}(Y)$ is not a zero divisor nor a unit, then $\dim(V(f) \cap Y) = \dim(Y) 1$

Examples

- 1. Let $X, Y \subseteq \mathbb{A}^2$ be two irreducible plane curves. Then $\dim(X \cap Y) < \dim(X) = 1$, so $X \cap Y$ is of dimension 0 and thus it is a finite set.
- 2. A classification of irreducible closed subsets of \mathbb{A}^2 .
 - If dim $(Y) = 2 = dim(\mathbb{A}^2)$, then by Prop, $Y = \mathbb{A}^2$;
 - ▶ If dim(Y) = 1, then $Y \neq \mathbb{A}^2$ so $0 \neq I(Y)$ is prime and thus contains a non-zero irreducible polynomial f. Since $Y \supseteq V(f)$ and dim(V(f)) = 1, it must be Y = V(f).
 - If dim(Y) = 0, then Y is a point.

Example (The twisted cubic curve)

Let $Y \subseteq \mathbb{A}^3$ be the set $\{t, t^2, t^3\} : t \in k\}$. Show that it is an affine variety of dimension 1 (i.e., an affine curve). Hint: Find the generators of I(Y) and show that $\mathcal{O}(Y)$ is isomorphic to a polynomial ring in one variable over k.

Morphisms of affine varieties

Definition

Let $X \subseteq \mathbb{A}^n$ and $Y \subseteq \mathbb{A}^m$ be two affine varieties. A morphism

$$\varphi: X \to Y$$

is a map such that there exist polynomials $f_1, \ldots, f_m \in k[x_1, \ldots, x_n]$ with

$$\varphi(\mathbf{P}) = (f_1(a_1,\ldots,a_n),\ldots,f_m(a_1,\ldots,a_n))$$

for every $P = (a_1, \ldots, a_n) \in X$.

Remark (

Morphisms are continuous in Zariski topology.

Morphisms vs algebra morphisms

A morphism $\varphi: X \to Y$ defines a *k*-homomorphism

 $ilde{arphi}: \mathscr{O}(Y) o \mathscr{O}(X), \quad ilde{arphi}(g) = g \circ arphi,$

when $g \in \mathscr{O}(Y)$ is identified with a function $Y \to k$.

A *k*-homomorphism $\psi : \mathscr{O}(Y) \to \mathscr{O}(X)$ defines a morphism

 ${}^{a}\psi: X \to Y.$

Identify X with $X(k) = Hom(\mathscr{O}(X), k)$ and Y by Y(k). Then

 ${}^{a}\psi(\bar{x})=\bar{x}\circ\psi.$

Proposition $a(\tilde{\varphi}) = \varphi$ and $(a\psi) = \psi$.

Duality between algebra and geometry

Corollary

The functor

 $X \mapsto \mathscr{O}(X)$

defines an arrow-reversing equivalence of categories (\varnothing) between the category of affine varieties over k and the category of finitely generated reduced k-algebras.

- The 'inverse' functor is A → Specm(A). For ψ : B → A, Specm(ψ) = ^aψ : Specm(A) → Specm(B), ^aψ(𝔅) = ψ⁻¹(𝔅), 𝔅 a max ideal in A.
- ► This means that X and Y are isomorphic iff 𝒪(X) and 𝒪(Y) are isomorphic as k-algebras.

A translation mechanism

That means: every time you see a morphism

 $X \longrightarrow Y$,

you should be thinking that this comes from a morphism

 $\mathscr{O}(X) \longleftarrow \mathscr{O}(Y),$

and vice-versa, every time you see a morphism

 $A \leftarrow B$,

you should be thinking of a morphism

 $\operatorname{Specm}(A) \longrightarrow \operatorname{Specm}(B).$

Methodology of algebraic geometry

- In physics, one often studies a system X by considering certain 'observable' functions on X.
- In algebraic geometry, all of the relevant information about an affine variety X is contained in its coordinate ring 𝒫(X), and we can study the geometric properties of X by using the tools of commutative algebra on 𝒫(X).

Examples (@)

1. Let
$$X = \mathbb{A}^1$$
 and $Y = V(x^3 - y^2) \subseteq \mathbb{A}^2$, and let

$$\varphi: X \to Y$$
, defined by $t \mapsto (t^2, t^3)$.

Then φ is a morphism which is bijective and bicontinuous (a homeomorphism in Zariski topology), but φ is not an isomorphism.

2. Let char(k) = p > 0. The Frobenius morphism

$$\varphi: \mathbb{A}^1 \to \mathbb{A}^1, \quad t \mapsto t^p$$

is a bijective and bicontinuous morphism, but it is not an isomorphism.

Sheaves

Definition

Let X be a topological space. A presheaf \mathscr{F} of abelian groups on X consists of the data:

- ▶ for every open set $U \subseteq X$, an abelian group $\mathscr{F}(U)$;
- for every inclusion V → U of open subsets of X, a morphism of abelian groups ρ_{UV} = ℱ(i) : ℱ(U) → ℱ(V), such that

1.
$$\rho_{UU} = \mathscr{F}(\mathsf{id}: U \to U) = \mathsf{id}: \mathscr{F}(U) \to \mathscr{F}(U);$$

2. if $W \stackrel{j}{\hookrightarrow} V \stackrel{i}{\hookrightarrow} U$, then $\mathscr{F}(i \circ j) = \mathscr{F}(j) \circ \mathscr{F}(i)$, i.e., $\rho_{UW} = \rho_{VW} \circ \rho_{UV}$.

The axioms above, in categorical terms, state that a presheaf \mathscr{F} on a topological space X, is nothing other than a contravariant functor from the category $\mathcal{T}_{op}(X)$ of open subsets with inclusions to the category of abelian groups:

 $\mathscr{F}: \operatorname{Top}(X)^{op} \to \operatorname{Ab}.$

Sections jargon and stalks

For $s \in \mathscr{F}(U)$ and $V \subseteq U$, write $s \upharpoonright_V = \rho_{UV}(s)$ and we refer to ρ_{UV} as restrictions. Write (2) above as

 $s \upharpoonright_W = (s \upharpoonright_V) \upharpoonright_W .$

Elements of $\mathscr{F}(U)$ are sometimes called sections of \mathscr{F} over U, and we sometimes write $\mathscr{F}(U) = \Gamma(U, \mathscr{F})$, where Γ symbolises 'taking sections'.

Definition

If $P \in X$, the stalk \mathscr{F}_P of \mathscr{F} at P is the direct limit of the groups $\mathscr{F}(U)$, where U ranges over the open neighbourhoods of P (via the restriction maps).

Stalks and germs of sections

Define the relation \sim on pairs (U, s), where U is an open nhood of P, and $s \in \mathscr{F}(U)$:

$$(U_1, s_1) \sim (U_2, s_2)$$

if there is an open nhood W of P with $W \subseteq U_1 \cap U_2$ such that

$$\mathbf{S}_1 \upharpoonright_W = \mathbf{S}_2 \upharpoonright_W \mathbf{S}_1$$

Then \mathscr{F}_P equals the set of \sim -equivalence classes, which can be thought of as 'germs' of sections at *P*.

Sheaves

Definition

A presheaf \mathscr{F} on a topological space X is a sheaf provided:

- 3. if $\{U_i\}$ is an open covering of U, and $s, t \in \mathscr{F}(U)$ are such that $s \upharpoonright U_i = t \upharpoonright U_i$ for all *i*, then s = t.
- 4. if $\{U_i\}$ is an open covering of U, and $s_i \in \mathscr{F}(U_i)$ are such that for each $i, j, s_i \upharpoonright_{U_i \cap U_j} = s_j \upharpoonright_{U_i \cap U_j}$, then there exists an $s \in \mathscr{F}(U)$ such that $s \upharpoonright U_i = s_i$. (note that such an s is unique by 3.)

