ALGEBRAIC GEOMETRY LTCC EXAM (2013) Answer all questions.

1. [The Twisted Cubic Curve] Let k be an algebraically closed field, and let $Y \subseteq \mathbb{A}^3_k$ be the set $Y = \{(t, t^2, t^3) : t \in k\}$.

- (1) Find generators for the ideal I(Y) and show that Y is an affine variety in \mathbb{A}^3 .
- (2) Show that $\mathscr{O}(Y)$ is isomorphic to a polynomial ring in one variable over k. Hence show that Y is an algebraic variety of dimension 1, i.e., an algebraic curve in \mathbb{A}^3 .
- (3) Consider the projection $\pi : \mathbb{A}^3 \to \mathbb{A}^2$, described in affine coordinates by $(x, y, z) \mapsto (y, z)$. Show that the image Z of π is a closed subset of \mathbb{A}^2 , i.e., show that Z is a plane algebraic curve.
- (4) Show that the restriction of π to $Y \setminus \{(0,0,0)\}$ is an isomorphism onto $Z \setminus \{(0,0)\}$. Hint: consider the corresponding affine coordinate rings!
- (5) Is Y isomorphic to Z? Hint: consider the singular points!
- (6) Let \tilde{Y} be the image of the map $\mathbb{P}^1 \to \mathbb{P}^3$, given in homogeneous coordinates by

$$[s:t] \mapsto [s^3:s^2t:st^2:t^3].$$

Find the generators of the homogeneous ideal $I(\hat{Y})$. Compare the minimal number of generators for I(Y) and the minimal number of homogeneous generators for $I(\tilde{Y})$.

2. [The *d*-uple Embedding.] Let *k* be an algebraically closed field. Given n, d > 0, let M_0, M_1, \ldots, M_N be all the monomials of degree *d* in the n + 1 variables x_0, \ldots, x_n , where $N = \binom{n+d}{n} - 1$. We define the *d*-uple embedding $\rho_d : \mathbb{P}^n \to \mathbb{P}^N$,

$$(a_0,\ldots,a_n)\mapsto (M_0(a),\ldots,M_N(a)).$$

- (1) Let $\theta : k[y_0, \ldots, y_N] \to k[x_0, \ldots, x_n]$ be the homomorphism defined by sending y_i to M_i , and let \mathfrak{a} be the kernel of θ . Show that \mathfrak{a} is a homogeneous prime ideal, so that $V(\mathfrak{a})$ is a projective variety in \mathbb{P}^N .
- (2) Show that the image of ρ_d is exactly $V(\mathfrak{a})$.
- (3) Show that ρ_d is a homeomorphism of \mathbb{P}^n onto the projective variety $V(\mathfrak{a})$.
- (4) Show that ρ_d is an isomorphism onto its image.
- (5) Show that the twisted cubic curve in \mathbb{P}^3 from the previous exercise is equal to the 3-uple embedding of \mathbb{P}^1 in \mathbb{P}^3 , for a suitable choice of coordinates.

(1) [Zeta function of a Pell conic] Let X be the Pell conic

$$V(x^2 - \Delta y^2 - 4) \subseteq \mathbb{A}^2_k,$$

for $\Delta \in k \setminus \{0\}$, and $k = \mathbb{F}_q$, for q a power of an odd prime. Compute the zeta function of X over k. Hint:

- (a) Note that P = (2, 0) is always a point on X. Show that X is a non-singular curve.
- (b) In the case when Δ is a square in k, X is isomorphic to the hyperbola V(xy 1) so it is easy to count its points over finite fields.
- (c) In the more interesting case when Δ is not a square in k, draw lines of varying slopes through P and compute the other intersection with X and use this 'projection from P' to count the points over k. Note that if Δ is not a square in F_q, it will be a square in F_{q^{2r}} and it will not be a square in F_{q^{2r+1}}.
- (2) [Extension of scalars for zeta] Prove the Extension of scalars Lemma for the zeta function. Let X be a variety defined over a finite field \mathbb{F}_q , and let $X \times_{\mathbb{F}_q} \mathbb{F}_{q^r}$ be the same variety considered over the extension field \mathbb{F}_{q^r} . Then

$$Z(X \times_{\mathbb{F}_q} \mathbb{F}_{q^r} / \mathbb{F}_{q^r}, T^r) = \prod_{\xi^r = 1} Z(X / \mathbb{F}_q, \xi T).$$

The product on the right is taken over the *r*-th roots of unity.

3.

(Dr. Ivan Tomašić, QMUL)