Queen Mary, University of London MAE113 DISCRETE TECHNIQUES FOR COMPUTING

Mid-Term Test Solutions.

Time allowed: 45 minutes

1. (a) $A \cap B=\{2,4\}$ [4 marks], $A \cup B=\{1,2,3,4,6,8\}$ [4 marks, total 8]
(b) The inclusion-exclusion formulae are $|A \cup B \cup C|=|A|+|B|+|C|-$ $|A \cap B|-|B \cap C|-|C \cap A|+|A \cap B \cap C|[2$ marks] and $|B \cup C|=$ $|B|+|C|-|B \cap C|[2$ marks]. Substituting the formula for $|B \cup C|$ into the formula for $|A \cup B \cup C|$ we see that $|A \cup B \cup C|=|A|-|A \cap B|+$ $|B \cup C|-|A \cap C|+|A \cap B \cap C|[4$ marks]. Plugging in the numbers we get $|A \cup B \cup C|=45-21+65-20+9=78$ [4 marks, total 12].
2. (a) (Should be in columns, with carries shown) $10101 \times 1010=101010+$ $10101000=11010010$ [6 marks]. In decimal notation 10101 is $16+$ $4+1=21$ and 1010 is $8+2=10$ [2 marks] and 11010010 is $2+16+$ $64+128=210$ [2 marks], and since $21 \times 10=210$ our calculation was correct [2 marks, total 12].
(b) (Again in columns with borrowing shown) $10101-1010=1011[8$ marks]. Alternatively can use method of complements: 10101-1010 = $10101+1010^{c}-10000+1=10101+101-10000+1=11010-10000+$ $1=1010+1=1011$. [8 marks, inc 2 for formula and 2 for getting complement right]. No extra marks for checking in decimal but well worth doing anyway as most of the converting was done in part (a).
$3 . \mathbb{Z}_{8}$ consists of the equivalence classes $[0],[1],[2],[3],[4],[5],[6],[7]$.
(a) $[1],[3],[5],[7],[4$ marks] since these are the only numbers not sharing a common factor with 8 [4 marks, total 8].
(b) Calculate in \mathbb{Z}_{8} :
(i) $([2]+[7]) \times([1]-[6])=[9] \times[-5]=[1] \times[3]=[3][6$ marks $]$,
(ii) $[3] \div[5]=[35] \div[5]=[7][6$ marks, total 12].
3. (a) The simplest logic circuit comes on observing $p q^{\prime} \vee p^{\prime} \vee p r \equiv p\left(q^{\prime} \vee r\right) \vee p^{\prime}$. There are other solutions - [5 marks for any correct circuit]

Truth table [5 marks for this, making 10 in total]:

p	q	r	$p q^{\prime}$	p^{\prime}	$p r$	$p q^{\prime} \vee p^{\prime} \vee p r$
1	1	1	0	0	1	1
1	1	0	0	0	0	0
1	0	1	1	0	1	1
1	0	0	1	0	0	1
0	1	1	0	1	0	1
0	1	0	0	1	0	1
0	0	1	0	1	0	1
0	0	0	0	1	0	1

(b) The smart way is to use Boolean algebra: $\left(p^{\prime} \vee q\right) \rightarrow r \equiv r\left(p^{\prime} \vee q\right) \vee$ $\left(p^{\prime} \vee q\right)^{\prime} \equiv r p^{\prime} \vee r q \vee p q^{\prime}$ by De Morgan's law, for a very easy 10 marks. The long way to do it is to draw the truth table [4 marks for this]:

p	q	r	$p^{\prime} \vee q$	$\left(p^{\prime} \vee q\right) \rightarrow r$
1	1	1	1	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	1	1
0	1	0	1	0
0	0	1	1	1
0	0	0	1	0

From this we obtain the formula $p q r \vee p q^{\prime} r \vee p q^{\prime} r^{\prime} \vee p^{\prime} q r \vee p^{\prime} q^{\prime} r$ [2 marks]. We can simplify this to $p r \vee p q^{\prime} r^{\prime} \vee p^{\prime} r$ to satisfy the requirements of the question, or even further to $r \vee p q^{\prime} r^{\prime}$ [4, total 10 marks].

