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The bivariate and multivariate normal distribution.

Definition. Two r.v.’s (X ,Y ) have a bivariate normal distribution N(µ1,µ2,σ2
1,σ

2
2,ρ) if their

joint p.d.f. is

fX ,Y (x,y) =
1

2πσ1σ2
√

(1−ρ2)
e

−1
2(1−ρ2)

[(
x−µ1

σ1

)2−2ρ
(

x−µ1
σ1

)(
y−µ2

σ2

)
+

(
y−µ2

σ2

)2
]

(1)

for all x,y. The parameters µ1,µ2 may be any real numbers, σ1 > 0, σ2 > 0, and −1≤ ρ≤ 1.

It is convenient to rewrite (1) in the form

fX ,Y (x,y) = ce−
1
2 Q(x,y), where c =

1

2πσ1σ2
√

(1−ρ2)
and

Q(x,y) = (1−ρ2)−1

[(
x−µ1

σ1

)2

−2ρ
(

x−µ1

σ1

)(
y−µ2

σ2

)
+

(
y−µ2

σ2

)2
]

(2)

Statement. The marginal distributions of N(µ1,µ2,σ2
1,σ

2
2,ρ) are normal with r.v.’s X and Y

having density functions

fX(x) =
1√

2πσ1
e
− (x−µ1)2

2σ2
1 , fY (y) =

1√
2πσ2

e
− (y−µ2)2

2σ2
2 .

Proof. The expression (2) for Q(x,y) can be rearranged as follows:

Q(x,y) =
1

1−ρ2

[(
x−µ1

σ1
−ρ

y−µ2

σ2

)2

+(1−ρ2)
(

y−µ2

σ2

)2
]

=
(x−a)2

(1−ρ2)σ2
1
+

(y−µ2)2

σ2
2

,

(3)
where a = a(y) = µ1 +ρσ1

σ2
(y−µ2). Hence

fY (y) =
∫ ∞

−∞
fX ,Y (x,y)dx = ce

− (y−µ2)2

2σ2
2 ×

∫ ∞

−∞
e
− (x−a)2

2(1−ρ2)σ2
1 dx =

1√
2πσ2

e
− (y−µ2)2

2σ2
2 ,

where the last step makes use of the formula
∫ ∞
−∞ e−

(x−a)2

2σ2 dx =
√

2πσ with σ = σ1
√

1−ρ2. 2

Exercise. Derive the formula for fX(x).

Corollaries.

1. Since X ∼ N(µ1,σ2
1), Y ∼ N(µ2,σ2

2), we know the meaning of four parameters involved into
the definition of the normal distribution, namely

E(X) = µ1, Var(X) = σ2
1, E(Y ) = µ2, Var(X) = σ2

2.

2. X |(Y = y) is a normal r.v. To verify this statement we substitute the necessary ingredients
into the formula defining the relevant conditional density:

fX |Y (x|y) =
fX ,Y (x,y)

fY (y)
=

1√
2π(1−ρ2)σ1

e
− (x−a(y))2

2σ2
1(1−ρ2) .
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In other words, X |(Y = y)∼ N(a(y),(1−ρ2)σ2
1). Hence:

3. E(X |Y = y) = a(y) or, equivalently, E(X |Y ) = µ1 + ρσ1
σ2

(Y − µ2). In particular, we see that
E(X |Y ) is a linear function of Y .

4. E(XY ) = σ1σ2ρ+µ1µ2.

Proof. E(XY ) = E[E(XY |Y )] = E[Y E(X |Y )] = E[Y (µ1 +ρσ1
σ2

(Y −µ2)] = µ1E(Y )+
ρσ1

σ2
[E(Y 2)−µ2E(Y )] = µ1µ2 +ρσ1

σ2
[E(Y 2)−µ2

2] = µ1µ2 +ρσ1
σ2

Var(Y ) = σ1σ2ρ+µ1µ2. 2

5. Cov(X ,Y ) = σ1σ2ρ. This follows from Corollary 4 and the formula Cov(X ,Y ) = E(XY )−
E(X)E(X).

6. ρ(X ,Y ) = ρ. In words: ρ is the correlation coefficient of X , Y . This is now obvious from the
definition ρ(X ,Y ) = Cov(X ,Y )√

Var(X)var(Y )
.

