
5.1

Relations and functions
continued
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5.2

Some kinds of binary relation

Many important binary relations are subsets of a product
A2. We call them (binary) relations on A.

Suppose R is a relation on A.
Then we write

aRb

to express that the ordered pair (a, b) is in R.
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5.3

Examples

The relation < on R contains the ordered pairs

(1, 2), (1, 3), (1, 3.24), (−1, 4000)

etc.

The relation � on R is the same as < except that it also
contains

(0, 0), (1, 1), (1.266, 1.266)

etc.
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5.4

If R is a binary relation on A,
we can draw a picture of R by
writing dots for the members of A,
and an arrow from a’s dot to b’s dot when aRb holds.
This picture is called the graph of R.
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5.5

Example: The relation < on the set {1, 2, 3, 4} has the graph

1
2

3
4
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5.6

A relation R on A is called reflexive if

aRa for all a ∈ A.

It is called irreflexive if

there is no a ∈ A with aRa.

So for example < is irreflexive and � is reflexive.

How can you tell from its graph whether a relation R

is reflexive or irreflexive?
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5.7

A relation R on A is called symmetric if

aRb implies bRa, for all a, b ∈ A.

It is called asymmetric if

there are no a, b ∈ A such that aRb and bRa.

Is either of < or � symmetric? asymmetric?

What does the graph of a symmetric relation look like?
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5.8

Example: modular arithmetic

Let n be a positive integer.
When a and b are integers, we write

a ≡ b (mod n)

to mean that a − b is divisible by n,
i.e. there is some integer c such that a − b = cn.
When this equation holds, we also have

b − a = (−c)n

so b ≡ a (mod n).
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5.9

This shows that the relation R on the integers, where

aRb means a ≡ b (mod n),

is a symmetric relation.

We call this relation equivalence modulo n.

Recall that when we count in binary numbers of length m,
we can’t distinguish between two integers that are
equivalent modulo 2m.
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5.10

Suppose R is a binary relation on A.
We say that R is transitive if

aRb and bRc together always imply aRc.

We say that R is intransitive if

aRb and bRc together always imply that not aRc.

What about the graph of a transitive relation?
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5.11

Example

Let n be a positive integer and let R be equivalence
modulo n. Suppose aRb and bRc.
Then there are integers d, e such that

a − b = dn, b − c = en.

So
a − c = (a − b) + (b − c) = dn + en = (d + e)n,

proving that aRc. So equivalence modulo n is transitive.
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5.12

A relation R on A × A that is

• reflexive,

• symmetrical and

• transitive

is called an equivalence relation on A.
It divides A into equivalence classes: everything in an
equivalence class has the relation R to everything in the
class, and not to anything in any other equivalence class.
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5.13

Example

The relation on {1, 2, 3, 4, 5, 6, 7} consisting of the pairs

(1,1), (1,3), (1,4), (2,2), (2,5), (2,7), (3,1), (3,3), (3,4),
(4,1), (4,3), (4,4), (5,2), (5,5), (5,7), (6,6), (7,2), (7,5),
(7,7)

is an equivalence relation with three equivalence classes:

{1,3,4},
{2,5,7},
{6}.
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5.14

Example

If f : X → Y is a function, then there is an equivalence
relation R on X defined by

aRb if and only if f(a) = f(b).

142

5.15

For example the relation R defined from the function

f :

X Y

1 3

2 2

3 1

4 2

has the equivalence classes {1}, {2, 4}, {3}.
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5.16

Modular arithmetic again

Write Z for the set of integers

. . . − 2, −1, 0, 1, 2, 3, . . .

Let n be a positive integer and let R be the relation on Z

defined by

aRb if and only if a ≡ b (mod n).

Then we saw that R is an equivalence relation.

The equivalence class of an integer i is written [i].
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5.17

We write Zn for the set of these equivalence classes.
Zn is called the integers mod(ulo) n.

Now

[−n] = [0] = [n] = [2n] = [3n] = . . .

and

[−n + 1] = [1] = [n + 1] = [2n + 1] = [3n + 1] = . . .

So Zn consists of the n classes [0], [1], . . . , [n − 1].
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5.18

The general rule is: in the integers mod n,
to find [x], divide x by n and take the remainder.

Example

In Z4 we have

[4] = [0], [7] = [3], [14] = [2], [36] = [0], [106] = [2].

What are the following in Z5?

[6], [9], [144], [88], [−1], [−8]
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5.19

We add, subtract and multiply in Zn just like in Z,
except that we always give the answer as one of
[0], . . . , [n − 1].

Example. In Z6,

([3] + [5])([1] − [4]) = [8] × [−3]

= [8] × [3]

= [24]

= [0].
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5.20

Example from Exam 2003:

Simplify the following expression in arithmetic modulo 12:

([4] − [7])([9] + [8]) − [6]([4] + [11])
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5.21

In Zn we have, for every number x,

[1] × [x] = [1x] = [x].

So [1] behaves just like 1 in ordinary multiplication.

So we can shorten [1] to 1 in Zn.
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5.22

Warning!

Dividing in Zn is NOT like dividing in Z.

a

b
= c means a = b × c.

But in Z, given a and b, we can’t always find a c that solves
this equation.
Also sometimes we can find more than one value of c that
solves it.
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5.23

For example in Z6 there is no x that solves

[2] × [x] = [3]

because 2 is even and so 3 would have to be even. So

[3]

[2]

doesn’t exist in Z6!
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5.24

Also in Z6 we have

[2] × [0] = [0] = [6] = [2] × [3],

so

[0]

[2]
= [0] and = [3].

Impossible!

So we can’t divide [0] by [2] in Z6.
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5.25

On the other hand in Z7 we have

1 × 1 = 1,

[2] × [4] = [8] = 1,

[3] × [5] = [15] = 1,

[6] × [6] = [36] = 1.

So in Z7 we have

1

1
= 1,

1

[2]
= [4],

1

[3]
= [5].
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5.26

In Z11, what are

1

[2]
,

1

[3]
,

1

[5]
,

1

[8]
?

154

5.27

THE MID-TERM TEST COVERS MATERIAL UP TO THIS
POINT.
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