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1.10.7 Bivariate Normal Distribution

Figure 1.2: Bivariate Normal pdf

Here we use matrix notation. A bivariate rv is treated as a random vector

X =

(
X1

X2

)

.

The expectation of a bivariate random vector is written as

µ = EX = E

(
X1

X2

)

=

(
µ1

µ2

)

and its variance-covariance matrix is

V =

(
var(X1) cov(X1, X2)

cov(X2, X1) var(X2)

)

=

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

.

Then the joint pdf of a normal bi-variate rvX is given by

fX(x) =
1

2π
√

det(V )
exp

{

−1

2
(x− µ)TV −1(x− µ)

}

, (1.18)

wherex = (x1, x2)
T.

The determinant ofV is

detV = det

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

= (1− ρ2)σ2
1σ

2
2.
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Hence, the inverse ofV is

V −1 =
1

detV

(
σ2
2 −ρσ1σ2

−ρσ1σ2 σ2
1

)

=
1

1− ρ2

(
σ−2
1 −ρσ−1

1 σ−1
2

−ρσ−1
1 σ−1

2 σ−2
2

)

.

Then the exponent in formula (1.18) can be written as

− 1

2
(x− µ)TV −1(x− µ) =

= − 1

2(1− ρ2)
(x1 − µ1, x2 − µ2)

(
σ−2
1 −ρσ−1

1 σ−1
2

−ρσ−1
1 σ−1

2 σ−2
2

)(
x1 − µ
x2 − µ

)

= − 1

2(1− ρ2)

(
(x1 − µ1)

2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

)

.

So, the joint pdf of the two-dimensional normal rvX is

fX(x) =
1

2πσ1σ2

√

(1− ρ2)

× exp

{ −1

2(1− ρ2)

(
(x1 − µ1)

2

σ2
1

− 2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2
+

(x2 − µ2)
2

σ2
2

)}

.

Note that whenρ = 0 it simplifies to

fX(x) =
1

2πσ1σ2
exp

{

−1

2

(
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

)}

,

which can be written as a product of the marginal distributions ofX1 andX2.
Hence, ifX = (X1, X2)

T has a bivariate normal distribution andρ = 0 then the
variablesX1 andX2 are independent.

1.10.8 Bivariate Transformations

Theorem 1.17.Let X and Y be jointly continuous random variables with joint
pdf fX,Y (x, y) which has support on S ⊆ R

2. Consider random variables U =
g(X, Y ) and V = h(X, Y ), where g(·, ·) and h(·, ·) form a one-to-one mapping
fromS to D with inverses x = g−1(u, v) and y = h−1(u, v)which have continuous
partial derivatives. Then, the joint pdf of (U, V ) is

fU,V (u, v) = fX,Y

(
g−1(u, v), h−1(u, v)

)
|J |,
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where, the Jacobian of the transformation J is

J = det

(
∂g−1(u,v)

∂u
∂g−1(u,v)

∂v
∂h−1(u,v)

∂u
∂h−1(u,v)

∂v

)

for all (u, v) ∈ D
�

Example 1.31. Let X, Y be independent rvs andX ∼ Exp(λ) andY ∼ Exp(λ).
Then, the joint pdf of(X, Y ) is

fX,Y (x, y) = λe−λxλe−λy = λ2e−λ(x+y)

on supportS = {(x, y) : x > 0, y > 0}.

We will find the joint pdf for(U, V ), whereU = g(X, Y ) = X + Y andV =
h(X, Y ) = X/Y . This transformation and the support for(X, Y ) give the support
for (U, V ). This is{(u, v) : u > 0, v > 0}.

The inverse functions are

x = g−1(u, v) =
uv

1 + v
andy = h−1(u, v) =

u

1 + v
.

The Jacobian of the transformation is equal to

J = det

(
∂g−1(u,v)

∂u
∂g−1(u,v)

∂v
∂h−1(u,v)

∂u
∂h−1(u,v)

∂v

)

= det

(
v

1+v
u

(1+v)2
1

1+v
− u

(1+v)2

)

=
−u

(1 + v)2
.

Hence, by Theorem 1.17 we can write

fU,V (u, v) = fX,Y

(
g−1(u, v), h−1(u, v)

)
|J |

= λ2 exp

{

−λ

(
uv

1 + v
+

u

1 + v

)}

× u

(1 + v)2

=
λ2ue−λu

(1 + v)2
,

for u, v > 0.
�

These transformed variables are independent. In a simpler situation whereg(x) is
a function ofx only andh(y) is function ofy only, it is easy to see the following
very useful result.
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Theorem 1.18.Let X and Y be independent rvs and let g(x) be a function of x
only and h(y) be function of y only. Then the functions U = g(X) and V = h(Y )
are independent.

