Please send me the solutions by email to i.tomasic@qmul.ac.uk. The solutions should be as self-contained as possible, and include precise references to any results used. Scanned manuscripts are acceptable (if legible).

1. [First-order logic] Let (G, \cdot) be a group. An element $g \in G$ is called torsion if g is of finite order, i.e., there exist an n such that $g^{n}=1$. A group G is torsion if every element is torsion. A group G is torsion-free if every element different from 1 is of infinite order. An abelian group $(A,+)$ is divisible if for every element $a \in A$ and every $n>0$ there exists an $x \in A$ such that $n x=\underbrace{x+\cdots+x}_{n \text { times }}=a$.
(a) Find a first-order axiomatisation for the class of torsion-free divisible abelian groups and prove that this theory is complete.
(b) Prove that the property ' G is torsion' cannot be axiomatised in a first-order way in the language of groups.
2. [Ordering \mathbb{C}] It is well-known in algebra that \mathbb{C} cannot be made into an ordered field. Prove that it cannot even be made into a total order by a first-order formula in the language of rings.
3. [$\forall \exists$-sentences and Lefschetz principle]
(a) Let θ be an $\forall \exists$-sentence, i.e.,

$$
\theta \equiv \forall x_{1} \ldots \forall x_{n} \exists y_{1} \ldots \exists y_{m} \varphi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
$$

where φ is quantifier-free. Let $M_{i}, i \in I$ be a chain of structures indexed by a linear order $(I,<)$ such that $M_{i} \models \theta$ for all $i \in I$. Prove that

$$
\bigcup_{i \in I} M_{i} \models \theta .
$$

(b) Let $\sigma: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be an algebraic automorphism of \mathbb{C}^{n} viewed as an algebraic variety (the affine n-space, sometimes denoted \mathbb{A}^{n}). In other words, the components of σ are polynomial maps. Prove the following statement.

If $\sigma^{2}=1$, then σ has a fixed point.
4. [Morley rank in topological terms] Let M be an \aleph_{0}-saturated model of a complete theory T. There is a notion of Cantor-Bendixson derivative of a topological space, see: http://en.wikipedia.org/wiki/Derived_set_(mathematics)

We shall apply these considerations to the Stone space $X=S_{n}(M)$. Given a type $p \in X$, we say that its Cantor-Bendixson rank is α, written $\operatorname{CB}(p)=\alpha$, if $p \in X^{\alpha} \backslash X^{\alpha+1}$.

Prove the following comparison to the Morley rank:
(a) $\mathrm{MR}(p) \geq \mathrm{CB}(p)$;
(b) if T is totally transcendental, $\mathrm{MR}(p)=\mathrm{CB}(p)$.

