Example:

Graphs

Syllabus

Graph and tree theory;
applied to networks

This graph has four vertices u, v, w, x and four edges $u v, v x, w x$ and $u w$.

8.4

Example:

This graph has three vertices u, v, w, and five edges.
One edge $u u$ is a loop,
and two edges together form a double edge from v to w.

The adjacency matrix of a graph G is a table: the vertices are listed along the top and down the left.
The entry in row u and column v is the number of edges with endpoints u and v.
The adjacency matrix of the graph in 8.4 is

	u	v	w
u	1	1	1
v	1	0	2
w	1	2	0

76
8.6

A path in a graph is a list of vertices and edges,

$$
v_{0}, e_{0}, v_{1}, e_{1}, \ldots, e_{n-1}, v_{n}
$$

where each e_{i} is an edge with endpoints v_{i} and v_{i+1}, the edges e_{0}, \ldots, e_{n-1} are all different, and the vertices v_{0}, \ldots, v_{n} are all different except that v_{1} and v_{n} can be the same.
When $v_{1}=v_{n}$, we say that the path is a cycle.
The length of a path is the number of edges in it; so the path above has length n.
The path is from v_{0} to v_{n}, and these vertices are its endpoints.

Example:

e

$$
v, d, w, b, u, c, v
$$

is a cycle of length 3 .

$$
u, c, v, e, w
$$

is a path of length 2 but not a cycle.

Let G be a graph.
We say that two vertices u, v of G are linked to each other if there is a path with endpoints u and v.
A vertex u is always linked to itself, because u counts as a path of length 0 with endpoints u and u.

Writing $u R v$ for
' u is linked to v^{\prime},
R is an equivalence relation on the set of vertices of G.
Each equivalence class of R, together with the edges between vertices in the class,
is called a connected component of G.
A graph is called connected if it has just one connected component.

8.11

To find a connected component

When the graph is drawn on a page, we can just see the connected components.
(Important and difficult question: How do our brains do this?
Designers of automatic pilots (for example) would like to know.)

When the graph is described by an adjacency matrix and the answer has to be found by a computer, we need a precise method.

Given a vertex v in a graph G :

1. Put $C=\{v\}$.
2. Let C^{\prime} be the set of all vertices joined by an edge to some vertex in C.
If C^{\prime} is a subset of C, return C.
If C^{\prime} is not a subset of C, put $C:=C \cup C^{\prime}$ and repeat step 2.

The connected component of G containing v is the set of vertices returned, together with all the edges joining them.

Example

	s	t	u	v	w	x	y	z
s	0	0	0	0	0	0	1	0
t	0	0	0	0	0	1	1	0
u	0	0	0	1	1	0	0	1
v	0	0	1	1	1	0	0	1
w	0	0	1	1	0	0	0	1
x	0	1	0	0	0	1	1	0
y	1	1	0	0	0	1	0	0
z	0	0	1	1	1	0	0	0

8.14

Steps calculating the connected component containing t :

1. $C=\{t\}$.
2. $C^{\prime}=\{x, y\}$. We put $C=\{t, x, y\}$.
3. $C^{\prime}=\{s, t, x, y\}$. We put $C=\{s, t, x, y\}$.
4. $C^{\prime}=\{s, t, x, y\}$. So we return $\{s, t, x, y\}$.

We can check this result by drawing the graph from its adjacency matrix 8.13:

8.16

We say that a graph H is a subgraph of G if
(a) Every vertex of H is also a vertex of G, and
(b) every edge of H is also an edge of G, with the same endpoints.

For example:

- Every graph is a subgraph of itself.
- Every connected component of G is a subgraph of G.

8.17

A tree is a connected graph with no cycles of length >0.
(For brevity we just say 'with no cycles'
and ignore cycles of length 0 .)
In a tree, if u and v are distinct vertices then there is exactly one path from u to v.
Also every graph which has this property and has no cycles of length 1 is a tree.

88

8.18

Examples of trees

The tree on the right has one vertex picked out, marked r. A tree with a 'distinguished vertex' is called a rooted tree.
8.19

Suppose G is a connected graph and e is an edge of G. and taking away the edge e makes G not connected.
Then we say that taking away e disconnects the graph.
Suppose we keep taking away edges without disconnecting the graph, for as long as we can. The graph H that is left

- is a subgraph of G,
- has the same vertices as G, and
- is a tree.

A graph H with these properties is a spanning tree of G.

8.21

Example: The wiring diagram of the power supply in a house.

A spanning tree will still bring power to all the same sockets. So why do we use ring mains?

8.22

From Exam 2004: Find all the spanning trees in the following graph.

There are more than you expected. It pays to be systematic in looking for them.
8.24

Digraphs

A directed graph, or for short a digraph, is the same as a graph, except that each edge has a direction marked by an arrow.
A directed path in a digraph is a path

$$
v_{0}, e_{0}, v_{1}, e_{1}, \ldots, e_{n-1}, v_{n}
$$

where each edge e_{i} runs forwards from v_{i} to v_{i+1}.

Example:

There is no need for an arrow on the loop at u.

8.27

Networks

A network is a connected digraph N where each edge e has a number $c(e) \geqslant 0$ associated to it, called the capacity of e.

The sources of N are the vertices that have no arrows going to them,
and the sinks of N are the vertices that have no arrows going from them.
8.28

A flow on a network is a function f whose domain is the set of edges, such that

- for each edge $e, 0 \leqslant f(e) \leqslant c(e)$;
- at each vertex v that is neither a source nor a sink, the sum of $f(e)$ for e going from v is equal to the sum of $f(e)$ for edges e going to v.

Think of oil flowing along the edges. It can't flow backwards; an edge can't carry more than its capacity; and oil can't pile up or appear from nowhere at a vertex that is neither a source nor a sink.

Example In this network the first number on each edge is the capacity, the second is the flow.

100

8.30

The value of the flow is the sum of the values of flows on edges leading out of the sources.
This is equal to the sum of the values of flows on edges leading into the sinks.
In the example above, there are just one source and just one sink.
The value of the flow at the source is $3+4=7$.
The value of the flow at the sink is $1+4+2=7$.

There is spare capacity all the way along the top of the network above.
We can increase the flow by 1 :

102
8.32

There is still spare capacity of 2 all the way along the bottom:

We can squeeze one more unit along a path through the middle:

104

8.34

And one more unit by a path that goes down and then up again:

8.35

Can we squeeze a larger flow through this network?
Not by pushing larger amounts forward along directed edges.

But we can if we allow ourselves to push a smaller amount backwards along a directed edge:

106
8.36

And one more unit by a path that goes down and then up again:

The flow is now $4+10=14$ at the source and $4+6+4=13$ at the sink, so its value is 14 .

To check that this is the maximum possible, we look for a cut of value 14.
A cut is a line cutting some edges of the network, to separate the sources from the sinks,
and its value is the sum of the capacities of edges crossing the cut from left to right.

The max-flow min-cut theorem says that for every network there is a unique number f such that
(1) there is a flow of value f through the network;
(2) there is a cut through the network with value f.

This number f is the value of the maximum flow that we can get through the network.
8.38

A cut of value $14(=4+0+0+6+4)$