�

Proof. (Continuous case) For anyu ∈ R andv ∈ R, define

Au = {x : g(x) ≤ u} and Av = {y : h(y) ≤ v}.

Then, we can obtain the joint cdf of(U, V ) as follows

FU,V (u, v) = P (U ≤ u, V ≤ v) = P (X ∈ Au, Y ∈ Av)

= P (X ∈ Au)P (Y ∈ Av) asX andY are independent.

The mixed partial derivative with respect tou andv will give us the joint pdf for
(U, V ). That is,

fU,V (u, v) =
∂2

∂u∂v
FU,V (u, v) =

(
d

du
P (X ∈ Au)

)(
d

dv
P (Y ∈ Av)

)

as the first factor depends onu only and the second factor onv only. Hence, the
rvsU = g(X) andV = h(Y ) are independent.

�

Exercise 1.19. Let (X, Y ) be a two-dimensional random variable with joint pdf

fX,Y (x, y) =

{
8xy, for 0 ≤ x < y ≤ 1;
0, otherwise.

LetU = X/Y andV = Y .

(a) Are the variablesX andY independent? Explain.

(b) Calculate the covariance ofX andY .

(c) Obtain the joint pdf of(U, V ).

(d) Are the variablesU andV independent? Explain.

(e) What is the covariance ofU andV ?

Exercise 1.20. LetX andY be independent random variables such that

X ∼ Exp(λ) and Y ∼ Exp(λ).



1.10. TWO-DIMENSIONAL RANDOM VARIABLES 51

(a) Find the joint probability density function of(U, V ), where

U =
X

X + Y
and V = X + Y.

(b) Are the variablesU andV independent? Explain.

(c) Show thatU is uniformly distributed on(0, 1).

(d) What is the distribution ofV ?
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1.11 Random Sample and Sampling Distributions

Example 1.32. In a study on relation of the level of cholesterol in blood andinci-
dents of heart attack 28 heart attack patients had their cholesterol level measured
two days and four days after the attack. Also, cholesterol levels were recorded
for a control group of 30 people who did not have a heart attack. The data are
available on the course web-page.

Various questions may be asked here. For example:

1. What is the population’s mean cholesterol level on the second day after heart
attack?

2. Is the difference in the mean cholesterol level on day 2 andon day 4 after
the attack statistically significant?

3. Is high cholesterol level a significant risk factor for a heart attack?

Each numerical value in this example can be treated as a realization of a random
variable. For example, valuex1 = 270 for patient one measured after two hours
of the heart attack is a realization of a rvX1 representing all possible values of
cholesterol level of patient one. Here we have 28 patients, hence we have 28
random variablesX1, . . . , X28. These patients are only a small part (a sample) of
all people (a population) having a heart attack (at this timeand area of living).
Here we come with a definition of a random sample.

Definition 1.21. The random variables X1, . . . , Xn are called a random sample
of size n from a population if X1, . . . , Xn are mutually independent, each having
the same probability distribution.

We say that such random variables are iid, that isidentically, independently dis-
tributed.

The joint pdf (pmf in the discrete case) can be written as a product of the marginal
pdfs, i.e.,

fX(x1, . . . , xn) =

n∏

i=1

fXi
(xi),

whereX = (X1, . . . , Xn) is the jointly continuousn-dimensional random vari-
able.
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Note: In the Example 1.32 it can be assumed in that these rvs are mutually in-
dependent (cholesterol level of one patient does not dependon the cholesterol
level of another patient). If we can assume that the distribution of the cholesterol
of each patient is the same, then the variablesX1, . . . , X28 constitute a random
sample.

To make sensible inference from the observed values (a realization of a random
sample) we often calculate some summaries of the data, such as the average or an
estimate of the sample variance. In general, such summariesare functions of the
random sample and we write

Y = T (X1, . . . , Xn).

Note thatY itself is then a random variable. The distribution ofY carries some
information about the population and it allows us make inference regarding some
parameters of the population. For example, about the expected cholesterol level
and its variability in the population of people who suffer from heart attack.

The distributions of many functionsT (X1, . . . , Xn) can be derived from the dis-
tributions of the variablesXi. Such distributions are calledsampling distributions
and the functionT is called astatistic.

FunctionsX = 1
n

∑n
i−1Xi andS2 = 1

n−1

∑n
i=1(Xi −X)2 are the most common

statistics used in data analysis.

