Algebraic Geometry LTCC Exam Answer all questions.

1. [The Twisted Cubic Curve] Let k be an algebraically closed field, and let $Y \subseteq \mathbb{A}_{k}^{3}$ be the set $Y=\left\{\left(t, t^{2}, t^{3}\right): t \in k\right\}$.
(1) Find generators for the ideal $I(Y)$ and show that Y is an affine variety in \mathbb{A}^{3}.
(2) Show that $\mathscr{O}(Y)$ is isomorphic to a polynomial ring in one variable over k. Hence show that Y is an algebraic variety of dimension 1, i.e., an algebraic curve in \mathbb{A}^{3}.
(3) Consider the projection $\pi: \mathbb{A}^{3} \rightarrow \mathbb{A}^{2}$, described in affine coordinates by $(x, y, z) \mapsto(y, z)$. Show that the image Z of π is a closed subset of \mathbb{A}^{2}, i.e., show that Z is a plane algebraic curve.
(4) Show that the restriction of π to $Y \backslash\{(0,0,0)\}$ is an isomorphism onto $Z \backslash\{(0,0)\}$. Hint: consider the corresponding affine coordinate rings!
(5) Is Y isomorphic to Z ? Hint: consider the singular points!
(6) Let \tilde{Y} be the image of the map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$, given in homogeneous coordinates by

$$
[s: t] \mapsto\left[s^{3}: s^{2} t: s t^{2}: t^{3}\right]
$$

Find the generators of the homogeneous ideal $I(\tilde{Y})$. Compare the minimal number of generators for $I(Y)$ and the minimal number of homogeneous generators for $I(\tilde{Y})$.
2. [The d-uple Embedding.] Let k be an algebraically closed field. Given $n, d>0$, let $M_{0}, M_{1}, \ldots, M_{N}$ be all the monomials of degree d in the $n+1$ variables x_{0}, \ldots, x_{n}, where $N=\binom{n+d}{n}-1$. We define the d-uple embedding $\rho_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$,

$$
\left(a_{0}, \ldots, a_{n}\right) \mapsto\left(M_{0}(a), \ldots, M_{N}(a)\right)
$$

(1) Let $\theta: k\left[y_{0}, \ldots, y_{N}\right] \rightarrow k\left[x_{0}, \ldots, x_{n}\right]$ be the homomorphism defined by sending y_{i} to M_{i}, and let \mathfrak{a} be the kernel of θ. Show that \mathfrak{a} is a homogeneous prime ideal, so that $V(\mathfrak{a})$ is a projective variety in \mathbb{P}^{N}.
(2) Show that the image of ρ_{d} is exactly $V(\mathfrak{a})$.
(3) Show that ρ_{d} is a homeomorphism of \mathbb{P}^{n} onto the projective variety $V(\mathfrak{a})$.
(4) Show that ρ_{d} is an isomorphism onto its image.
(5) Show that the twisted cubic curve in \mathbb{P}^{3} from the previous exercise is equal to the 3 -uple embedding of \mathbb{P}^{1} in \mathbb{P}^{3}, for a suitable choice of coordinates.
3.
(1) [Zeta function of a Pell conic] Let X be the Pell conic

$$
V\left(x^{2}-\Delta y^{2}-4\right) \subseteq \mathbb{A}_{k}^{2}
$$

for $\Delta \in k \backslash\{0\}$, and $k=\mathbb{F}_{q}$, for q a power of an odd prime. Compute the zeta function of X over k. Hint:
(a) Note that $P=(2,0)$ is always a point on X. Show that X is a non-singular curve.
(b) In the case when Δ is a square in k, X is isomorphic to the hyperbola $V(x y-1)$ so it is easy to count its points over finite fields.
(c) In the more interesting case when Δ is not a square in k, draw lines of varying slopes through P and compute the other intersection with X and use this 'projection from P ' to count the points over k. Note that if Δ is not a square in \mathbb{F}_{q}, it will be a square in $\mathbb{F}_{q^{2 r}}$ and it will not be a square in $\mathbb{F}_{q^{2 r+1}}$.
(2) [Extension of scalars for zeta] Prove the Extension of scalars Lemma for the zeta function. Let X be a variety defined over a finite field \mathbb{F}_{q}, and let $X \times_{\mathbb{F}_{q}} \mathbb{F}_{q^{r}}$ be the same variety considered over the extension field $\mathbb{F}_{q^{r}}$. Then

$$
Z\left(X \times_{\mathbb{F}_{q}} \mathbb{F}_{q^{r}} / \mathbb{F}_{q^{r}}, T^{r}\right)=\prod_{\xi^{r}=1} Z\left(X / \mathbb{F}_{q}, \xi T\right)
$$

The product on the right is taken over the r-th roots of unity.

