CW10 Solutions

1. First of all, note that the sample space S consists of $2^{4}=16$ elements (two possibilities for each of the four children).
(a) The event A^{\prime} is 'all children are the same sex', so $A^{\prime}=\{B B B B, G G G G\}$ and $P\left(A^{\prime}\right)=\frac{\left|A^{\prime}\right|}{|S|}=\frac{2}{16}=\frac{1}{8}$. Thus $P(A)=1-P\left(A^{\prime}\right)=\frac{7}{8}$.
(b) The event $B=\{G G G G, B G G G, G B G G, G G B G, G G G B\}$ so $P(B)=\frac{5}{16}$.
(c) We have $A \cap B=\{B G G G, G B G G, G G B G, G G G B\}$ so $P(A \cap B)=\frac{4}{16}=\frac{1}{4}$.
(d) We have seen in (c) that $P(A \cap B)=\frac{1}{4}$ while $P(A) P(B)=\frac{35}{128}$, so these events are not independent.
2. We use the fact that throws are independent from each other.
(a) $P(A)=\frac{1}{2} \cdot 1 \cdot 1=\frac{1}{2}$.
(b) $P(B)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}$.
(c) $P(C)=P(\{H H H, H H T, T H H, H T H\})=P(H H H)+P(H H T)+P(T H H)+$ $P(H T H)=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}$.
(d) $P(D)=P\{H H H, H H T, T H H\}=\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{3}{8}$
(e) $P(A \cap D)=P\left(\{H H H, H H T\}=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}\right.$. On the other hand, $P(A) \cdot P(D)=$ $\frac{1}{2} \cdot \frac{3}{8}=\frac{3}{8} \neq \frac{1}{4}$ so the events are not independent.
3. We use the fact that throws are independent from each other.
(a) $P(A)=\frac{2}{3} \cdot 1 \cdot 1=\frac{1}{2}$.
(b) $P(B)=P(H H T)=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}=\frac{4}{27}$.
(c) $P(C)=P(\{H H H, H H T, T H H, H T H\})=P(H H H)+P(H H T)+P(T H H)+$ $P(H T H)=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}+\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3}+\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}+\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{2}{3}=\frac{8}{27}+\frac{4}{27}+\frac{4}{27}+\frac{4}{27}=\frac{20}{27}$.
4. (a)

	E	F	G	probability
1.	T	T	T	$0.1 \cdot 0.2 \cdot 0.3=0.006$
2.	T	T	F	$0.1 \cdot 0.2 \cdot 0.7=0.014$
3.	T	F	T	$0.1 \cdot 0.8 \cdot 0.3=0.024$
4.	T	F	F	$0.1 \cdot 0.8 \cdot 0.7=0.056$
5.	F	T	T	$0.9 \cdot 0.2 \cdot 0.3=0.054$
6.	F	T	F	$0.9 \cdot 0.2 \cdot 0.7=0.126$
7.	F	F	T	$0.9 \cdot 0.8 \cdot 0.3=0.216$
8.	F	F	F	$0.9 \cdot 0.8 \cdot 0.7=0.504$

(b) Good rows are those where E is false and at least one of F and G are false, i.e. rows 6,7 and 8 .
(c) The probability that a message will go through is the probability of the event consisting of rows 6,7 and 8 , which is $0.126+0.216+0.504=0.846$.