'Unique glueing property'.

Examples

- Sheaf ℱ of continuous ℝ-valued functions on a topological space X:
 - $\mathscr{F}(U)$ is the set of continuous functions $U \to \mathbb{R}$,
 - for $V \subseteq U$, let $\rho_{UV} : \mathscr{F}(U) \to \mathscr{F}(V), \rho_{UV}(f) = f \upharpoonright_V$.
- Sheaf of differentiable functions on a differentiable manifold;
- Sheaf of holomorphic functions on a complex manifold.
- Constant presheaf: fix an abelian group ∧ and let 𝔅(U) = ∧ for all U. This is not a sheaf (𝔅), its associated sheaf satisfies

$$\mathscr{F}^+(U) = \Lambda^{\pi_0(U)},$$

where $\pi_0(U)$ is the number of connected components of *U*. (provided *X* is locally connected)

Sheaf morphisms

Definition

Let \mathscr{F} and \mathscr{G} be presheaves of abelian groups on X. A morphism $\varphi : \mathscr{F} \to \mathscr{G}$ consists of the following data:

▶ For each U open in X, we have a morphism

 $\varphi(U):\mathscr{F}(U)\to\mathscr{G}(U).$

For each inclusion $V \stackrel{i}{\hookrightarrow} U$, we have a diagram

Sheaf morphisms as natural transformations

In categorical terms, if \mathscr{F} and \mathscr{G} are considered as functors $\mathcal{T}_{op}(X)^{op} \to \mathcal{A}_{b}$, a morphism

$$\varphi:\mathscr{F}\to\mathscr{G}$$

is nothing other than a natural transformation (@) between these functors.

Interlude on localisation

Definition

Let *A* be a commutative ring with 1, and let $S \ni 1$ be a multiplicatively closed subset of *A*. Define a relation \equiv on $A \times S$:

$$(a_1, s_1) \equiv (a_2, s_2)$$
 if $(a_1s_2 - a_2s_1)s = 0$ for some $s \in S$.

Then \equiv is an equivalence relation and the ring of fractions $S^{-1}A = A \times S / \equiv$ has the following structure (write a/s for the class of (a, s)):

$$(a_1/s_1) + (a_2/s_2) = (a_1s_2 + a_2s_1)/s_1s_2,$$

 $(a_1/s_1)(a_2/s_2) = (a_1a_2/s_1s_2).$

We have a morphism $A \rightarrow S^{-1}A$, $a \mapsto a/1$.

Interlude on localisation

Examples

- If A is a domain, S = A \ {0}, then S⁻¹A is the ring of fractions of A.
- If p is a prime ideal in A, then S = A \ p is multiplicative and S⁻¹A is denoted A_p and called the localisation of A at p.
 NB 𝔅 A_p is indeed a local ring, i.e., it has a unique maximal ideal.
- ▶ Let $f \in A$, $S = \{f^n : n \ge 0\}$. Write $A_f = S^{-1}A$.
- ► $S^{-1}A = 0$ iff $0 \in S$.

Regular functions

Remark

Let X be an affine variety and $g, h \in \mathcal{O}(X)$. Then

$$P\mapsto rac{g(P)}{h(P)}$$

is a well-defined function $D(h) \rightarrow k$.

We would like to consider functions defined on open subsets of X which are locally of this form.

Regular functions

Definition

Let U be an open subset of an affine variety X.

- ▶ A function $f : U \to k$ is regular if for every $P \in U$, there exist $g, h \in \mathscr{O}(X)$ with $h(P) \neq 0$, and a neighbourhood *V* of *P* such that the functions *f* and g/h agree on *V*.
- The set of all regular functions on U is denoted $\mathcal{O}_X(U)$.

Proposition (@)

The assignment $U \mapsto \mathcal{O}_X(U)$ defines a sheaf of k-algebras on X.

It is called the structure sheaf of X.

Structure sheaf

Proposition

Let X be an affine variety and let $A = \mathcal{O}(X)$ be its coordinate ring. Then:

For any $P \in X$, the stalk

$$\mathscr{O}_{X,P}\simeq A_{\mathfrak{m}_P}$$

where the maximal ideal $\mathfrak{m}_P = \{f \in A : f(P) = 0\}$ is the image of I(P) in A.

• For any
$$f \in A$$
,

 $\mathcal{O}_X(D(f))\simeq A_f.$

In particular,

$$\mathscr{O}_X(X) = A.$$

(so our notation for the coordinate ring is justified)

Spectrum of a ring

Let *A* be a commutative ring with 1.

Definition

 $\operatorname{Spec}(A)$ is the set of all prime ideals in A.

Our goal is to turn X = Spec(A) into a topological space and equip it with a sheaf of rings, i.e., make it into a ringed space.

Notation:

- ► write x ∈ X for a point, and j_x for the corresponding prime ideal in A;
- $A_x = A_{j_x}$, the local ring at *x*;
- $\mathfrak{m}_x = \mathfrak{j}_x A_{\mathfrak{j}_x}$, the maximal ideal of A_x ;
- ► k(x) = A_x/m_x, the residue field at x, naturally isomorphic to A/j_x;
- ► for $f \in A$, write f(x) for the class of $f \mod \mathfrak{j}_x$ in $\mathbf{k}(x)$. Then 'f(x) = 0' iff $f \in \mathfrak{j}_x$.

Examples

- 1. For a field *F*, $Spec(F) = \{0\}$, k(0) = F.
- 2. Let \mathbb{Z}_p be the ring of *p*-adic integers. Spec(\mathbb{Z}_p) = {0, (*p*)}, and $\mathbf{k}(0) = \mathbb{Q}_p$, $\mathbf{k}((p)) = \mathbb{F}_p$. Generalises to an arbitrary DVR.
- 3. Spec(*Z*) = {0} \cup {(*p*) : *p* prime }. **k**(0) = \mathbb{Q} , **k**((*p*)) = \mathbb{F}_p . For $f \in \mathbb{Z}$, $f(0) = f/1 \in \mathbb{Q}$, and $f(p) = f \mod p \in \mathbb{F}_p$.
- 4. For an algebraically closed field k, let A = k[x, y]. Then by Classification of irred subsets of \mathbb{A}^2

$$ext{Spec}(A) = \{0\} \cup \{(x - a, y - b) : a, b \in k\} \ \cup \{(g) : g \in A ext{ irreducible } \}.$$

 $\mathbf{k}(0) = k(x, y), \mathbf{k}((x - a, y - b)) = k, \mathbf{k}((g))$ is the fraction field of the domain A/(g). For $f \in A, f(0) = f/1 \in k(x, y),$ $f((x - a, x - b)) = f(a, b) \in k, f((g)) = (f + (g))/1 \in \mathbf{k}(g).$

Spectral topology

Definition For $f \in A$. let $V(f) = \{ x \in X : f \in \mathfrak{j}_X \},\$ i.e., the set of x with f(x) = 0; $D(f) = X \setminus V(f).$ For $E \subseteq A$, $V(E) = \bigcap V(f) = \{x \in X : E \subseteq \mathfrak{j}_X\}.$ f∈F

The operation V has expected properties: \checkmark Jump to properties of V Thus, the sets V(E) are closed sets for the Zariski topology on X.

Definition

For an arbitrary subset $Y \subseteq X$, the ideal of Y is

$$\mathfrak{j}(Y) = \bigcap_{x \in Y} \mathfrak{j}_x$$
 i.e., the set of $f \in A$ with $f(x) = 0$ for $x \in Y$;

Remark Trivially: $\sqrt{E} = \bigcap_{x \in V(E)} j_x.$

The operation j has the expected properties: < Jump to properties of *I* and here the proof is trivial, no need for Nullstellensatz.

