The Law of Large Numbers (LLN)

The LLN is one of the most important results in the classical probability theory. We shall discuss here the so called weak form of this Law.

Theorem 1. Let \(X_1, X_2, ... \) be a sequence of i.i.d. random variables each with finite mean \(E(X_j) = a \) and finite variance \(Var(X_j) = \sigma^2 \). Then for any \(\varepsilon > 0 \)

\[
P\left(\left| \frac{1}{n} \sum_{j=1}^{n} X_j - a \right| \geq \varepsilon \right) \to 0 \text{ as } n \to \infty.
\]

The proof of this theorem will be given later. In order to carry it out we need the following lemmas.

Lemma 1 (Markov’s Inequality). If \(Y \) is a random variable s. t. \(Y \geq 0 \) and \(E(Y) < \infty \) then for any \(\delta > 0 \) the following inequality holds:

\[
P(Y \geq \delta) \leq \frac{E(Y)}{\delta} \tag{1}
\]

Proof. Define a r.v. \(Z \) by setting

\[
Z = \begin{cases}
1 & \text{if } Y \geq \delta \\
0 & \text{if } Y < \delta
\end{cases}
\]

Note that \(Y \geq \delta Z \). To see this, consider two cases: \(Y \geq \delta \) and \(Y < \delta \). In the first case the inequality holds because \(Y \geq \delta \equiv \delta Z \). In the second case the inequality holds because \(Y \geq 0 \equiv \delta Z \).

But then also \(E(Y) \geq E(\delta Z) = \delta E(Z) \). Note that \(E(Z) = P(Z = 1) = P(Y \geq \delta) \) and hence \(E(Y) \geq \delta P(Y \geq \delta) \) which is equivalent to the statement of the Lemma. \(\square \)

Exercise Prove that For any \(h > 0 \), \(P(|X| \geq h) \leq \frac{E[|X|]}{h} \). Hint: apply (1) to \(Y = |X| \).

Lemma 2: Chebyshev’s Inequality. If \(E(\xi) = a \) and \(Var(\xi) = \sigma^2 \), which are finite, then for any \(\varepsilon > 0 \)

\[
P(|\xi - a| \geq \varepsilon) \leq \frac{Var(\xi)}{\varepsilon^2}. \tag{2}
\]

Proof. Obviously, \(P(|\xi - a| \geq \varepsilon) = P((\xi - a)^2 \geq \varepsilon^2) \). Since \((\xi - a)^2 \geq 0\), we can apply (1) with \(Y \) replaced by \((\xi - a)^2\) and \(\delta = \varepsilon^2 \). Hence \(P(|\xi - a| \geq \varepsilon) \leq \frac{E((\xi - a)^2)}{\varepsilon^2} = \frac{Var(\xi)}{\varepsilon^2}. \) \(\square \)

Lemma 3. If \(X_1, X_2, ..., X_n \) is a sequence of r.v.’s with \(Cov(X_j, X_i) = 0 \) for all \(j \neq i \), then

\[
Var\left(\sum_{j=1}^{n} X_j \right) = \sum_{j=1}^{n} Var(X_j). \tag{3}
\]
Proof. By the definition of variance, \(\text{Var}(\sum_{j=1}^{n} X_j) = E[\sum_{j=1}^{n} X_j - E(\sum_{j=1}^{n} X_j)]^2 = E[\sum_{j=1}^{n} (X_j - E(X_j))^2] = \sum_{j=1}^{n} \text{Var}(X_j) + 2 \sum_{1 \leq j < i \leq n} \text{Cov}(X_j, X_i) = \sum_{j=1}^{n} \text{Var}(X_j). \) \(\square \)

Proof of the LLN (Theorem 1). Set \(\xi = \frac{1}{n} \sum_{j=1}^{n} X_j \) and note that \(E[\xi] = \frac{1}{n} \sum_{j=1}^{n} E(X_j) = \frac{1}{n} na = a. \) Hence, by Chebyshev’s inequality (2),

\[
P(|\frac{1}{n} \sum_{j=1}^{n} X_j - a| \geq \epsilon) = P(|\xi - a| \geq \epsilon) \leq \frac{\text{Var}(\frac{1}{n} \sum_{j=1}^{n} X_j)}{\epsilon^2}.
\]

Using the properties of the variance and (3) we obtain

\[
P(|\frac{1}{n} \sum_{j=1}^{n} X_j - a| \geq \epsilon) \leq \frac{\text{Var}(\sum_{j=1}^{n} X_j)}{n^2 \epsilon^2} = \frac{\sum_{j=1}^{n} \text{Var}(X_j)}{n^2 \epsilon^2} = \frac{n \sigma^2}{n^2 \epsilon^2} = \frac{\sigma^2}{n \epsilon^2} \to 0 \text{ as } n \to \infty. \ \square
\]

Note. The following definition is useful: we say that a sequence \(S_n \) of r.v.’s converges in probability to \(a \) if \(\lim_{n \to \infty} P(|S_n - a| \geq \epsilon) = 0 \) for any \(\epsilon > 0. \) Theorem 1 thus states that the sequence \(\frac{1}{n} \sum_{j=1}^{n} X_j \) converges in probability to \(a \) as \(n \) tends to infinity.