1.11.1 χ2

ν
, tν and Fν1,ν2

Distributions

These three distributions can be derived from distributions of iid random variables.
They are commonly used in statistical hypothesis testing and in interval estimation
of unknown population parameters.

χ2
ν distribution

We have introduced theχ2
ν distribution as a special case of the gamma distribution,

that isGamma
(
ν
2
, 1
2

)
. We write

Y ∼ χ2
ν ,
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if the rv Y has the chi-squared distribution withν degrees of freedom.ν is the
parameter of the distribution function. The pdf ofY ∼ χ2

ν is

fY (y) =
y

ν
2
−1e−

y

2

2
ν
2Γ
(
ν
2

) for y > 0, ν = 1, 2, . . .

and the mgf ofY is

MY (t) =

(
1

1− 2t

) ν
2

, t <
1

2
.

It is easy to show, using the derivatives of the mgf evaluatedat t = 0, that

EY = ν and varY = 2ν.

In the following example we will see thatχ2
ν is the distribution of a function of iid

standard normal rvs.

Example 1.33. In Example 1.17 we have seen that square of a standard normal rv
hasχ2

1 distribution. Now, assume thatZ1 ∼ N (0, 1) andZ2 ∼ N (0, 1) indepen-
dently. What is the distribution ofY = Z2

1 + Z2
2? Denote byY1 = Z2

1 and by
Y2 = Z2

2 .

To answer this question we can use the properties of the mgf asfollows.

MY = E
(
etY
)
= E

[
et(Y1+Y2)

]
= E

[
etY1etY2

]
= MY1

(t)MY2
(t)

as, by Theorem 1.18,Y1 andY2 are independent. Also,Y1 ∼ χ2
1 andY2 ∼ χ2

1,
each with the mgf equal to

MYi
(t) =

1

(1− 2t)1/2
, i = 1, 2.

Hence,

MY (t) = MY1
(t)MY2

(t) =
1

(1− 2t)1/2
1

(1− 2t)1/2
=

1

(1− 2t)
.

This is the mgf forχ2
2. Hence, by the uniqueness of the mgf we can conclude that

Y = Z2
1 + Z2

2 ∼ χ2
2. �

Note: This result can be easily extended ton independent standard normal rvs.
That is, ifZi ∼ N (0, 1) for i = 1, . . . , n independently, then

Y =

n∑

i=1

Z2
i ∼ χ2

n.
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From this result we can draw a useful conclusion.

Corollary 1.1. A sum of independent random variables T =
∑k

i=1 Yi, where each
component has a chi-squared distribution, i.e., Yi ∼ χ2

νi
, is a random variable

having a chi-squared distribution with ν =
∑k

i=1 νi degrees of freedom.

Note thatT in the above corollary can be written as a sum of squared iid standard
normal rvs, hence it must have a chi-squared distribution.

Example 1.34. Let X1, . . . , Xn be iid random variables, such that

Xi ∼ N (µ, σ2), i = 1, . . . , n.

Then

Zi =
Xi − µ

σ
∼ N (0, 1)

and so
n∑

i=1

Z2
i =

n∑

i=1

(Xi − µ)2

σ2
∼ χ2

n.

This is a useful result, but it depends on two parameters, whose values are usu-
ally unknown (when we analyze data). Here we will see what happens when we
replaceµ with X = 1

n

∑n
i=1Xi. We can write

n∑

i=1

(Xi − µ)2 =
n∑

i=1

[
(Xi −X) + (X − µ)

]2

=

n∑

i=1

(Xi −X)2 +

n∑

i=1

(X − µ)2 + 2(X − µ)

n∑

i=1

(Xi −X)

︸ ︷︷ ︸

=0

=

n∑

i=1

(Xi −X)2 + n(X − µ)2.

Hence, dividing this byσ2 we get

n∑

i=1

(Xi − µ)2

σ2
=

(n− 1)S2

σ2
+

(X − µ)2

σ2

n

, (1.19)

whereS2 = 1
n−1

∑n
i=1(Xi −X)2.

We know that (Intro to Stats)

X ∼ N
(

µ,
σ2

n

)

, so
X − µ
√

σ2

n

∼ N (0, 1).
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Hence,



X − µ
√

σ2

n





2

∼ χ2
1.

Also
n∑

i=1

(Xi − µ)2

σ2
∼ χ2

n.

Furthermore, it can be shown thatX andS2 are independent.

Now, equation (1.19) is a relation of the formW = U + V , whereW ∼ χ2
n and

V ∼ χ2
1. Since hereU andV are independent, we have

MW (t) = MU (t)MV (t).