Direct image sheaf

Definition

Let $\varphi : X \to Y$ be a continuous map of topological spaces and let \mathscr{F} be a presheaf on X. The direct image $\varphi_*\mathscr{F}$ is a presheaf on Y defined by

$$\varphi_*\mathscr{F}(U) = \mathscr{F}(\varphi^{-1}U).$$

Lemma (

If \mathscr{F} is a sheaf, so is $\varphi_*\mathscr{F}$.

Ringed spaces

Definition

- A ringed space (X, 𝒫_X) consists of a topological space X and a sheaf of rings 𝒫_X on X, called the structure sheaf.
- A locally ringed space is a ringed space (X, 𝒫_X) such that every stalk 𝒫_{X,x} is a local ring, x ∈ X.
- A morphism of ringed spaces $(X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ is a pair (φ, θ) , where $\varphi : X \to Y$ is a continuous map, and

$$\theta: \mathscr{O}_{\mathsf{Y}} \to \varphi_* \mathscr{O}_{\mathsf{X}}$$

is a map of structure sheaves.

 (φ, θ) is a morphism of locally ringed spaces, if, additionally, each induced map of stalks

$$heta_X^{\sharp}:\mathscr{O}_{Y,\varphi(X)}\to\mathscr{O}_{X,X}$$

is a local homomorphism of local rings.

Spectrum as a locally ringed space

Lemma

There exists a unique sheaf \mathcal{O}_X on $X = \operatorname{Spec}(A)$ satisfying

$$\mathscr{O}_X(D(f)) \simeq A_f$$
 for $f \in A$.

Its stalks are

$$\mathscr{O}_{X,x}\simeq A_x \quad (=A_{j_x}).$$

Definition

By Spec(A) we shall mean the locally ringed space

 $(\operatorname{Spec}(A), \mathscr{O}_{\operatorname{Spec}(A)}).$

Schemes

Definition

- An affine scheme is a ringed space (X, 𝒫_X) which is isomorphic to Spec(A) for some ring A.
- A scheme is a ringed space (X, 𝒫_X) such that every point has an open affine neighbourhood U (i.e., (U, 𝒫_X ↾ U) is an affine scheme).
- A morphism (X, 𝒫_X) → (Y, 𝒫_Y) is just a morphism of locally ringed spaces.

Ring homomorphisms induce morphisms of affine schemes

Definition

A ring homomorphism $\varphi : B \to A$ gives rise to a morphism of affine schemes X = Spec(A) and Y = Spec(B):

$$({}^{a}\varphi, \tilde{\varphi}) : (\operatorname{Spec}(A), \mathscr{O}_{\operatorname{Spec}(A)}) \to (\operatorname{Spec}(B), \mathscr{O}_{\operatorname{Spec}(B)}),$$

where

•
$${}^{a}\varphi(x) = y$$
 iff ${}^{j}y = \varphi^{-1}(j_{x});$ (i.e., ${}^{a}\varphi(\mathfrak{p}) = \varphi^{-1}(\mathfrak{p}))$

•
$$\tilde{\varphi}: \mathscr{O}_Y \to {}^a\varphi_*\mathscr{O}_X$$
 is characterised by (for $g \in B$):

A remarkable equivalence of categories

O

It turns out that every morphism of affine schemes is induced by a ring homomorphism.

Proposition

There is a canonical isomorphism

```
\operatorname{Hom}(\operatorname{Spec}(A), \operatorname{Spec}(B)) \simeq \operatorname{Hom}(B, A).
```

Corollary

The functors

$$A\longmapsto \operatorname{Spec}(A)$$

 $_{\mathcal{K}}(X) \longleftarrow X$

define an arrow-reversing equivalence of categories between the category of commutative rings and the category of affine schemes.

Adjointness of Spec and global sections

More generally:

Proposition

Let X be an arbitrary scheme, and let A be a ring. There is a canonical isomorphism

 $\operatorname{Hom}(X,\operatorname{Spec}(A))\simeq\operatorname{Hom}(A,\Gamma(X)),$

where $\Gamma(X) = \mathcal{O}_X(X)$ is the 'global sections' functor.

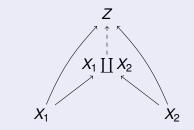
Sum of schemes

Proposition

Let X_1 and X_2 be schemes. There exists a scheme $X_1 \coprod X_2$, called the sum of X_1 and X_2 , together with morphisms $X_i \rightarrow X_1 \coprod X_2$ such that for every scheme Z

 $\operatorname{Hom}(X_1 \coprod X_2, Z) \simeq \operatorname{Hom}(X_1, Z) \times \operatorname{Hom}(X_2, Z),$

i.e., every solid commutative diagram



can be completed by a unique dashed morphism.

Proof.

We reduce to affine schemes $X_i = \text{Spec}(A_i)$. Then

$$X_1 \coprod X_2 = \operatorname{Spec}(A_1 \times A_2).$$

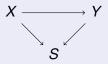
The underlying topological space of $X_1 \coprod X_2$ is a disjoint union of the X_i .

Relative context

Definition

Let us fix a scheme S.

- An *S*-scheme, or a scheme over *S* is a morphism $X \rightarrow S$.
- A morphism of S-schemes is a diagram



Example

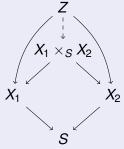
- Let k be a field (or even a ring) and S = Spec(k). The category of affine S-schemes is equivalent to the category of k-algebras.
- If k is algebraically closed, and we consider only reduced finitely generated k-algebras, the resulting category is essentially the category of affine algebraic varieties over k.

Products

Proposition

Let X_1 and X_2 be schemes over S. There exists a scheme $X_1 \times_S X_2$, called the (fibre) product of X_1 and X_2 over S, together with S-morphisms $X_1 \times_S X_2 \rightarrow X_i$ such that for every S-scheme Z

 $\operatorname{Hom}_{\mathcal{S}}(Z, X_1 \times_{\mathcal{S}} X_2) \simeq \operatorname{Hom}_{\mathcal{S}}(Z_1, X_1) \times \operatorname{Hom}_{\mathcal{S}}(Z, X_2),$ *i.e., every solid commutative diagram*



can be completed by a unique dashed morphism.

Proof.

We reduce to affine schemes $X_i = \text{Spec}(A_i)$ over S = Spec(R). Then A_i are *R*-algebras and

$$X_1 \times_S X_2 = \operatorname{Spec}(A_1 \otimes_R A_2).$$

Scheme-valued points

Definition

Let X and T be schemes. The set of T-valued points of X is the set

$$X(T) = \operatorname{Hom}(T, X).$$

In a relative setting, suppose X, T are S-schemes. The set of T-valued points of X over S is the set

$$X(T)_{\mathcal{S}} = \operatorname{Hom}_{\mathcal{S}}(T, X).$$

Example

This notation is most commonly used as follows. Consider:

► a system of polynomial equations f_i = 0, i = 1,..., m defined over a field k, i.e., f_i ∈ k[x₁,..., x_n];

•
$$A = k[x_1,\ldots,x_n]/(f_1,\ldots,f_n)$$

• and let $K \supseteq k$ be a field extension.

The associated scheme is X = Spec(A). Then

$$egin{aligned} X(\mathcal{K})_k &= \operatorname{Hom}_{\operatorname{Spec}(k)}(\operatorname{Spec}(\mathcal{K}), X) \ &= \operatorname{Hom}_k(\mathcal{A}, \mathcal{K}) \ &\simeq \{ar{a} \in \mathcal{K}^n : f_i(ar{a}) = 0 ext{ for all } i\} \end{aligned}$$

When *k* is algebraically closed, $X(k) := X(k)_k \subseteq k^n$ is what we called an affine variety $V(\{f_i\})$ at the start. The scheme *X* contains much more information.

