Queen Mary, University of London MAE113 DISCRETE TECHNIQUES FOR COMPUTING

Mid-Term Test Solutions.

Time allowed: 45 minutes

- 1. (a) $A \cap B = \{2, 4\}$ [4 marks], $A \cup B = \{1, 2, 3, 4, 6, 8\}$ [4 marks, total 8]
 - (b) The inclusion-exclusion formulae are $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |B \cap C| |C \cap A| + |A \cap B \cap C|$ [2 marks] and $|B \cup C| = |B| + |C| |B \cap C|$ [2 marks]. Substituting the formula for $|B \cup C|$ into the formula for $|A \cup B \cup C|$ we see that $|A \cup B \cup C| = |A| |A \cap B| + |B \cup C| |A \cap C| + |A \cap B \cap C|$ [4 marks]. Plugging in the numbers we get $|A \cup B \cup C| = 45 21 + 65 20 + 9 = 78$ [4 marks, total 12].
- 2. (a) (Should be in columns, with carries shown) $10101 \times 1010 = 101010 + 10101000 = 11010010$ [6 marks]. In decimal notation 10101 is 16 + 4 + 1 = 21 and 1010 is 8 + 2 = 10 [2 marks] and 11010010 is 2 + 16 + 64 + 128 = 210 [2 marks], and since $21 \times 10 = 210$ our calculation was correct [2 marks, total 12].
 - (b) (Again in columns with borrowing shown) 10101 1010 = 1011 [8 marks]. Alternatively can use method of complements: $10101 1010 = 10101 + 1010^c 10000 + 1 = 10101 + 101 10000 + 1 = 11010 10000 + 1 = 1010 + 1 = 1011$. [8 marks, inc 2 for formula and 2 for getting complement right]. No extra marks for checking in decimal but well worth doing anyway as most of the converting was done in part (a).
- 3. \mathbb{Z}_8 consists of the equivalence classes [0], [1], [2], [3], [4], [5], [6], [7].
 - (a) [1], [3], [5], [7], [4 marks] since these are the only numbers not sharing a common factor with 8 [4 marks, total 8].
 - (b) Calculate in \mathbb{Z}_8 :
 - (i) $([2] + [7]) \times ([1] [6]) = [9] \times [-5] = [1] \times [3] = [3]$ [6 marks],
 - (ii) $[3] \div [5] = [35] \div [5] = [7]$ [6 marks, total 12].

4. (a) The simplest logic circuit comes on observing $pq' \lor p' \lor pr \equiv p(q' \lor r) \lor p'$. There are other solutions - [5 marks for any correct circuit]

Truth table [5 marks for this, making 10 in total]:

p	q	r	pq'	p'	pr	$pq' \lor p' \lor pr$
1	1	1	0	0	1	1
1	1	0	0	0	0	0
1	0	1	1	0	1	1
1	0	0	1	0	0	1
0	1	1	0	1	0	1
0	1	0	0	1	0	1
0	0	1	0	1	0	1
0	0	0	0	1	0	1

(b) The smart way is to use Boolean algebra: $(p' \lor q) \to r \equiv r(p' \lor q) \lor (p' \lor q)' \equiv rp' \lor rq \lor pq'$ by De Morgan's law, for a very easy 10 marks. The long way to do it is to draw the truth table [4 marks for this]:

p	q	r	$p' \lor q$	$(p' \lor q) \to r$
1	1	1	1	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	1	1
0	1	0	1	0
0	0	1	1	1
0	0	0	1	0

From this we obtain the formula $pqr \lor pq'r \lor pq'r \lor p'qr \lor p'q'r$ [2 marks]. We can simplify this to $pr \lor pq'r' \lor p'r$ to satisfy the requirements of the question, or even further to $r \lor pq'r'$ [4, total 10 marks].