Queen Mary, University of London

MAE113 Discrete Techniques for Computing, 2007. SAMPLE MID-TERM TEST.

Time allowed - 40 minutes.

Counting 100 marks for the whole test, each question is worth 20 marks. *In the actual test, questions will be on separate sheets with instructions:*

Write your answer on the same page after each part of each question. Use the backs of the sheets for rough work. No CALCULATORS.

.....

1. (a) Let $X = \{0, 1, 2, 3\}$ and let $Y = \{0, 3, 6, 9\}$. List the elements in the set $X \cap Y$ and calculate the number $|X \cup Y|$.

(b)There are three sets A, B, C and you are told that $|A| = 100, |B| = 30, |C| = 34, |A \cap B| = 6, |A \cap C| = 23,$ $|B \cap C| = 8, |A \cap B \cap C| = 3.$

Calculate $|A \cup B \cup C|$. You should use the principle of inclusion-exclusion and show your workings.

2. Find the output of the following logic circuit in the following way: First work out the boolean formula of the circuit and then calculate the truth table of this formula.

3. (a) Find a simpler proposition equivalent to the proposition $pqrs \lor p'qrs' \lor pq'rs \lor p'qr's'$.

(b) Find a boolean formula which is equivalent to the following formula and is a disjunction of one or more minterms: $(p \leftrightarrow q) \lor (q'p)$.

- 4. (a) Convert 431 (in the decimal system) to the corresponding number in the binary system.(b) Multiply the binary numbers 1101101 × 10101.
- 5. Answer (a) and (b) for modular arithmetic in Z₁₁ = {[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]}.
 (a) Simplify the expression: [5] + ([2] × [6]) + [8]([1] [5]).
 (b) Find [n] in Z₁₁ satisfying the equation [3][n] = [5].