Example (@)

Suppose *S* is a scheme over a field *k*, and let $X \xrightarrow{f} S$, $Y \xrightarrow{g} S$ be two schemes over *S* (in particular, over *k*). Then

$$\begin{aligned} (X\times_{\mathcal{S}}Y)(k) &= X(k)\times_{\mathcal{S}(k)}Y(k) \\ &= \{(\bar{x},\bar{y}): \bar{x}\in X(k), \bar{y}\in Y(k), \quad f(\bar{x})=g(\bar{y})\}. \end{aligned}$$

Products vs topological products

Example

Zariski topology of the product is **not** the product topology, as shown in the following example.

Let k be a field, then

$$\mathbb{A}^1 \times \mathbb{A}^1 = \mathbb{A}^1 \times_{\operatorname{Spec}(k)} \mathbb{A}^1$$

= $\operatorname{Spec}(k[x_1] \otimes_k k[x_2]) \simeq \operatorname{Spec}(k[x_1, x_2]) = \mathbb{A}^2.$

The set of *k*-points $\mathbb{A}^2(k)$ is the cartesian product

$$\mathbb{A}^1(k) \times \mathbb{A}^1(k).$$

However, as a scheme, \mathbb{A}^2 has more points than the cartesian square of the set of points of \mathbb{A}^1 .

Fibres of a morphism

Definition

Let $\varphi : X \to S$ be a morphism, and let $s \in S$. There exists a natural morphism @

 $\operatorname{Spec}(\mathbf{k}(s)) \to S.$

The fibre of φ over *s* is

$$X_s = X \times_S \operatorname{Spec}(\mathbf{k}(s)).$$

Remark

 X_s should be thought of as $\varphi^{-1}(s)$, except that the above definition gives it a structure of a **k**(*s*)-scheme.

Morphisms and families

Example

Consider $R = k[z] \rightarrow A = k[x, y, z]/(y^2 - x(x - 1)(x - z))$ and the corresponding morphism

$$arphi: \mathsf{X} = \operatorname{\mathsf{Spec}}(\mathsf{A}) o \mathsf{S} = \operatorname{\mathsf{Spec}}(\mathsf{R}).$$

Then, for $s \in S$ corresponding to the ideal $(z - \lambda)$, $\lambda \in k$,

$$X_s = X_\lambda = \operatorname{Spec}(k[x,y]/(y^2 - x(x-1)(x-\lambda)))$$

so we can consider φ as a family of curves X_s with parameters s from S.

Reduction modulo *p*

Example

Consider $\mathbb{Z} \to A = \mathbb{Z}[x, y]/(y^2 - x^3 - x - 1)$ and the corresponding morphism

$$\varphi: X = \operatorname{Spec}(A) \to S = \operatorname{Spec}(\mathbb{Z}).$$

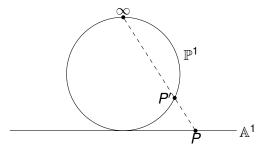
Then, for $\mathfrak{p} \in S$ corresponding to the ideal (p) for a prime integer p,

$$X_{\mathfrak{p}} = X_{\rho} = \operatorname{Spec}(\mathbb{F}_{\rho}[x, y]/(y^2 - x^3 - x - 1)),$$

as a scheme over $\mathbb{F}_p = \mathbf{k}(p)$, considered as a reduction of *X* modulo *p*.

Projective line as a compactification of \mathbb{A}^1

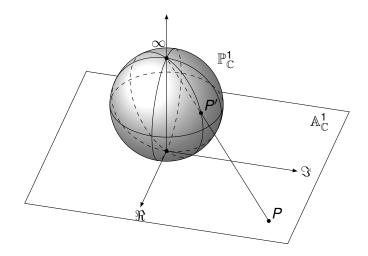
The picture for algebraic geometers:



- Think of \mathbb{P}^1 as the set of lines through a fixed point.
- An equation ax + by + c = 0 describes a line if not both a, b are 0, and what really matters is the ratio [a : b].

Riemann sphere

The picture for analysts:



Projective space

Fix an algebraically closed field k.

Definition

The projective *n*-space over *k* is the set \mathbb{P}_k^n of equivalence classes

$$[a_0:a_1:\cdots:a_n]$$

of (n + 1)-tuples $(a_0, a_1, ..., a_n)$ of elements of k, not all zero, under the equivalence relation

$$(a_0,\ldots,a_n)\sim(\lambda a_0,\ldots,\lambda a_n),$$

for all $\lambda \in k \setminus \{0\}$.

Homogeneous polynomials

Let $S = k[x_0, ..., x_n]$.

► For an arbitrary $f \in S$, $P = [a_0 : \cdots : a_n] \in \mathbb{P}^n$, the expression

does <u>not</u> make sense.

For a homogeneous polynomial $f \in S$ of degree d,

$$f(\lambda a_0,\ldots,\lambda a_n)=\lambda^d f(a_0,\ldots,a_n),$$

so it does make sense to consider whether

$$f(P) = 0$$
 or $f(P) \neq 0$.

It is beneficial to consider S as a graded ring

$$S = \bigoplus_{d \ge 0} S_d,$$

where S_d is the abelian group consisting of degree d homogeneous polynomials.

Projective varieties

Definition

Let $T \subseteq S$ be a set of homogeneous polynamials. Let

$$V(T) = \{ P \in \mathbb{P}^n : f(P) = 0 \text{ for all } f \in T \}.$$

We write

$$D(f) = \mathbb{P}^n \setminus V(f).$$

This has the expected properties and gives rise to the Zariski topology on \mathbb{P}^n .

Definition

A projective algebraic variety is a subset of \mathbb{P}^n of the form V(T), together with the induced Zariski topology.

Covering the projective space with open affines

Remark

Let

 $U_i = D(x_i) = \{ [a_0 : \cdots : a_n] \in \mathbb{P}^n : a_i \neq 0 \} \subseteq \mathbb{P}^n, \quad i = 0, \ldots, n.$

The maps $\varphi_i : U_i \to \mathbb{A}^n$ defined by

$$\varphi_i([a_0:\cdots:a_n])=\left(\frac{a_0}{a_i},\ldots,\frac{a_{i-1}}{a_i},\frac{a_{i+1}}{a_i},\ldots,\frac{a_n}{a_i}\right)$$

are all homeomorphisms. Thus we can cover \mathbb{P}^n by (n + 1) affine open subsets.

Example (from affine to projective curve)

Start with your favourite plane curve, e.g., $X = V(y^2 - x^3 - x - 1)$. Substitute $y \leftarrow y/z, x \leftarrow x/z$:

$$\frac{y^2}{z^2} = \frac{x^3}{z^3} + \frac{x}{z} + 1.$$

Clear the denominators:

$$y^2 z = x^3 + x z^2 + z^3.$$

This is a homogeneous equation of a projective curve \tilde{X} in \mathbb{P}^2 , and $\tilde{X} \cap D(z) \simeq X$.

Graded rings

Definition

- ► S is a graded ring if
 - $S = \bigoplus_{d>0} S_d$, S_d abelian subgroups;
 - $\triangleright \ S_d \cdot S_e \subseteq S_{d+e}.$
- An element $f \in S_d$ is homogeneous of degree d.
- An ideal α in S is homogeneous if

$$\mathfrak{a} = igoplus_{d \geq 0} (\mathfrak{a} \cap S_d),$$

i.e., if it is generated by homogeneous elements.

Projective schemes

Definition

Let S be a graded ring.

