10. Exercises

1. Find a first-order axiomatisation for the class of torsion-free divisible abelian groups and prove that this theory is complete. Prove that the property 'G is torsion' cannot be axiomatised in a first-order way in the language of groups. 2. Working in the theory ACF, eliminate the quantifiers from:

$$\exists w \, \exists x \, \exists y \, \exists z (aw + by = 1 \land ax + bz = 0 \land cw + dy = 0 \land cx + dz = 1).$$

3. Is the theory $ACF_p \otimes_0$ -categorical? Is DLO uncountably categorical?

4. Show the existence of a *countable* non-standard (non-isomorphic to \mathbb{N}) model of PA. Show the existence of a non-archimedean model of RCF.

5. Let θ be an $\forall \exists$ -sentence, i.e.,

$$\theta \equiv \forall x_1 \dots \forall x_n \exists y_1 \dots \exists y_m \varphi(x_1, \dots, x_n, y_1, \dots, y_m),$$

where φ is quantifier-free. Let M_i , $i \in I$ be a chain of structures indexed by a linear order (I, <) such that $M_i \models \theta$ for all $i \in I$. Prove that $\bigcup_{i \in I} M_i \models \theta$.

6. Let $\sigma : \mathbb{C}^n \to \mathbb{C}^n$ be an algebraic automorphism of \mathbb{C}^n viewed as an algebraic variety (the affine *n*-space \mathbb{A}^n). In other words, the components of σ are polynomial maps. Prove that, if $\sigma^2 = 1$, then σ has a fixed point.

7. Use model-completeness of DLO to prove that *order-completeness* (the property that every nonempty subset with an upper bound has a supremum) is not expressible in first-order logic.

8. Let *F* be a real closed field. An ideal $I \subseteq F[x_1, \ldots, x_n]$ is *real*, if $f_1^2 + \cdots + f_m^2 \in I$ implies $f_1, \ldots, f_m \in I$. Formulate and prove analogues of Theorem 16 for real prime ideals, and Proposition 7 for RCF.

9. Verify that countable models of DLO are \aleph_0 -saturated. What is the minimum size for an \aleph_1 -saturated model?

10. Verify the statement of Example 14.

11. It is well-known in algebra that \mathbb{C} cannot be made into an ordered field. Prove that it cannot even be made into a total order by a first-order formula in the language of rings.

12. For a topological space X and an ordinal α , find the definition of the α -th Cantor-Bendixson derivative X^{α} on Wikipedia. We apply these considerations to the Stone space $X = S_n(M)$ of an \aleph_0 -saturated model M of a complete theory T. Given a type $p \in X$, we say that its Cantor-Bendixson rank is α , written $CB(p) = \alpha$, if $p \in X^{\alpha} \setminus X^{\alpha+1}$. Prove that:

(a) $MR(p) \ge CB(p);$

(b) if T is totally transcendental, MR(p) = CB(p).