That is

MU (t) =
MW (t)

MV (t)
=

(1− 2t)−n/2

(1− 2t)−1/2
=

1

(1− 2t)(n−1)/2
.

The last expression is the mgf of a random variable with aχ2
n−1 distribution. That

is
(n− 1)S2

σ2
∼ χ2

n−1.

Equivalently,
n∑

i=1

(Xi −X)2

σ2
∼ χ2

n−1.

�

Student tν distribution

A derivation of the t-distribution was published in 1908 by William Sealy Gosset
when he worked at the Guinness Brewery in Dublin. Due to proprietary issues,
the paper was written under the pseudonym Student. The distribution is used in
hypothesis testing and the test functions having a t distribution are often called
t-tests.

We write

Y ∼ tν ,
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if the rv Y has the t distribution withν degrees of freedom.ν is the parameter of
the distribution function. The pdf is given by

fY (y) =
Γ
(
ν+1
2

)

√
νπΓ

(
ν
2

)

(

1 +
y2

ν

)− ν+1

2

, y ∈ R, ν = 1, 2, 3, . . . .

The following theorem is widely applied in statistics to build hypotheses tests.

Theorem 1.19.Let Z and X be independent random variables such that

Z ∼ N (0, 1) and X ∼ χ2
ν .

The random variable

Y =
Z

√

X/ν

has Student t distribution with ν degrees of freedom.

Proof. Here we will apply Theorem 1.17. We will find the joint distribution of
(Y,W ), whereY = Z√

X/ν
andW = X, and then we will find the marginal

density function forY , as required.

The densities of standard normal and chi-squared rvs, respectively, are

fZ(z) =
1√
2π

e−
z2

2 , z ∈ R

and

fX(x) =
x

ν
2
−1e−

x
2

2
ν
2Γ
(
ν
2

) , x ∈ R+

Z andX are independent, so the joint pdf of(Z,X) is equal to the product of the
marginal pdfsfZ(z) andfX(x). That is,

fZ,X(z, x) =
1√
2π

e−
z2

2

x
ν
2
−1e−

x
2

2
ν
2Γ
(
ν
2

)

Here we have the transformation

y =
z

√

x/ν
and w = x,

which gives the inverses

z = y
√

w/ν and x = w.



58 CHAPTER 1. ELEMENTS OF PROBABILITY DISTRIBUTION THEORY

Then, Jacobian of the transformation is

J = det

( √

w/ν y
2
√
νw

0 1

)

=

√
w

ν
.

Hence, the joint pdf for(Y,W ) is

fY,W (y, w) =
1√
2π

e−
y2w

2ν
w

ν
2
−1e−

w
2

2
ν
2Γ
(
ν
2

)

√
w

ν

=
w

ν+1

2
−1e−w 1

2

(
1+ y2

ν

)

√
νπ2

ν+1

2 Γ
(
ν
2

) .

The range of(Z,X) is {(z, x) : −∞ < z < ∞, 0 < x < ∞} and so the range of
(Y,W ) is {(y, w) : −∞ < y < ∞, 0 < w < ∞}.

To obtain the marginal pdf forY we need to integrate the joint pdf for(Y,W ) over
the range ofW . This is an easy task when we notice similarities of this function
with the pdf ofGamma(α, λ) and use the fact that a pdf over the whole range
integrates to 1.

The pdf of a gamma random variableV is

fV (v) =
vα−1λαe−λv

Γ(α)
.

Denote

α =
ν + 1

2
, λ =

1

2

(

1 +
y2

ν

)

.

Then, multiplying and dividing the joint pdf for(Y,W ) by λα and byΓ(α), we
get

fY,W (y, w) =
wα−1e−λw

√
νπ2αΓ(ν

2
)
× λαΓ(α)

λαΓ(α)

=
wα−1λαe−λw

Γ(α)
× Γ(α)√

νπ2αΓ(ν
2
)λα

.

Then, the marginal pdf forY is

fY (y) =

∫ ∞

0

wα−1λαe−λw

Γ(α)
× Γ(α)√

νπ2αΓ(ν
2
)λα

dw

=
Γ(α)√

νπ2αΓ(ν
2
)λα

×
∫ ∞

0

wα−1λαe−λw

Γ(α)
dw
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as the second factor is treated as a constant when we integrate with respect tow.
The first factor has a form of a gamma pdf, hence it integrates to 1. This gives the
pdf for Y equal to

fY (y) =
Γ(α)√

νπ2αΓ(ν
2
)λα

=
Γ(ν+1

2
)

√
νπ2

ν+1

2 Γ(ν
2
)
[
1
2

(

1 + y2

ν

)] ν+1

2

=
Γ(ν+1

2
)√

νπΓ(ν
2
)

(

1 +
y2

ν

)− ν+1

2

which is the pdf of a random variable having the Studentt distribution withν
degrees of freedom.