Let

$$S_+ = \bigoplus_{d>0} S_d \trianglelefteq S.$$

Let

 $\mathsf{Proj}(S) = \{ \mathfrak{p} \trianglelefteq S : \mathfrak{p} \text{ prime, and } S_+ \not\subseteq \mathfrak{p} \}.$

For a homogeneous ideal a, let

$$V_+(\mathfrak{a}) = \{\mathfrak{p} \in \operatorname{Proj}(S) : \mathfrak{p} \supseteq \mathfrak{a}\}.$$

 $D_+(f) = \operatorname{Proj}(S) \setminus V_+(f).$

As expected, V_+ makes Proj(S) into a topological space.

Structure sheaf on Proj(S)

Notation: for $\mathfrak{p} \in \operatorname{Proj}(S)$, let $S_{(\mathfrak{p})}$ be the ring of degree zero elements in $T^{-1}S$, where T is the multiplicative set of homogeneous elements in $S \setminus \mathfrak{p}$.

Intuition

If $a, f \in S$ are homogeneous of the same degree, then the function $P \mapsto a(P)/f(P)$ makes sense on $D_+(f)$.

Definition

For U open in Proj(S),

$$\mathscr{O}(U) = \{ s : U
ightarrow \coprod_{\mathfrak{p} \in U} S_{(\mathfrak{p})} \mid ext{ for each } \mathfrak{p} \in U, s(\mathfrak{p}) \in S_{(\mathfrak{p})},$$

and for each p there is a nhood $V \ni p$, $V \subseteq U$ and homogeneous elements a, f of the same degree such that for all $q \in V, f \notin q$, and s(q) = a/f in $S_{(q)}$.

Projective scheme is a scheme

Proposition

- 1. For $\mathfrak{p} \in \mathsf{Proj}(S)$, the stalk $\mathscr{O}_{\mathfrak{p}} \simeq S_{(\mathfrak{p})}$.
- 2. The sets $D_+(f)$, for $f \in S$ homogeneous, cover Proj(S), and

$$ig(\mathcal{D}_+(f), \mathscr{O} \upharpoonright_{\mathcal{D}_+(f)} ig) \simeq \operatorname{Spec}(\mathcal{S}_{(f)}),$$

where $S_{(f)}$ is the subring of elements of degree 0 in S_f . 3. Proj(S) is a scheme.

Thus we obtained an example of a scheme which is not affine.

Global regular functions on projective varieties

Remark (

The property 2. shows that

 $\mathscr{O}(\operatorname{Proj}(S)) = S_0,$

so the only global regular functions on $\mathbb{P}^n = \operatorname{Proj}(k[x_0, \dots, x_n])$ are constant functions, since $k[x_0, \dots, x_n]_0 = k$. The same statements holds for projective varieties.

Exercise \mathcal{O} : for $k = \mathbb{C}$, deduce this from Liouville's theorem.

Properties of schemes

- ► X is connected, or irreducible, if it is so topologically;
- ▶ X is reduced, if for every open U, $\mathscr{O}_X(U)$ has no nilpotents.
- ► X is integral, if every $\mathscr{O}_X(U)$ is an integral domain.

Lemma (

X is integral iff it is reduced and irreducible.

Finiteness properties

- X is noetherian if it can be covered by finitely many open affine Spec(A_i) with each A_i a noetherian ring;
- φ : X → Y is of finite type if there exists a covering of Y by open affines V_i = Spec(B_i) such that for each i, φ⁻¹(V_i) can be covered by finitely many open affines
 U_{ij} = Spec(A_{ij}) where each A_{ij} is a finitely generated
 B_i-algebra;
- $\varphi: X \to Y$ is finite if Y can be covered by open affines $V_i = \text{Spec}(B_i)$ such that for each $i, \varphi^{-1}(V_i) = \text{Spec}(A_i)$ with A_i is a B_i -algebra which is a finitely generated B_i -module.

Properness

Definition

Let $f : X \to Y$ be a morphism. We say that f is

- separated, if the diagonal Δ is closed in $X \times_Y X$;
- closed, if the image of any closed subset is closed;
- universally closed, if every base change of it is closed, i.e., for every morphism $Y' \rightarrow Y$, the corresponding morphism

$$X \times_Y Y' \to Y'$$

is closed;

 proper, if it is separated, of finite type and universally closed.

Convention

Hereafter, all schemes are separated!!!

Example

Finite morphisms are proper.

Prove this using the going up theorem of Cohen-Seidenberg: If *B* is an integral extension of *A*, then $\text{Spec}(B) \rightarrow \text{Spec}(A)$ is onto.

Projective vars as algebraic analogues of compact manifolds

Proposition

Projective varieties are proper (over k).

Images of morphisms

Example

Let Z = V(xy - 1), $X = \mathbb{A}^1$ and let $\pi : Z \to X$ be the projection $(x, y) \mapsto x$. The image $\pi(Z) = \mathbb{A}^1 \setminus \{0\}$, so not closed.

Theorem (Chevalley)

Let $f : X \to Y$ be a morphism of schemes of finite type. Then the image of a constructible set is a constructible set (i.e., a Boolean combination of closed subsets).

Singularity, intuition via tangents on curves

Suppose we have a point P = (a, b) on a plane curve X defined by

$$f(x,y)=0.$$

In analysis, the tangent to X at P is the line

$$rac{\partial f}{\partial x}(P)(x-a)+rac{\partial f}{\partial y}(P)(y-b)=0.$$

- The partial derivatives of a polynomial make sense over any field or ring.
- In order for 'tangent line' to be defined, we need at least one of ∂f/∂x(P), ∂f/∂y(P) to be nonzero.
- Otherwise, the point P will be 'singular'.

Example

The curve $y^2 = x^3$ has a singular point (0,0).

There are various types of singularities, this is a cusp.

Tangent space

Definition

Let $X \subseteq \mathbb{A}^n$ be an irreducible affine variety, I = I(X), $P = (a_1, \ldots, a_n) \in X$. The tangent space $T_P(X)$ to X at P is the solution set of all linear equations

$$\sum_{i=1}^n \frac{\partial f}{\partial x_i}(P)(x_i - a_i) = 0, \quad f \in I.$$

It is enough to take f from a generating set of I.

Intuitive definition for varieties:

We say that P is nonsigular on X if

 $\dim_k T_P(X) = \dim X.$

Derivations

Definition

Let A be a ring, B an A-algebra, and M a module over B. An A-derivation of B into M is a map

$$d: B \rightarrow M$$

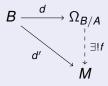
satisfying

- 1. *d* is additive;
- 2. d(bb') = bd(b') + b'd(b);
- **3**. d(a) = 0 for $a \in A$.

Module of relative differentials

Definition

The module of relative differential forms of *B* over *A* is a *B*-module $\Omega_{B/A}$ together with an *A*-derivation $d : B \to \Omega_{B/A}$ such that: for any *A*-derivation $d' : B \to M$, there exists a unique *B*-module homomorphism $f : \Omega_{B/A} \to M$ such that $d' = f \circ d$:



Construction of $\Omega_{B/A}$

 $\Omega_{B/A}$ is obtained as a quotient of the free *B*-module generated by symbols $\{db : b \in B\}$ by the submodule generated by elements:

- 1. d(bb') bd(b') b'd(b), for $b, b' \in B$;
- **2**. *da*, for *a* ∈ *A*.

And the 'universal' derivation is just

$$d: b \mapsto$$
 (the coset of) db .

