Research Talk for Paris Trip

Filip Bonja

1-3 April 2019

1 Introduction

My research focuses on analyzing the following Langevin equation:

$$
\begin{equation*}
\dot{X}_{t}=-\gamma X_{t}+\xi_{t} \tag{1.1}
\end{equation*}
$$

where we work on a special stochastic process $\left(\xi_{t}\right)_{t \geq 0}$, called Non-Markovian and Non-Gaussian (NMNG) noise, defined by;

$$
\begin{equation*}
\xi_{t}=\sum_{i=1}^{N_{t}} A_{i} h\left(t-T_{i}\right) \tag{1.2}
\end{equation*}
$$

for iid random variables A_{i} and $T_{i} \sim U(0, t)$ and N_{t} forms the Poisson process. In practice the term T_{i} delays the memory kernel h and gives rise to memory effects to the NMNG noise ξ_{t}, hence the non-Markovianity.

Our specific aims are:

1. Analyzing the behaviour of the NMNG noise ξ_{t}.
2. Behavior of NMNG noise and X_{t} under different memory kernels h.
3. Finding the joint PDF of X_{t} and ξ_{t}. For the last point, we aim to generalize the van Kampen equation ${ }^{1}$ governing the evolution of the joint PDF of X_{t} under Gaussian white noise, $\mathrm{d} W_{t}$. By using $\mathrm{d} W_{t}$ as the noise, the resulting solution X_{t} of $\dot{X}_{t}=-\gamma X_{t}+\sigma \mathrm{d} W_{t}$ forms the so-called Ornstein-Uhlenbeck process.
4. Finding the solution X_{t}.
5. Finding the characteristics of X_{t} such as its $\operatorname{MSD}\left\langle X_{t}^{2}\right\rangle$ or more generally the auto-correlation $\left\langle X_{t} X_{t+\tau}\right\rangle$.
6. Finding the long-term behavior of ξ_{t}. Here, we aim to show convergence in distribution of ξ_{t} to Lévy processes, in detail Compound Poisson process and Brownian motion.

For the duration of the talk I will discuss the method of finding the characteristic functional of ξ_{t} and therefore X_{t} and use that to get the above-mentioned aims.

I will try to make this talk as approachable and fun as possible :) but I suggest you, especially to those without any background in stochastic calculus, to have some sort of understanding of the above-mentioned italized points as well as Ito's Lemma and Kolmogorov Forward Equation (aka Fokker-Plank Equation). Other cool papers to read:

- Z. Physik B 31, 407-416 (1978) by P Hanngi (for generalized Langevin equations)
- J. Phys. A: Math Gen. 30, 8427-8444 (1997) by M Caceres (for more information on the Ornstein-Uhlenbeck process)
- Physical Review E 58:1, 919-924 (1998) by A Fulinski (for non-Markovianity application)

[^0]
[^0]: ${ }^{1}$ If interested refer to p. 5 of van Kampen's paper here: http://www.sbfisica.org.br/bjp/files/v28_90.pdf

