Queen Mary, University of London MAE113 DISCRETE TECHNIQUES FOR COMPUTING

Mid-Term Test, November 12th 2009, 12pm.

Time allowed: 45 minutes

Each question carries 20 marks, making a total of 80. Write your answers clearly and show all your working.

1. (a) Let A be the set $\{1,2,3,4\}$ and let B be the set consisting of all those numbers which are equal to twice some number in A. Calculate $A \cap B$ and $A \cup B$.
(b) Suppose A, B and C are sets, and we are given that $|A|=45,|A \cap B|=$ $21,|A \cap C|=20,|A \cap B \cap C|=9$ and $|B \cup C|=65$. Calculate $|A \cup B \cup C|$ using the inclusion-exclusion principle.
2. (a) Carry out the binary multiplication 10101×1010. Check your answer by converting the binary numbers to decimal.
(b) Carry out the binary subtraction 10101 - 1010.
3. \mathbb{Z}_{8} consists of the equivalence classes $[0],[1],[2],[3],[4],[5],[6],[7]$.
(a) For which equivalence classes $[x]$ in \mathbb{Z}_{8} can we find a $[y]$ such that $[x] \times[y]=[1]$? Explain your answer.
(b) Calculate in \mathbb{Z}_{8} :
(i) $([2]+[7]) \times([1]-[6])$,
(ii) $[3] \div[5]$.
4. (a) Draw a logic circuit whose output is given by the formula $p q^{\prime} \vee p^{\prime} \vee p r$. Also write out its truth table.
(b) Find a Boolean formula which is equivalent to $\left(p^{\prime} \vee q\right) \rightarrow r$ and is a disjunction of at most three minterms.