An intrinsic definition of the tangent space

Lemma

Let X be an affine variety over an algebraically closed field k, $P \in X$. Let \mathfrak{m}_P be the maximal ideal of \mathscr{O}_P . We have isomorphisms

$$\mathrm{Der}_k(\mathscr{O}_P,k) \stackrel{\sim}{
ightarrow} \mathrm{Hom}_{k\text{-linear}}(\mathfrak{m}_P/\mathfrak{m}_P^2,k) \stackrel{\sim}{
ightarrow} \mathcal{T}_P(X).$$

Thus

$$\Omega_{\mathscr{O}_P/k}\otimes_{\mathscr{O}_P}k\simeq\mathfrak{m}_P/\mathfrak{m}_P^2.$$

Thus *P* is nonsingular iff $\dim_k(\mathfrak{m}_P/\mathfrak{m}_P^n) = \dim(\mathscr{O}_P)$ iff $\Omega_{\mathscr{O}_P/k}$ is a free \mathscr{O}_P -module of rank $\dim(\mathscr{O}_P)$.

Nonsingularity

Definition

A noetherian local ring (R, \mathfrak{m}) with residue field $k = R/\mathfrak{m}$ is regular, if $\dim_k(\mathfrak{m}/\mathfrak{m}^2) = \dim(R)$.

By Nakayama's lemma \mathcal{D} , this is equivalent to \mathfrak{m} having dim(R) generators.

Definition

- A noetherian scheme X is regular, or nonsingular at x, if \mathcal{O}_x is a regular local ring.
- X is regular/nonsingular if it is so at every point $x \in X$.

Sheaves of differentials; regularity vs smoothness

Let $\varphi : X \to Y$ be a morphism. There exists a sheaf of relative differentials $\Omega_{X/Y}$ on X and a sheaf morphism $d : \mathscr{O}_X \to \Omega_{X/Y}$ such that:

if $U = \operatorname{Spec}(A) \subseteq Y$ and $V = \operatorname{Spec}(B) \subseteq X$ are open affine such that $f(V) \subseteq U$, then $\Omega_{X/Y}(V) = \Omega_{B/A}$.

Proposition

Let X be an irreducible scheme of finite type over an algebraically closed field k. Then X is regular over k iff $\Omega_{X/k}$ is a locally free sheaf of rank dim(X), i.e., every point has an open neighbourhood U such that

$$\Omega_{X/k} \upharpoonright U \simeq (\mathscr{O}_X \upharpoonright U)^{\dim(X)}.$$

Over non-algebraically closed field the latter is associated with a notion of smoothness.

Generic non-singularity

Corollary

If X is a variety over a field k of characteristic 0, then there is an open dense subset U of X which is nonsingular.

Example

Funny things can happen in characteristic p > 0; think of the scheme defined by $x^{p} + y^{p} = 1$.

DVR's

Definition

Let *K* be a field. A discrete valuation of *K* is a map $v : K \setminus \{0\} \to \mathbb{Z}$ such that

1.
$$v(xy) = v(x) + v(y);$$

2.
$$v(x + y) \ge \min(v(x), v(y))$$
.

Then:

- ▶ $R = \{x \in K : v(x) \ge 0\} \cup \{0\}$ is a subring of *K*, called the valuation ring;
- $\mathfrak{m} = \{x \in K : v(x) > 0\} \cup \{0\}$ is an ideal in R, and (R, \mathfrak{m}) is a local ring.

Definition

A valuation ring is an integral domain R which the valuation ring of some valuation of Fract(R).

Characterisations of DVR's

Fact

Let (R, \mathfrak{m}) be a noetherian local domain of dimension 1. TFAE:

- 1. R is a DVR;
- 2. R is integrally closed;
- 3. R is a regular local ring;
- 4. m is a principal ideal.

Remark

Let X be a nonsingular curve, $x \in X$. Then \mathcal{O}_x is a regular local ring of dimension 1, and thus a DVR.

A uniformiser at x is a generator of \mathfrak{m}_x .

Dedekind domains

Fact

Let R be an integral domain which is not a field. TFAE:

- 1. every nonzero proper ideal factors into primes;
- 2. *R* is noetherian, and the localisation at every maximal ideal is a DVR;
- 3. R is an integrally closed noetherian domain of dimension 1.

Definition

R is a Dedekind domain if it satisfies (any of) the above conditions.

Remark

If X is a nonsingular curve, then $\mathcal{O}(X)$ is a Dedekind domain.

Divisors

Definition

Let X be an irreducibe nonsingular curve over an algebraically closed field k.

- ► A Weil divisor is an element of the free abelian group DivX generated by the (closed) points of X, i.e., it is a formal integer combination of points of X.
- A divisor $D = \sum_i n_i x_i$ is effective, denoted $D \ge 0$ if all $n_i \ge 0$.

Principal divisors

Definition

Let *X* be an integral nonsingular curve over an algebraically closed field *k*, and let $K = \mathbf{k}(X) = \mathcal{O}_{\xi} = \varinjlim_{U \text{ open}} \mathcal{O}_X(U)$ be its function field (where ξ is the generic point of *X*), which we think of as the field of 'rational functions' on *X*. For $f \in K^{\times}$, we let the divisor (*f*) of *f* on *X* be

$$(f)=\sum_{x\in X^0}v_x(f)\cdot x,$$

where v_x is the valuation in \mathcal{O}_x . Any divisor which is equal to the divisor of a function is called a principal divisor.

Remark

Note this is a divisor: if f is represented as $f_U \in \mathscr{O}_X(U)$ on some open U, and thus (f) is 'supported' on $V(f_U) \cup X \setminus U$, which is a proper closed subset of X and it is thus finite.

Remark

 $f \mapsto (f)$ is a homomorphism $K^{\times} \to \text{Div}X$ whose image is the subgroup of principal divisors.

Definition

For a divisor $D = \sum_{i} n_i x_i$, we define the degree of *D* as

$$\deg(D) = \sum_i n_i,$$

making deg into a homomorphism $\text{Div}X \to \mathbb{Z}$.

Divisor class group

Definition

Let X be a non-singular difference curve over k.

- ► Two divisors D, D' ∈ DivX are linearly equivalent, written D ~ D', if D D' is a principal divisor.
- The divisor class group ClX is the quotient of DivX by the subgroup of principal divisors.

Ramification

Definition

Let $\varphi : X \to Y$ be a morphism of nonsingular curves, $y \in Y$ and $x \in X$ with $\pi(x) = y$. The ramification index of φ at x is

$$\boldsymbol{e}_{\boldsymbol{X}}(\varphi) = \boldsymbol{v}_{\boldsymbol{X}}(\varphi^{\sharp}\boldsymbol{t}_{\boldsymbol{Y}}),$$

where φ^{\sharp} is the local morphism $\mathscr{O}_{y} \to \mathscr{O}_{x}$ induced by φ and t_{y} is a uniformiser at y, i.e., $\mathfrak{m}_{y} = (t_{y})$. When φ is finite, we can define a morphism $\varphi^{*} : \operatorname{Div} Y \to \operatorname{Div} X$ by extending the rule

$$\varphi^*(y) = \sum_{\varphi(x)=y} e_x(\varphi) \cdot x$$

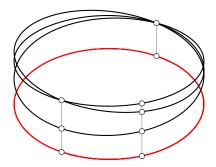
for prime divisors $y \in Y$ by linearity to Div Y.

Preservation of multiplicity

Theorem

Let $\varphi : X \to Y$ be a morphism of nonsingular projective curves with $\varphi(X) = Y$, then deg $\varphi = deg(\varphi^*(y))$ for any point $y \in Y$.

Proof reduces to the Chinese Remainder Theorem.



The number of poles equals the number of zeroes

Corollary

The degree of a principal divisor on a nonsingular projective curve equals 0.

Proof.

Any $f \in \mathbf{k}(X)$ defines a morphism $f : X \to \mathbb{P}^1$. Then $\deg((f)) = \deg(f^*(0)) - \deg(f^*(\infty)) = \deg(f) - \deg(f) = 0.$

Remark

Hence deg : $\operatorname{Cl}(X) \to \mathbb{Z}$ is well-defined.