Bernoulli’s Law of Large Numbers.

Theorem 2. Consider a series of \(n \) independent Bernoulli trials and let \(p \) be the probability of ‘success’ in each trial. Denote by \(v_n \) the total number of ‘success’ in \(n \) trials. Then \(\frac{v_n}{n} \) converges in probability to \(p \) as \(n \) tends to infinity:

\[
\lim_{n \to \infty} P(|\frac{v_n}{n} - p| \geq \epsilon) = 0 \text{ for any } \epsilon > 0.
\]

Proof. Let \(X_j \) be the number of successes in the \(j^{th} \) trial. Obviously \(X_j \) are independent r.v.’s such that \(P(X_j = 1) = p \) and \(P(X_j = 0) = 1 - p \equiv q \) and \(v_n = \sum_{j=1}^{n} X_j. \) Obviously \(E(X_j) = p, \var(X_j) = pq \) and, by Theorem 1, \(\frac{v_n}{n} \equiv \frac{1}{n} \sum_{j=1}^{n} X_j \) converges in probability to \(p \) as \(n \to \infty. \) \(\square \)

In fact the proof of Theorem 1 is based on an estimate which is of its own importance, namely for any \(\epsilon > 0 \)

\[
P(|\frac{v_n}{n} - p| \geq \epsilon) \leq \frac{pq}{n \epsilon^2}.
\]

Some examples using the inequalities.

1. If \(X \) is a non-negative random variable with \(E(X) = \mu > 0, \) then it follows from Markov’s inequality with \(\delta = N \mu \) that \(P(X > N \mu) \leq \frac{\mu}{N \mu} = \frac{1}{N} \) for any \(N > 0. \)

2. If \(\sigma^2 = 0 \) then from Chebyshev’s inequality for any \(h > 0, \) \(P(|X - \mu| < h) = 1 - P(|X - \mu| \geq h) \geq 1 - \frac{\sigma^2}{h^2} = 1. \) Hence \(P(X = \mu) = \lim_{h \to 0} P(|X - \mu| < h) = 1. \) So variance zero implies the random variable takes a single value with probability 1.

3. When \(\sigma^2 > 0 \) Chebyshev’s inequality gives a lower bound on the probability that \(X \) lies within \(k \) standard deviations from the mean. Take \(\epsilon = k \sigma. \) Then
have a m.g.f. which exists in an open region about zero. Let
\[F \text{ is the m.g.f. of a distribution with c.d.f. } F, \text{ then } \]
\[\frac{1}{n} \sum_{j=1}^{n} X_j. \]
By (2) with \(\epsilon = 0.5 \) we have
\[P(|X_1 - \mu| < k\sigma) = 1 - \frac{\sigma^2}{(k\sigma)^2} = 1 - \frac{1}{k^2} \]
4. When \(\sigma = 1 \), how large a sample is needed if we want to be at least 95% certain that the sample mean lies within 0.5 of the true mean? We shall use Chebyshev’s inequality to estimate this number. Remember that the sample mean is defined as \(\bar{X}_n = \frac{1}{n} \sum_{j=1}^{n} X_j \). By (2) \(\epsilon = 0.5 \) we have
\[P(|\bar{X}_n - \mu| < 0.5) = 1 - (|\bar{X}_n - \mu| \geq 0.5) \geq 1 - \frac{\sigma^2}{n(0.5)^2} = 1 - \frac{4}{n} \geq 0.95 \]
provided \(n \geq 4 \div 0.05 = 80 \). So a sample of size 80 would be sufficient for the purpose.

A remark on application to statistics.

Consider a sequence of i.i.d. random variables \(X_1, X_2, \ldots \) and let \(Y_n = g(X_1, \ldots, X_n) \) be an estimator of a parameter \(\theta \) of the common distribution of the \(X \)'s. Let \(Y_n \) be an unbiased estimator of \(\theta \) which by definition means that \(E[Y_n] = \theta \). Let \(\sigma_n^2 = \text{Var}(Y_n) \). Then for any \(\epsilon > 0 \), using Chebyshev’s inequality for \(Y_n \), we obtain
\[P(|Y_n - \theta| \geq \epsilon) \leq \frac{\sigma_n^2}{\epsilon^2}. \]
This suggests that when comparing unbiased estimators we should choose the one with smallest variance. We would also like our estimator to be as accurate as we please provided we take a large enough sample. If \(\lim_{n \to \infty} \sigma_n^2 = 0 \) we can ensure this, since \(\lim_{n \to \infty} P(|Y_n - \theta| \geq \epsilon) = 0 \) for any \(\epsilon > 0 \), i.e. \(Y_n \) converges in probability to \(\theta \) (and \(Y_n \) is said to be a consistent estimator of \(\theta \)).

