Relations and functions

Syllabus

Lookup tables, 1-1 maps, bijection and databases

4.2

A database

Studentid	Year	Code	Surname	Mark
0122	3	G503	Abbulla	56
0134	3	H641	Bosher	88
0277	2	H610	Coffey	34
0281	2	H641	Day	63
0319	1	H600	Eddy	77
0324	1	H655	Fiaz	80
0333	1	H640	Day	71

The titles at the tops of the columns ('Studentid' etc.) are the attributes.
Each attribute names a set, for example 'Year' names the set $\{1,2,3,4\}$ of developmental years of students.
Each row below the top is a record.
It stores data about one individual.

100

4.4

Each record is a member of the product set

$$
\text { Studentid } \times \text { Year } \times \text { Code } \times \text { Surname } \times \text { Mark } \text {. }
$$

So the database is a subset of this 5-dimensional product.
Subsets of products are called relations.
So we have a relational database.
It is 5-ary, i.e. of dimension 5.

Find three candidate keys:

4.6

Example. In our student database,
Studentid is a candidate key.
(Almost certainly it will be the primary key.)
Mark is also a candidate key,
but this is accidental and not safe to use.
Surname is not a candidate key.
But $\{$ Code, Surname $\}$ is a candidate key.
Any others?

A	B	C	D	E	F
1	3	2	5	6	7
1	4	3	6	6	1
4	2	2	1	1	1
5	6	2	4	1	7
5	4	3	7	1	8
6	3	2	3	1	3
7	6	2	9	1	3
7	2	2	8	2	8

104

4.8

Lookup tables

A lookup table is a relational database of dimension 2 where the first attribute is a candidate key.

For 'of dimension 2 ' we usually say binary.

Example: A table of internet country codes

Country	Code
Afghanistan	af
Albania	al
Algeria	dz
Antarctica	aq
Austria	at
Bahrain	bh
etc.	etc.

4.11

A function f from X to Y is written $f: X \rightarrow Y$.
The set X is called the domain of f.
The elements of X are called the indices.
(Mathematicians call them the arguments).
The outputs $f(x)$ are called the values.
The set of all the values of f is called the range of f.
We'll see many examples where the range is not the whole of Y.

4.12

Suppose we have a lookup table with attributes A, B, where every possible value of the key A is listed on the left.
Then the lookup table describes a function $f: A \rightarrow B$.
Each value a of the key is an index, and $f(a)$ is the corresponding value in B.

In principle every function can be described this way (unless it's too large).
4.13

Example: The lookup table of a function $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{4,5,6\}$:

A	B
1	6
2	6
3	4

110
4.14

Why is the following not the lookup table of a function $g: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{4,5,6\}$?

$$
\begin{array}{l|l}
A & B \\
\hline 1 & 6 \\
2 & 6 \\
2 & 5 \\
3 & 4
\end{array}
$$

4.15

Why is the following not the lookup table of a function $h: X \rightarrow Y$ where $X=\{1,2,3\}$ and $Y=\{4,5,6\}$?

X	Y
1	4
2	6

112

4.16

Why is the following not the lookup table of a function $k: S \rightarrow T$ where $S=\{1,2,3\}$ and $T=\{4,5,6\}$?

S	T
1	3
2	4
3	5

4.17

Reverse lookup

Suppose f is a function from X to Y.
We query f by giving an index x in X and asking for $f(x)$.
The opposite process, where we give a value $y \in Y$ and ask for x such that $f(x)=y$, is called reverse lookup.
Reverse lookup can run into two kinds of problem.

114

4.18

First problem: Given $y \in Y$, there may be no $x \in X$ such that $f(x)=y$.

We say that f is onto if every $y \in Y$ is a value of f, i.e. for every $y \in Y$ there is $x \in X$ with $f(x)=y$.

So our first problem is that not all functions are onto.
Example: The function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}
$$

is not onto, because every square is $\geqslant 0$, so we can't do a reverse lookup on -1 .

