Examples

The relation $<$ on \mathbb{R} contains the ordered pairs

Relations and functions continued

5.2

Some kinds of binary relation
Many important binary relations are subsets of a product
A^{2}. We call them (binary) relations on A
Suppose R is a relation on A.
Then we write

$$
a R b
$$

to express that the ordered pair (a, b) is in R.

$$
(1,2),(1,3),(1,3.24),(-1,4000)
$$

etc.
The relation \leqslant on \mathbb{R} is the same as $<$ except that it also contains

$$
(0,0),(1,1),(1.266,1.266)
$$

etc.

131

5.4

If R is a binary relation on A, we can draw a picture of R by writing dots for the members of A, and an arrow from a 's dot to b 's dot when $a R b$ holds. This picture is called the graph of R.

Example: The relation $<$ on the set $\{1,2,3,4\}$ has the graph

133
5.7

A relation R on A is called symmetric if $a R b$ implies $b R a$, for all $a, b \in A$.
It is called asymmetric if
there are no $a, b \in A$ such that $a R b$ and $b R a$.
Is either of $<$ or \leqslant symmetric? asymmetric?
What does the graph of a symmetric relation look like?

135

5.6

A relation R on A is called reflexive if
$a R a$ for all $a \in A$.
It is called irreflexive if
there is no $a \in A$ with $a R a$.
So for example $<$ is irreflexive and \leqslant is reflexive.
How can you tell from its graph whether a relation R is reflexive or irreflexive?
5.8

Example: modular arithmetic
Let n be a positive integer.
When a and b are integers, we write

$$
a \equiv b(\bmod n)
$$

to mean that $a-b$ is divisible by n,
i.e. there is some integer c such that $a-b=c n$.

When this equation holds, we also have

$$
b-a=(-c) n
$$

so $b \equiv a(\bmod n)$.
5.9

This shows that the relation R on the integers, where

$$
a R b \text { means } a \equiv b(\bmod n)
$$

is a symmetric relation.
We call this relation equivalence modulo n.
Recall that when we count in binary numbers of length m, we can't distinguish between two integers that are equivalent modulo 2^{m}.

5.11

Example

Let n be a positive integer and let R be equivalence modulo n. Suppose $a R b$ and $b R c$.
Then there are integers d, e such that

$$
a-b=d n, \quad b-c=e n
$$

So

$$
a-c=(a-b)+(b-c)=d n+e n=(d+e) n,
$$

proving that $a R c$. So equivalence modulo n is transitive.

5.12

A relation R on $A \times A$ that is

- reflexive,
- symmetrical and
- transitive
is called an equivalence relation on A.
It divides A into equivalence classes: everything in an equivalence class has the relation R to everything in the class, and not to anything in any other equivalence class.
5.13

Example

The relation on $\{1,2,3,4,5,6,7\}$ consisting of the pairs
$(1,1),(1,3),(1,4),(2,2),(2,5),(2,7),(3,1),(3,3),(3,4)$,
$(4,1),(4,3),(4,4),(5,2),(5,5),(5,7),(6,6),(7,2),(7,5)$,
$(7,7)$
is an equivalence relation with three equivalence classes:
$\{1,3,4\}$,
$\{2,5,7\}$,
$\{6\}$.

5.14

Example

If $f: X \rightarrow Y$ is a function, then there is an equivalence relation R on X defined by

$$
a R b \text { if and only if } f(a)=f(b) .
$$

5.15

For example the relation R defined from the function

$f:$| X | Y |
| ---: | ---: |
| 1 | 3 |
| 2 | 2 |
| 3 | 1 |
| 4 | 2 |

has the equivalence classes $\{1\},\{2,4\},\{3\}$.

5.16

Modular arithmetic again

Write \mathbb{Z} for the set of integers

$$
\ldots-2,-1,0,1,2,3, \ldots
$$

Let n be a positive integer and let R be the relation on \mathbb{Z} defined by

$$
a R b \text { if and only if } a \equiv b(\bmod n) .
$$

Then we saw that R is an equivalence relation.
The equivalence class of an integer i is written $[i]$.

We write \mathbb{Z}_{n} for the set of these equivalence classes. \mathbb{Z}_{n} is called the integers $\bmod (u l o) n$.

Now

$$
[-n]=[0]=[n]=[2 n]=[3 n]=\ldots
$$

and

$$
[-n+1]=[1]=[n+1]=[2 n+1]=[3 n+1]=\ldots
$$

So \mathbb{Z}_{n} consists of the n classes $[0],[1], \ldots,[n-1]$.
5.18

The general rule is: in the integers $\bmod n$, to find $[x]$, divide x by n and take the remainder.

Example

In \mathbb{Z}_{4} we have

$$
[4]=[0],[7]=[3],[14]=[2],[36]=[0],[106]=[2] .
$$

What are the following in \mathbb{Z}_{5} ?

$$
[6],[9],[144],[88],[-1],[-8]
$$

We add, subtract and multiply in \mathbb{Z}_{n} just like in \mathbb{Z}, except that we always give the answer as one of $[0], \ldots,[n-1]$.

Example. In \mathbb{Z}_{6},

$$
\begin{aligned}
([3]+[5])([1]-[4]) & =[8] \times[-3] \\
& =[8] \times[3] \\
& =[24] \\
& =[0] .
\end{aligned}
$$

147

5.20

Example from Exam 2003:
Simplify the following expression in arithmetic modulo 12:

$$
([4]-[7])([9]+[8])-[6]([4]+[11])
$$

In \mathbb{Z}_{n} we have, for every number x,

$$
[1] \times[x]=[1 x]=[x]
$$

So [1] behaves just like 1 in ordinary multiplication.
So we can shorten [1] to 1 in \mathbb{Z}_{n}.

5.22

Warning!

Dividing in \mathbb{Z}_{n} is NOT like dividing in \mathbb{Z}.

$$
\frac{a}{b}=c \text { means } a=b \times c
$$

But in \mathbb{Z}, given a and b, we can't always find a c that solves this equation.
Also sometimes we can find more than one value of c that solves it.

For example in \mathbb{Z}_{6} there is no x that solves

$$
[2] \times[x]=[3]
$$

because 2 is even and so 3 would have to be even. So

$$
\frac{[3]}{[2]}
$$

doesn't exist in \mathbb{Z}_{6} !

151
5.24

Also in \mathbb{Z}_{6} we have

$$
[2] \times[0]=[0]=[6]=[2] \times[3],
$$

SO

$$
\frac{[0]}{[2]}=[0] \text { and }=[3] .
$$

Impossible!
So we can't divide [0] by [2] in \mathbb{Z}_{6}.

On the other hand in \mathbb{Z}_{7} we have

$$
\begin{aligned}
1 \times 1 & =1 \\
{[2] \times[4] } & =[8]=1, \\
{[3] \times[5] } & =[15]=1, \\
{[6] \times[6] } & =[36]=1
\end{aligned}
$$

5.27

THE MID-TERM TEST COVERS MATERIAL UP TO THIS POINT.

So in \mathbb{Z}_{7} we have

$$
\frac{1}{1}=1, \frac{1}{[2]}=[4], \frac{1}{[3]}=[5] .
$$

In \mathbb{Z}_{11}, what are

$$
\frac{1}{[2]}, \frac{1}{[3]}, \frac{1}{[5]}, \frac{1}{[8]} ?
$$

