Queen Mary, University of London

MAE113 Discrete Techniques for Computing, 2007. SAMPLE MID-TERM TEST.

Time allowed - 40 minutes.
Counting 100 marks for the whole test, each question is worth 20 marks. In the actual test, questions will be on separate sheets with instructions:
Write your answer on the same page after each part of each question. Use the backs of the sheets for rough work. No CALCULATORS.

1. (a) Let $X=\{0,1,2,3\}$ and let $Y=\{0,3,6,9\}$. List the elements in the set $X \cap Y$ and calculate the number $|X \cup Y|$.
(b)There are three sets A, B, C and you are told that
$|A|=100,|B|=30,|C|=34,|A \cap B|=6,|A \cap C|=23$,
$|B \cap C|=8, \quad|A \cap B \cap C|=3$.
Calculate $|A \cup B \cup C|$. You should use the principle of inclusionexclusion and show your workings.
2. Find the output of the following logic circuit in the following way: First work out the boolean formula of the circuit and then calculate the truth table of this formula.

3. (a) Find a simpler proposition equivalent to the proposition $p q r s \vee p^{\prime} q r s^{\prime} \vee p q^{\prime} r s \vee p^{\prime} q r^{\prime} s^{\prime}$.
(b) Find a boolean formula which is equivalent to the following formula and is a disjunction of one or more minterms:
$(p \leftrightarrow q) \vee\left(q^{\prime} p\right)$.
4. (a) Convert 431 (in the decimal system) to the corresponding number in the binary system.
(b) Multiply the binary numbers 1101101×10101.
5. Answer (a) and (b) for modular arithmetic in $\mathbb{Z}_{11}=\{[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]\}$.
(a) Simplify the expression: $[5]+([2] \times[6])+[8]([1]-[5])$.
(b) Find $[n]$ in \mathbb{Z}_{11} satisfying the equation $[3][n]=[5]$.