Second problem: Given $y \in Y$, there can be two or more $x \in X$ such that $f(x)=y$.
In this case a reverse lookup could return a list of the relevant x,
since there is no one right answer.
We say that f is one-to-one (or 1-1) if $f\left(x_{1}\right)=f\left(x_{2}\right)$ always implies $x_{1}=x_{2}$.
So our second problem is that not all functions are one-to-one.
4.20

Example: The function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}-x
$$

is onto, but it isn't $1-1$ since

$$
f(0)=0=f(1)
$$

118

If $f: X \rightarrow Y$ has a lookup table and an inverse f^{-1}, then the lookup table of f^{-1} is the table of f but with left and right reversed.
$\left.\begin{array}{r|r}X & Y \\ \hline 1 & 8 \\ 2 & 7 \\ 3 & 2 \\ 4 & 9\end{array} \quad \begin{array}{c|c}Y & X \\ \hline 8 & 1 \\ & f^{-1}: \begin{array}{l}7 \\ 2\end{array} \\ 2 & 3 \\ & 9\end{array}\right) 4$

120
4.22

When a function $f: X \rightarrow Y$ is one-to-one and onto, we say it is a bijection.

For a bijection $f: X \rightarrow Y$, reverse lookup always works. In fact reverse lookup defines a function $g: Y \rightarrow X$ so that

$$
f(x)=y \text { if and only if } g(y)=x .
$$

This function g is called the inverse of f, written f^{-1}.
4.24

When $f: \mathbb{R} \rightarrow \mathbb{R}$, we can sometimes show that f is a bijection by calculating its inverse:

- Write y for $f(x)$ in the equation for $f(x)$.
- Rearrange the equation so that it reads $x=\ldots$.

Example: $f(x)=4 x-8$.
Write

$$
y=4 x-8
$$

Rearrange and divide by 4 :

$$
\begin{aligned}
4 x & =y+8 \\
x & =\frac{y}{4}+2
\end{aligned}
$$

So the inverse of f is

$$
g: \mathbb{R} \rightarrow \mathbb{R}, \quad g(y)=\frac{y}{4}+2
$$

4.26

Example

Let f be the following function from $\{1,2,3,4\}$ to $\{1,2,3,4\}$:

$$
f(1)=3, f(2)=4, f(3)=4, f(4)=1
$$

Then f is not one-to-one, because $f(2)=f(3)$.
Also it is not onto, because there is no x with $f(x)=2$.

4.27

Example

Let f be the same function as before, namely

$$
f(1)=3, f(2)=4, f(3)=4, f(4)=1
$$

but regarded as a function from $\{1,2,3,4\}$ to $\{1,3,4\}$. Then f is onto, but it is still not one-to-one.
4.28

Composing functions

Given a function $f: X \rightarrow Y$ and a function $g: Y \rightarrow Z$, we can set them end-to-end and get a function $h: X \rightarrow Z$:

So for all $x \in X, h(x)=g(f(x))$.
We write h as $g \circ f$, and we call it the composite of f and g.

Example

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)=x^{2}, g(x)=\sqrt{x^{2}+2}
$$

Then we form $g \circ f$ by substituting $f(x)$ for x in g :

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =\sqrt{f(x)^{2}+2} \\
& =\sqrt{\left(x^{2}\right)^{2}+2} \\
& =\sqrt{x^{4}+2}
\end{aligned}
$$

126
4.30

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ have lookup tables, then we calculate the lookup table of $g \circ f$ by

- taking each x in X,
- looking up $f(x)$ in the table for f,
- then looking up $g(f(x))$ in the table for g.

Example

$f:$| X | Y |
| :---: | :---: |
| 1 | 8 |
| 2 | 7 |
| 3 | 2 |
| 4 | 8 |
| 5 | 2 |

$$
g: \begin{array}{c|c}
Y & Z \\
\hline 2 & 3 \\
3 & 4 \\
5 & 6 \\
7 & 8 \\
8 & 8
\end{array}
$$

$$
g \circ f: \begin{array}{c|c}
X & Z \\
\hline 1 & 8 \\
2 & 8 \\
3 & 3 \\
4 & 8 \\
5 & 3
\end{array}
$$

