Relations and functions

Syllabus

Lookup tables, 1–1 maps, bijection and databases

4.3

The titles at the tops of the columns ('Studentid' etc.) are the *attributes*.

Each attribute names a set, for example 'Year' names the set $\{1, 2, 3, 4\}$ of developmental years of students.

Each row below the top is a *record*. It stores data about one individual.

98

4.2

A database

Studentid	Year	Code	Surname	Mark
0122	3	G503	Abbulla	56
0134	3	H641	Bosher	88
0277	2	H610	Coffey	34
0281	2	H641	Day	63
0319	1	H600	Eddy	77
0324	1	H655	Fiaz	80
0333	1	H640	Day	71

4.4

Each record is a member of the product set

Studentid \times Year \times Code \times Surname \times Mark.

100

So the database is a subset of this 5-dimensional product. Subsets of products are called *relations*. So we have a *relational database*.

It is *5-ary*, i.e. of *dimension 5*.

In most relational databases.

one attribute is used to name the records. This attribute is called the *key* (or *primary key*).

We must never have two records with the same value of the key. So we say a set of attributes, *K*, is a *candidate key* if whenever *r* and *s* are different records, *r* and *s* have different values for at least one attribute in *K*. When *K* contains just one attribute,

we call that attribute a *candidate key*.

102

4.6

Example. In our student database, Studentid is a candidate key. (Almost certainly it will be the primary key.) Mark is also a candidate key, but this is accidental and not safe to use. Surname is not a candidate key. But {Code, Surname} is a candidate key. Any others?

Find three candidate keys:

А	В	С	D	E	F
1	3	2	5	6	7
1	4	3	6	6	1
4	2	2	1	1	1
5	6	2	4	1	7
5	4	3	7	1	8
6	3	2	3	1	3
7	6	2	9	1	3
7	2	2	8	2	8

104

4.8

Lookup tables

A *lookup table* is a relational database of dimension 2 where the first attribute is a candidate key.

For 'of dimension 2' we usually say *binary*.

Example: A table of internet country codes

Country	Code
Afghanistan	af
Albania	al
Algeria	dz
Antarctica	aq
Austria	at
Bahrain	bh
etc.	etc.

106

4.10

A *function* from *X* to *Y*:

Every input x from X yields an output f(x) in Y. This output f(x) depends only on the input x.

4.11

A function f from X to Y is written $f : X \to Y$.

The set *X* is called the *domain* of *f*. The elements of *X* are called the *indices*. (Mathematicians call them the *arguments*).

The outputs f(x) are called the *values*. The set of all the values of f is called the *range* of f. We'll see many examples where the range is not the whole of Y.

108

4.12

(unless it's too large).

Suppose we have a lookup table with attributes A, B, where every possible value of the key A is listed on the left. Then the lookup table describes a function $f : A \rightarrow B$. Each value a of the key is an index, and f(a) is the corresponding value in B. In principle every function can be described this way

Example: The lookup table of a function $f : A \rightarrow B$ where $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$:

4.15

Why is the following not the lookup table of a function $h: X \to Y$ where $X = \{1, 2, 3\}$ and $Y = \{4, 5, 6\}$?

X	Y
1	4
2	6

112

110

4.14

Why is the following not the lookup table of a function $g: A \rightarrow B$ where $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$?

A	B	
1	6	
2	6	
2	5	
3	4	

4.16

Why is the following not the lookup table of a function $k: S \rightarrow T$ where $S = \{1, 2, 3\}$ and $T = \{4, 5, 6\}$?

S	T
1	3
2	4
3	5

Reverse lookup

Suppose f is a function from X to Y.

We *query* f by giving an index x in X and asking for f(x).

The opposite process, where we give a value $y \in Y$ and ask for x such that f(x) = y, is called *reverse lookup*.

Reverse lookup can run into two kinds of problem.

4.19

Second problem: Given $y \in Y$, there can be two or more $x \in X$ such that f(x) = y. In this case a reverse lookup could return a list of the relevant x, since there is no one right answer.

We say that f is *one-to-one* (or 1-1) if $f(x_1) = f(x_2)$ always implies $x_1 = x_2$. So our second problem is that not all functions are one-to-one.

114

4.18

First problem: Given $y \in Y$, there may be no $x \in X$ such that f(x) = y.

We say that f is *onto* if every $y \in Y$ is a value of f, i.e. for every $y \in Y$ there is $x \in X$ with f(x) = y. So our first problem is that not all functions are onto.

Example: The function

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$$

is not onto, because every square is ≥ 0 , so we can't do a reverse lookup on -1.

116

4.20

Example: The function

$$f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 - x$$

is onto, but it isn't 1–1 since

f(0) = 0 = f(1).

118

4.22

When a function $f : X \to Y$ is one-to-one and onto, we say it is a *bijection*.

For a bijection $f : X \to Y$, reverse lookup always works. In fact reverse lookup defines a function $g : Y \to X$ so that

f(x) = y if and only if g(y) = x.

This function g is called the *inverse* of f, written f^{-1} .

4.23

If $f : X \to Y$ has a lookup table and an inverse f^{-1} , then the lookup table of f^{-1} is the table of f but with left and right reversed.

120

4.24

When $f : \mathbb{R} \to \mathbb{R}$, we can sometimes show that f is a bijection by calculating its inverse:

- Write y for f(x) in the equation for f(x).
- Rearrange the equation so that it reads $x = \dots$

Example: f(x) = 4x - 8.

Write

$$y = 4x - 8.$$

Rearrange and divide by 4:

$$4x = y + 8.$$
$$x = \frac{y}{4} + 2.$$

So the inverse of *f* is

$$g: \mathbb{R} \to \mathbb{R}, \ g(y) = \frac{y}{4} + 2.$$

122

4.26

Example

Let f be the following function from $\{1, 2, 3, 4\}$ to $\{1, 2, 3, 4\}$:

f(1) = 3, f(2) = 4, f(3) = 4, f(4) = 1.

Then *f* is not one-to-one, because f(2) = f(3). Also it is not onto, because there is no *x* with f(x) = 2.

4.27

Example

Let *f* be the same function as before, namely

f(1) = 3, f(2) = 4, f(3) = 4, f(4) = 1,

but regarded as a function from $\{1, 2, 3, 4\}$ to $\{1, 3, 4\}$. Then *f* is onto, but it is still not one-to-one.

124

4.28

Composing functions

Given a function $f : X \to Y$ and a function $g : Y \to Z$, we can set them end-to-end and get a function $h : X \to Z$:

So for all $x \in X$, h(x) = g(f(x)). We write h as $g \circ f$, and we call it the *composite* of f and g.

Example

Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be given by

$$f(x) = x^2, \ g(x) = \sqrt{x^2 + 2}.$$

Then we form $g \circ f$ by substituting f(x) for x in g:

$$g \circ f)(x) = g(f(x))$$

= $\sqrt{f(x)^2 + 2}$
= $\sqrt{(x^2)^2 + 2}$
= $\sqrt{x^4 + 2}$.

4.31

Example

126

128

4.30

If $f : X \to Y$ and $g : Y \to Z$ have lookup tables, then we calculate the lookup table of $g \circ f$ by

- taking each *x* in *X*,
- looking up f(x) in the table for f,
- then looking up g(f(x)) in the table for g.