Exercise. Show that X and Y are independent iff ρ = 0. (We proved this in the lecture; it is
easily seen from either the joint p.d.f.)

Remark. It is possible to show that the m.g.f. of X ,Y is

MX ,Y (t1, t2) = e(µ1t1+µ2t2)+ 1
2 (σ2

1t2
1+2ρσ1σ2t1t2+σ2

2t2
2 )

Many of the above statements follow from it. (To actually do this is a very useful exercise.)

The Multivariate Normal Distribution.

Using vector and matrix notation. To study the joint normal distributions of more than two
r.v.’s, it is convenient to use vectors and matrices. But let us first introduce these notations for
the case of two normal r.v.’s X1,X2. We set

X =
(

X1
X2

)
; x =

(
x1
x2

)
; t =

(
t1
t2

)
; m =

(
µ1
µ2

)
; V =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)

Then m is the vector of means and V is the variance-covariance matrix. Note that |V| =
σ2

1σ2
2(1−ρ2) and

V−1 =
1

(1−ρ2)

( 1
σ2

1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2

2

)

Hence fX(x) = 1
(2π)2/2|V|1/2 e−

1
2 (x−m)T V−1(x−m) for all x. Also MX(t) = etT m+ 1

2 tT Vt.

We again use matrix and vector notation, but now there are n random variables so that X, x, t
and m are now n-vectors with ith entries Xi, xi, ti and µi and V is the n×n matrix with iith entry
σ2

i and i jth entry (for i 6= j) σi j. Note that V is symmetric so that VT = V.
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The joint p.d.f. is fX(x) = 1
(2π)n/2|V|1/2 e−

1
2 (x−m)T V−1(x−m) for all x. We say that X∼ N(m,V).

We can find the joint m.g.f. quite easily.

MX(t)= E
[
e∑n

j=1 t jX j
]
= E[etT X] =

∫ ∞

−∞
...

∫ ∞

−∞

1
(2π)n/2|V|1/2 e−

1
2((x−m)T V−1(x−m)−2tT x)dx1...dxn

We do the equivalent of completing the square, i.e. we write

(x−m)T V−1(x−m)−2tT x = (x−m−a)T V−1(x−m−a)+b

for a suitable choice of the n-vector a of constants and a constant b. Then

MX(t) = e−b/2
∫ ∞

−∞
...

∫ ∞

−∞

1
(2π)n/2|V|1/2 e−

1
2 (x−m−a)T V−1(x−m−a)dx1...dxn = e−b/2.

We just need to find a and b. Expanding we have

((x−m)−a)T V−1((x−m)−a)+b
= (x−m)T V−1(x−m)−2aT V−1(x−m)+aT V−1a+b
= (x−m)T V−1(x−m)−2aT V−1x+

[
2aT V−1m+aT V−1a+b

]

This has to equal (x−m)T V−1(x−m)− 2tT x for all x. Hence we need aT V−1 = tT and
b =−[

2aT V−1m+aT V−1a
]
. Hence a = Vt and b =−[

2tT m+ tT Vt
]
. Therefore

MX(t) = e−b/2 = etT m+ 1
2 tT Vt

Results obtained using the m.g.f.

1. Any (non-empty) subset of multivariate normals is multivariate normal. Simply put t j = 0 for
all j for which X j is not in the subset. For example MX1(t1) = MX1,...,Xn(t1,0, ...,0) = et1µ1+t2

1 σ2
1/2.

Hence X1 ∼ N(µ1,σ2
1). A similar result holds for Xi. This identifies the parameters µi and σ2

i as
the mean and variance of Xi. Also

MX1,X2(t1, t2) = MX1,...,Xn(t1, t2,0, ...,0) = et1µ1+t2µ2+ 1
2 (t2

1 σ2
1+2σ12t1t2+σ2

2t2
2 )

Hence X1 and X2 have bivariate normal distribution with σ12 = Cov(X1,X2). A similar result
holds for the joint distribution of Xi and X j for i 6= j. This identifies V as the variance-covariance
matrix for X1, ...,Xn.
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2. X is a vector of independent random variables iff V is diagonal (i.e. all off-diagonal entries
are zero so that σi j = 0 for i 6= j).