�

Example 1.35. LetXi, i = 1, . . . , n, be iid normal random variables with meanµ
and varianceσ2. We often write this fact in the following way

Xi ∼
iid

N (µ, σ2), i = 1, . . . , n.

Then

X ∼ N
(

µ,
σ2

n

)

, so U =
X − µ

σ√
n

∼ N (0, 1).

Also, as shown in Example 1.34, we have

V =
(n− 1)S2

σ2
∼ χ2

n−1.

Furthermore,X andS2 are independent, henceU andV are also independent (by
Theorem 1.18). Hence, by Theorem 1.19, we have

T =
U

√

V/(n− 1)
∼ tn−1.

That is

T =

X−µ
σ

√

n
√

(n−1)S2

σ2 /(n− 1)
=

X − µ
S√
n

∼ tn−1

�

Note: The functionT in Example 1.35 is used for testing hypothesis about the
population meanµ when the variance of the population is unknown. We will be
using this function later on in this course.
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Fν1,ν2 Distribution

Another sampling distribution very often used in statistics is the Fisher-Snedecor
F distribution. We write

Y ∼ Fν1,ν2,

if the rv Y hasF distribution withν1 andν2 degrees of freedom. The degrees of
freedom are the parameters of the distribution function. The pdf is quite compli-
cated. It is given by

fY (y) =
Γ
(
ν1+ν2

2

)

Γ
(
ν1
2

)
Γ
(
ν2
2

)

(
ν1
ν2

)
y

ν1−2

2

(

1 + ν1
ν2
y
)ν1+ν2

2

, y ∈ R+.

This distribution is related to chi-squared distribution in the following way.

Theorem 1.20.Let X and Y be independent random variables such that

X ∼ χ2
ν1

and Y ∼ χ2
ν2
.

Then the random variable

F =
X/ν1
Y/ν2

has Fisher’s F distribution with ν1 and ν2 degrees of freedom.

Proof. This result can be shown in a similar way as the result of Theorem 1.19.
Take the transformationF = X/ν1

Y/ν2
andW = Y and use Theorem 1.17.

�

Example 1.36. Let X1, . . . , Xn andY1, . . . , Ym be two independent random sam-
ples such that

Xi ∼ N (µ1, σ
2
1) and Yj ∼ N (µ2, σ

2
2), i = 1, . . . , n; j = 1, . . . , m

and letS2
1 andS2

2 be the sample variances of the random samplesX1, . . . , Xn and
Y1, . . . , Ym, respectively. Then (see Example 1.34),

(n− 1)S2
1

σ2
1

∼ χ2
n−1.

Similarly,
(m− 1)S2

2

σ2
2

∼ χ2
m−1.
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Hence, by Theorem 1.20, the ratio

F =

(n−1)S2
1

σ2
1

/(n− 1)

(m−1)S2
2

σ2
2

/(m− 1)
=

S2
1/σ

2
1

S2
2/σ

2
2

∼ Fn−1,m−1.

This statistic is used in testing hypotheses regarding variances of two independent
normal populations.

�

Exercise 1.21. Let Y ∼ Gamma(α, λ), that is,Y has the pdf given by

fY (y) =







yα−1λαe−λy

Γ(α)
, for y > 0;

0, otherwise,

for α > 0 andλ > 0.

(a) Show that for anya ∈ R such thata+ α > 0 the expectation ofY a is

E(Y a) =
Γ(a+ α)

λaΓ(α)
.

(b) ObtainE(Y ) andvar(Y ). Hint: Use result given in point (a) and the itera-
tive property of gamma function, i.e., Γ(z) = (z − 1)Γ(z − 1).

(c) Let X ∼ χ2
ν . Use (1) to obtainE(X) andvar(X).

Exercise 1.22. LetY1, . . . , Y5 be a random sample of size 5 from a standard normal
population, that isYi ∼

iid
N (0, 1), i = 1, . . . , 5, and denote byY the sample mean,

that isY = 1
5

∑5
i=1 Yi. Let Y6 be another independent standard normal random

variable. What is the distribution of

(a) W =
∑5

i=1 Y
2
i ?

(b) U =
∑5

i=1(Yi − Y )2 ?

(c) U + Y 2
6 ?

(d)
√
5Y6/

√
W ?

Explain each of your answers.