Bezout's theorem

Theorem (Bezout)

Let $X \subseteq \mathbb{P}^n$ be a nonsingular projective curve, and let $H = V_+(f) \subseteq \mathbb{P}^n$ be the hypersurface defined by a homogeneous polynomial f. Then, writing

$$X.H = \sum_{x \in X \cap H} i(x; X, H) x := (f),$$

we have that

```
\deg(X.H) = \deg(X)\deg(f),
```

where deg(X) is the maximal number of points of intersection of X with a hyperplane in \mathbb{P}^n (which does not contain a component of X).

Proof.

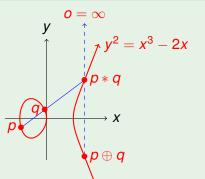
Let $d = \deg(f)$. For any linear form I, $h = f/I^d \in \mathbf{k}(X)$, so $\deg((f)) = \deg((I^d)) + \deg((h)) = d \deg(I) + 0 = d \deg(X)$.

Elliptic curves

Let *E* be a nonsingular projective plane cubic, and pick a point $o \in E$. For points $p, q \in E$, let p * q be the unique point such that, writing *L* for the line pq and using Bezout, E.L = p + q + p * q. We define

$$p \oplus q = o * (p * q).$$

Example ($E \dots y^2 z = x^3 - 2xz^2$, $o = \infty := [0:1:0]$)



Proposition

Let (E, o) be an elliptic curve, i.e., a nonsingular projective cubic over k. Then $(E(k), \oplus)$ is an abelian group.

Proof.

Only the associativity of \oplus needs checking. For a fun proof @using nothing other than Bezout's Theorem see Fulton's Alg. Curves.

Aside on algebraic groups

Definition

A group variety over S = Spec(k) is a variety $X \xrightarrow{\pi} S$ together with a section $e: S \to X$ (identity), and morphisms $\mu: X \times_S X \to X$ (group operation) and $\rho: X \to X$ (inverse) such that

1.
$$\mu \circ (id \times \rho) = e \circ \pi : X \to X;$$

2. $\mu \circ (\mu \times id) = \mu \circ (id \times \mu) : X \times X \times X \to X$

Clearly, for a field K extending k, X(K) is a group.

Examples of algebraic groups

Examples

- 1. Additive group $\mathbb{G}_a = \mathbb{A}_k^1$. Multiplicative group $\mathbb{G}_m = \operatorname{Spec}(k[x, x^{-1}]).$
- 2. $SL_2(k) = \{(a, b, c, d) : ad bc = 1\}.$ $\rho(a, b, c, d) = (d, -b, -c, a)$ etc.
- 3. $GL_2(k) = \text{Spec}(k[a, b, c, d, 1/(ad bc)]).$

Elliptic curves are abelian varieties

Proposition

Let (E, o) be an elliptic curve. Then (E, \oplus) is a group variety.

In other words, the operations $\oplus : E \times E \to E$ and $\oplus : E \to E$ are morphisms.

Definition

An abelian variety is a connected and proper group variety (it follows that the operation is commutative, hence the name).

Thus, elliptic curves are examples of abelian varieties.

The canonical divisor

Definition

Let *X* be an integral non-singular projective curve over *k*. Then $\Omega_{X/k}$ is a locally free sheaf of rank 1, and pick a non-zero global section $\omega \in \Omega_{X/k}(X)$. For $x \in X$, let *t* be the uniformiser at *x*, and let $f \in \mathbf{k}(X)$ be such that $\omega = f dt$. Define

$$\mathbf{v}_{\mathbf{X}}(\omega)=\mathbf{v}_{\mathbf{X}}(f),$$

and the resulting canonical divisor

$$W=\sum_{x}v_{x}(\omega)x.$$

The divisor W' of a different $\omega' \in \Omega_{X/k}(X)$ is linearly equivalent to $W, W' \sim W$, and thus W uniquely determines a canonical class K_X in ClX.

Example

[Canonical divisor of an elliptic curve]

Complete linear systems

Definition

Let D be a divisor on X, and write

$$L(D) = \{f \in \mathbf{k}(X) : (f) + D \ge 0\}.$$

A theorem of Riemann shows that these are finite dimensional vector spaces over k, and let

 $I(D) = \dim L(D).$

Remark

f and f' define the same divisor iff $f' = \lambda f$, for some $\lambda \neq 0$, so we have a bijection

{effective divisors $\sim D$ } $\leftrightarrow \mathbb{P}(L(D))$.

Riemann-Roch Theorem

Definition

The genus of a curve X is $I(K_X)$.

Theorem (Riemann-Roch)

Let D be a divisor on a projective nonsingular curve X of genus g over an algebraically closed field k. Then

$$I(D)-I(K_X-D)=\deg(D)+1-g.$$

In particular, deg(K_X) = 2g – 2.

The zeta function

Definition

Let *X* be a 'variety' over a finite field $k = \mathbb{F}_q$. Its zeta function is the formal power series

$$Z(X/\mathbb{F}_q, T) = \exp\left(\sum_{n\geq 1} \frac{|X(\mathbb{F}_q^n)|}{n} T^n\right)$$

Examples

Let
$$X = \mathbb{A}^{N}_{\mathbb{F}_{q}}$$
. We have $|\mathbb{A}^{N}_{\mathbb{F}_{q}}(\mathbb{F}_{q^{n}})| = q^{nN}$, so
 $Z(\mathbb{A}^{N}_{\mathbb{F}_{q}}, T) = \exp\left(\sum_{n \geq 1} \frac{(q^{N}T)^{n}}{n}\right) = \frac{1}{1 - q^{N}T}.$

• For $X = \mathbb{P}^N_{\mathbb{F}_q}$,

$$\mathbb{P}^{N}_{\mathbb{F}_{q}}(\mathbb{F}_{q^{n}}) = rac{q^{n(N+1)}-1}{q^{n}-1} = 1 + q^{n} + q^{2n} + \dots + q^{Nn}, \;\; ext{solution}$$

$$Z(\mathbb{P}^{N}_{\mathbb{F}_{q}}/\mathbb{F}_{q},T) = \exp\left(\sum_{n\geq 1}\frac{T^{n}}{n}\sum_{j=0}^{N}q^{nj}\right) = \prod_{j=0}^{N}Z(\mathbb{A}^{j}_{\mathbb{F}_{q}}/\mathbb{F}_{q},T)$$
$$= \prod_{j=0}^{N}\frac{1}{1-q^{j}T}.$$

Frobenius

Suppose *X* is over \mathbb{F}_q , consider the algebraic closure $\overline{\mathbb{F}}_q$ of \mathbb{F}_q , and the Frobenius automorphism

$$F_q: \overline{\mathbb{F}}_q \to \overline{\mathbb{F}}_q, \quad F_q(x) = x^q.$$

Then F_q acts on $X(\overline{\mathbb{F}}_q) = \text{Hom}(\text{Spec}(\overline{\mathbb{F}}_q), X)$ by precomposing with ${}^{a}F_q$.

Intuitively, if X is affine in \mathbb{A}^N , then

$$F_q(x_1,\ldots,x_N)=(x_1^q,\ldots,x_N^q).$$

Remark

$$X(\mathbb{F}_{q^n}) = \operatorname{Fix}(F_q^n).$$

Points vs geometric points

Remark

A closed point $x \in X$ corresponds to an F_q -orbit of an $\bar{x} \in X(\bar{\mathbb{F}}_q)$, and

$$[\mathbf{k}(x):\mathbb{F}_q] = |\{\text{orbit of } \bar{x}\}| = \min\{n: \bar{x} \in X(\mathbb{F}_{q^n})\}.$$

Definition

For a closed point $x \in X$, let

$$\deg(x) = [\mathbf{k}(x) : \mathbb{F}_q], \quad Nx = q^{\deg(x)}.$$

Comparison with the Riemann zeta

Recall Riemann's definition:

$$\zeta(s) = \sum_{n \ge 1} n^{-s} = \prod_{p \in \operatorname{Specm}\mathbb{Z}} (1 - p^{-s})^{-1}.$$

Lemma

$$Z(X/\mathbb{F}_q,T)=\prod_{x\in X^0}(1-T^{\deg(x)})^{-1},$$

i.e., after a variable change $T \leftarrow q^{-s}$,

$$Z(X/\mathbb{F}_q, q^{-s}) = \prod_{x \in X^0} (1 - Nx^{-s})^{-1}.$$

Proof.