Proof. From (1), if the X ′s are independent then σi j = Cov(Xi,X j) = 0 for all i 6= j, so that V is
diagonal.

If V is diagonal then tT Vt = ∑n
j=1 σ2

jt
2
j and hence

MX(t) = etT m+ 1
2 tT Vt =

n

∏
j=1

(
eµ jt j+ 1

2 σ2
j t

2
j /2

)
=

n

∏
j=1

MX j(t j)

By the uniqueness of the joint m.g.f., X1, ...,Xn are independent.

3. Linearly independent linear functions of multivariate normal random variables are multivari-
ate normal random variables. If Y = AX+b, where A is an n×n non-singular matrix and b is
a (column) n-vector of constants, then Y∼ N(Am+b,AVAT ).

Proof. Use the joint m.g.f.

MY(t) = E[etT Y] = E[etT AX+b] = etT bE[e(AT t)T X] = etT bMX(AT t)

= etT be(AT t)T m+ 1
2 (AT t)T V(AT t) = etT (Am+b)+ 1

2 tT (AVAT )t

This is just the m.g.f. for the multivariate normal distribution with vector of means Am + b
and variance-covariance matrix AVAT . Hence, from the uniqueness of the joint m.g.f, Y ∼
N(Am+b,AVAT ).

Note that from (2) a subset of the Y ′s is multivariate normal.

NOTE. The results concerning the vector of means and variance-covariance matrix for linear
functions of random variables hold regardless of the joint distribution of X1, ...,Xn.

We define the expectation of a vector of random variables X, E[X] to be the vector of the
expectations and the expectation of a matrix of random variables Y, E[Y], to be the matrix of
the expectations. Then the variance-covariance matrix of X is just E[(X−E[X])(X−E[X])T ].

The following results are easily obtained:

(i) Let A be an m×n matrix of constants, B be an m× k matrix of constants and Y be an n× k
matrix of random variables. Then E[AY+B] = AE[Y]+B.

Proof. The i jth entry of E[AY + B] is E[∑n
r=1 AirYr j + Bi j] = ∑n

r=1 AirE[Yr j]+ Bi j, which is the
i jth entry of AE[Y]+B. The result is then immediate.

(ii) Let C be a k×m matrix of constants and Y be an n× k matrix of random variables. Then
E[YC] = E[Y]C.
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Proof. Just transpose the equation. The result then follows from (i).

Hence if Z = AX + b, where A is an m× n matrix of constants, b is an m-vector of constants
and X is an n-vector of random variables with E[X] = µ and variance-covariance matrix V, then

E[Z] = E[AX+b] = AE[X]+b = Aµ+b

Also the variance-covariance matrix for Y is just

E[(Y−E[Y])(Y−E[Y])T ] = E[A(X−µ)(X−µ)T AT ] = AE[(X−µ)(X−µ)T ]AT = AVAT

Example. Suppose that E[X1] = 1, E[X2] = 0, Var(X1) = 2, Var(X2) = 4 and Cov(X1,X2) = 1.
Let Y1 = X1 + X2 and Y2 = X1 +aX2. Find the means, variances and covariance and hence find
a so that Y1 and Y2 are uncorrelated.

Writing in vector and matrix notation we have E[Y] = Am and the variance-covariance matrix
for Y is just AVAT where

m =
(

1
0

)
V =

(
2 1
1 4

)
A =

(
1 1
1 a

)

Therefore

Am =
(

1 1
1 a

)(
1
0

)
=

(
1
1

)

AVAT =
(

1 1
1 a

)(
2 1
1 4

)(
1 1
1 a

)
=

(
8 3+5a
3+5a 2+2a+4a2

)

Hence Y1 and Y2 have means 1 and 1, variances 8 and 2+2a+4a2 and covariance 3+5a. They
are therefore uncorrelated if 3+5a = 0, i.e. if a =−3

5 .
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