Queen Mary, University of London MAE113 DISCRETE TECHNIQUES FOR COMPUTING

Mid-Term Test, November 12th 2009, 12pm.

Time allowed: 45 minutes

Each question carries 20 marks, making a total of 80. Write your answers clearly and show all your working.

- 1. (a) Let A be the set $\{1, 2, 3, 4\}$ and let B be the set consisting of all those numbers which are equal to twice some number in A. Calculate $A \cap B$ and $A \cup B$.
 - (b) Suppose A, B and C are sets, and we are given that |A| = 45, $|A \cap B| = 21$, $|A \cap C| = 20$, $|A \cap B \cap C| = 9$ and $|B \cup C| = 65$. Calculate $|A \cup B \cup C|$ using the inclusion-exclusion principle.
- 2. (a) Carry out the binary multiplication 10101×1010 . Check your answer by converting the binary numbers to decimal.
 - (b) Carry out the binary subtraction 10101 1010.
- 3. \mathbb{Z}_8 consists of the equivalence classes [0], [1], [2], [3], [4], [5], [6], [7].
 - (a) For which equivalence classes [x] in \mathbb{Z}_8 can we find a [y] such that $[x] \times [y] = [1]$? Explain your answer.
 - (b) Calculate in \mathbb{Z}_8 :

(i) $([2] + [7]) \times ([1] - [6]),$ (ii) $[3] \div [5].$

- 4. (a) Draw a logic circuit whose output is given by the formula $pq' \lor p' \lor pr$. Also write out its truth table.
 - (b) Find a Boolean formula which is equivalent to $(p' \lor q) \to r$ and is a disjunction of at most three minterms.