Exercise Ø upon remarking that

$$|X(\mathbb{F}_{q^n})| = \sum_{r|n} r \cdot |\{x \in X^0 : \deg(x) = r\}|.$$

The Weil Conjectures

Let *X* be a smooth projective variety of dimension *d* over $k = \mathbb{F}_q$, Z(T) := Z(X/k, T). Then

- 1. Rationality. Z(T) is a rational function.
- 2. Functional equation.

$$Z(\frac{1}{q^d T}) = \pm T^{\chi} q^{\chi/2} Z(T),$$

where χ is the 'Euler characteristic' of *X*.

3. Riemann hypothesis.

$$Z(T) = \frac{P_1(T)P_3(T)\cdots P_{2d-1}(T)}{P_0(T)P_2(T)\cdots P_{2d}(T)},$$

where each $P_i(T)$ has integral coefficients and constant term 1, and

$$P_i(T) = \prod_j (1 - \alpha_{ij}T),$$

where α_{ij} are algebraic integers with $|\alpha_{ij}| = q^{i/2}$. The degree of P_i is the '*i*-th Betti number' of *X*.

- The use of 'Euler characteristic' and 'Betti numbers' implies that the arithmetical situation is controlled by the classical geometry of X.
- History of proof: Dwork, Grothendieck-Artin, Deligne.
- We shall sketch the rationality for curves.

Divisors over non-algebraically closed base field

Definition

Let X be a curve over k.

Div(X) is the free abelian group generated by the closed points of X.

For
$$D = \sum_i n_i x_i \in \text{Div}(X)$$
, let

$$\deg(D) = \sum_i n_i \deg(x_i).$$

▶ Write $\text{Div}(n) = \{D \in \text{Div}(X) : \text{deg}(D) = n\}$ and $\text{Cl}(n) = \text{Div}(n)/\sim$.

Structure of divisor class groups

Using Riemann-Roch, if deg(D) > 2g – 2, then deg($K_X - D$) < 0 so $I(K_X - D) = 0$ and thus

$$I(D)=\deg(D)+1-g.$$

Therefore, for n > 2g - 2, the number E_n of effective divisors of degree *n* is

$$\infty > E_n = \sum_{\bar{D} \in \mathrm{Cl}(n)} \frac{q^{l(D)} - 1}{q - 1} = \sum_{\bar{D} \in \mathrm{Cl}(n)} \frac{q^{n + 1 - g} - 1}{q - 1} = |\mathrm{Cl}(n)| \frac{q^{n + 1 - g} - 1}{q - 1}$$

In particular, $|Cl(n)| < \infty$.

Structure of divisor class groups

Suppose the image of deg : $Div(X) \rightarrow \mathbb{Z}$ is $d\mathbb{Z}$ (we will see later that d = 1). Choosing some $D_0 \in Div(d)$ defines an isomorphism

$$\operatorname{Cl}(n) \xrightarrow{\sim} \operatorname{Cl}(n+d)$$

 $D \longmapsto D_0 + D,$

and therefore

$$|\operatorname{Cl}(n)| = \begin{cases} J & \text{if } d|n \\ 0 & \text{otherwise,} \end{cases}$$

where J = |Cl(0)| is the number of rational points on the Jacobian of *X*. NB d|2g - 2 since deg(K_X) = 2g - 2.

Rationality of zeta for curves

$$Z(X/\mathbb{F}_q, T) = \prod_{x \in X^0} (1 - T^{\deg(x)})^{-1} = \sum_{D \ge 0} T^{\deg(D)} = \sum_{n \ge 0} E_n T^n$$
$$= \sum_{\substack{n=0 \\ d \mid n}}^{2g-2} T^n \sum_{\bar{D} \in \mathrm{Cl}(n)} \frac{q^{l(D)} - 1}{q - 1} + \sum_{\substack{n=2g-2+d \\ d \mid n}}^{\infty} T^n J \frac{q^{n+1-g}}{q - 1}$$
$$= Q(T) + \frac{J}{q - 1} T^{2g-2+d} \left[\frac{q^{g-1+d}}{1 - (qT)^d} - \frac{1}{1 - T^d} \right],$$

so $Z(X/\mathbb{F}_q, T)$ is a rational function in T^d with first order poles at $T = \xi$, $T = \frac{\xi}{q}$ for $\xi^d = 1$.

Lemma (Extension of scalars)

$$Z(X imes_{\mathbb{F}_q} \mathbb{F}_{q^r}/\mathbb{F}_{q^r}, T^d) = \prod_{\xi^r=1} Z(X/\mathbb{F}_q, \xi T).$$

Proposition

d = 1.

Proof.

By an analogous argument, $Z(X \times_{\mathbb{F}_q} \mathbb{F}_{q^d}, \mathbb{F}_{q^d}, T^d)$ has a first order pole at T = 1. Using extension of scalars and the fact that $Z(X/\mathbb{F}_q, T)$ is a function of T^d , we get

$$Z(X imes_{\mathbb{F}_q} \mathbb{F}_{q^d}/\mathbb{F}_{q^d}, T^d) = \prod_{\xi^d=1} Z(X/\mathbb{F}_q, \xi T) = Z(X/\mathbb{F}_q, T)^d.$$

Comparing poles, we conclude d = 1.

Functional equation for curves

Remark

By inspecting the above calculation of $Z(X/\mathbb{F}_q, T)$, using Riemann-Roch, one can deduce the functional equation \mathcal{P}

$$Z(X/\mathbb{F}_q,\frac{1}{qT})=q^{1-g}T^{2-2g}Z(X/\mathbb{F}_q,T).$$

Cohomological interpretation of Weil conjectures

Let *X* be a variety of dimension *d* over $k = \mathbb{F}_q$, $\bar{X} = X \times_k \bar{k}$ and let $F : \bar{X} \to \bar{X}$ be the Frobenius morphism. Fix a prime $l \neq p = char(k)$. There exist *l*-adic étale cohomology groups (with compact support)

$$H^i(X) = H^i_c(\bar{X}, \mathbb{Q}_l), \quad i = 0, \dots, 2d$$

which are finite dimensional vector spaces over \mathbb{Q}_l so that F induces vector space morphisms $F^* : H^i(X) \to H^i(X)$ and we have a Lefschetz fixed-point formula

$$|X(\mathbb{F}_{q^n})| = |Fix(F^n)| = \sum_{i=0}^{2d} (-1)^i \operatorname{tr}(F^{*n}|H^i(X)).$$

Weil rationality using cohomology

$$Z(X, T) = \exp\left(\sum_{n \ge 1} \frac{T^n}{n} \sum_{i=0}^{2d} (-1)^i \operatorname{tr}(F^{*n} | H^i(X))\right)$$

= $\prod_{i=0}^{2d} \left[\exp\left(\sum_{n \ge 1} \operatorname{tr}(F^{*n} | H^i(X)) \frac{T^n}{n}\right)\right]^{(-1)^i}$
= $\prod_{i=0}^{2d} \left[\det(1 - F^*T | H^i(X))\right]^{(-1)^i}$

an alternating product of the characteristic polynomials of the Frobenius on cohomology.