The Central Limit Theorem (CLT).

Let \(X_1, X_2, \ldots \) be a sequence of i.i.d. random variables each with finite mean \(\mu \) and finite variance \(\sigma^2 \) and let \(\bar{X}_n = \frac{1}{n} \sum_{j=1}^{n} X_j \) be the sample mean based on \(X_1, \ldots, X_n \). Then we can find an approximation for \(P(\bar{X}_n \leq A) \) when \(n \) is large by writing the event for \(X_n \) in terms of the standardized variable
\[Z_n = \frac{\sqrt{n}(X_n - \mu)}{\sigma} \text{ (i.e. } P(\bar{X}_n \leq A) = P\left(Z_n \leq \frac{\sqrt{n}(A - \mu)}{\sigma}\right) \text{) and proving that} \]
\[\lim_{n \to \infty} P(Z_n \leq z) = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx \text{ which is the c.d.f. of } N(0, 1). \]
The proof of this result uses the m.g.f. and the following lemma.

Lemma. Let \(Z_1, Z_2, \ldots \) be a sequence of random variables. If \(\lim_{n \to \infty} M_{Z_n}(t) = M(t) \), which is the m.g.f. of a distribution with c.d.f. \(F \), then \(\lim_{n \to \infty} F_{Z_n}(z) = F(z) \) at all points \(z \) for which \(F(z) \) is continuous.

Theorem (The Central Limit Theorem). Let \(X_1, X_2, \ldots \) be a sequence of i.i.d. random variables with finite mean \(E(X_j) = \mu \) and finite variance \(\text{Var}(X_j) = \sigma^2 \). Moreover, suppose that \(X_j \) have a m.g.f. which exists in an open region about zero. Let
\[Z_n = \frac{\sqrt{n}(X_n - \mu)}{\sigma} \equiv \frac{\sum_{j=1}^{n} X_j - n\mu}{\sqrt{n}\sigma} \]
then
\[\lim_{n \to \infty} P(Z_n \leq z) = \Phi(z). \]

Proof. (This prof was not explained in lectures and is not examinable.) Let \(U_j = (X_j - \mu)/\sigma \) and let \(M_U(t) \) be the common m.g.f. Then \(M_U(t) = e^{-t\mu/\sigma}M_X(t/\sigma) \) exists in an open interval
about \(t = 0, M(0) = 1, M'(0) = E[U] = 0 \) and \(M''(0) = E[U^2] = Var(U) = 1 \). So \(U_1, U_2, \ldots \) are i.i.d. with mean zero and variance one. Now

\[
M_{Z_n}(t) = E \left[e^{\sum_{j=1}^n U_j / \sqrt{n}} \right] = \prod_{j=1}^n E \left[e^{U_j / \sqrt{n}} \right] = (M_U(t / \sqrt{n}))^n
\]

Taking logs to base \(e \) gives \(\ln(M_{Z_n}(t)) = n(\ln(M_U(t / \sqrt{n}))) \). Now let \(x = 1 / \sqrt{n} \) and use L'Hopital's rule. Then

\[
\lim_{n \to \infty} n \ln(M_U(t / \sqrt{n})) = \lim_{x \to 0} \frac{\ln(M_U(x t))}{x^2} = \lim_{x \to 0} \frac{tM'_U(x t)/M_U(x t)}{2x} = \lim_{x \to 0} \frac{t^2(M''_U(x t)M_U(x t) - (M'_U(x t))^2) / (M_U(x t))^2}{2}
\]

\[
= \frac{t^2(M''_U(0)M_U(0) - (M'_U(0))^2)}{2(M_U(0))^2} = \frac{t^2}{2}
\]

Hence \(\lim_{t \to \infty} \ln(M_{Z_n}(t)) = t^2 / 2 \) and so \(\lim_{t \to \infty} M_{Z_n}(t) = e^{t^2 / 2} \). Since this is the m.g.f. of the \(N(0, 1) \) distribution, using the lemma proves that \(\lim_{n \to \infty} P(Z_n \leq z) = \Phi(z) = \int_{-\infty}^z \frac{1}{\sqrt{2\pi}} e^{-x^2 / 2} \, dx \). \(\square \)