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1.10.7 Bivariate Normal Distribution
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Figure 1.2: Bivariate Normal pdf
Here we use matrix notation. A bivariate rv is treated as d@amvector

X

-
The expectation of a bivariate random vector is written as

_ _ M1
Xo fh2
and its variance-covariance matrix is
var(X;)  cov(Xy, Xs) o2  poioy
cov(Xo, X1)  var(Xy) poioy O3

Then the joint pdf of a normal bi-variate X is given by

1 1 Ty -1
fX(w):Qn\/T(V)eXp —5(3’—“) Vi(z—p)g,

(1.18)
wherex = (1, x5)".

The determinant oV is

2
detV =det [ 1 P92

— (1 = p?
P01 0% ( p)
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Hence, the inverse & is

V-l — 1 03 —po102 ) _ 1 Uf2 _PUf1051
det V \ —poioy of 1—p2 \ —poi'oy! 0y° ‘

Then the exponent in formula (1.18) can be written as

@)V @ ) =

1 ol —poytoyt \ (@ —p
= (T1 — W1, T2 — i —
2(1_P2)( LT ) ( —poy oy’ 0y Ty — H

_ 1 (21 — M1)2 B (1 — ) (w2 — p2) . (w2 — M2)2
- 2(1—p2>( 2 )

+ 2
0102 g5

So, the joint pdf of the two-dimensional normal X/ is

1
fx(=) = 21094/ (1 — p?)

X exp {2(1—_1p2> <($1 —2M1)2 B 2p($1 — i) (@2 — ) | (2 —2M2)2) } '

Note that whem = 0 it simplifies to

Fx (@) = 1 exp {_% ((fl —2M1)2 L (@2 —2M2)2) }’

2mo109 o1 op

which can be written as a product of the marginal distrimgiof X; and X,.
Hence, if X = (X1, X»)T has a bivariate normal distribution apd= 0 then the
variablesX; and X, are independent.

1.10.8 Bivariate Transformations

Theorem 1.17.Let X and Y be jointly continuous random variables with joint
pdf fxy(z,y) which has support on S C R?. Consider random variables U =
g(X,Y)and V = h(X,Y), where g(-,-) and h(-, -) form a one-to-one mapping
fromS toD withinversesz = g~ !(u,v) andy = h~'(u, v) which have continuous
partial derivatives. Then, thejoint pdf of (U, V) is

fU,V(u7 U) - fX,Y (g—l(u’ U)? h_l(uv U)) |‘]‘7
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where, the Jacobian of the transformation .J is

8971(“"1}) 8971(“"1})
J = det 8h‘q1(tu,v) 8h‘ql(}u,v)

ou ov

for all (u,v) € D 0

Example 1.31 Let X, Y be independent rvs and ~ Exp(\) andY ~ Exp(A).
Then, the joint pdf of X, Y) is

Fxv(z,y) = e A = \2e A@HY)
on supports = {(x,y) : = > 0,y > 0}.

We will find the joint pdf for (U, V'), whereU = ¢(X,Y) = X + Y andV =
h(X,Y) = X/Y. This transformation and the support fof, Y) give the support
for (U, V). Thisis{(u,v) : u > 0,v > 0}.

The inverse functions are

uv u

14+v

=g (u,v) = ” andy = h™'(u,v) =

The Jacobian of the transformation is equal to

89‘%(%11) 89‘%(u7v) 11 ﬁ —u
J = det Qu ., = det 1" b .
oh &S v) ok 81() ) 1+v _(1—1—1))2 (1 + U>2

Hence, by Theorem 1.17 we can write

fU,V(UJvU) - fX,Y (g_l(u7v)v h_l(u7v)) |‘]‘
uv u Uu
:AQGXP{_A(Hﬁ 1+v)} ReEmE

Aye M

(1+4v)?’

for u,v > 0. 0

These transformed variables are independent. In a sinmplatisn wherey(z) is
a function ofz only andh(y) is function ofy only, it is easy to see the following
very useful result.
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Theorem 1.18.Let X and Y be independent rvs and let g(x) be a function of x
only and i (y) be function of y only. Then the functionsU = ¢g(X)and V' = h(Y)
are independent. O

Proof. (Continuous case) For anyc R andv € R, define
A, ={x:g(x) <u} and A, = {y: h(y) < v}.
Then, we can obtain the joint cdf ¢F/, V) as follows

Fyv(u,v)=PU <u,V<v)=P(X e€A,Y e€A,)
=P(X e A,)P(Y €A, asX andY areindependent

The mixed partial derivative with respectd#candv will give us the joint pdf for
(U,V). Thatis,

i) = o Fotun) = (P e ) (PO € 4)

v

as the first factor depends anonly and the second factor anonly. Hence, the
rvsU = g(X)andV = h(Y') are independent. O

Exercise 1.19 Let (X,Y) be a two-dimensional random variable with joint pdf

[ 8axy, for 0<z<y<1,;
fxy(z,y) = { 0,  otherwise.

LetU = X/Y andV =Y.

(a) Are the variablesY andY independent? Explain.
(b) Calculate the covariance &f andY'.

(c) Obtain the joint pdf of U, V).

(d) Are the variable$/ andV independent? Explain.

(e) What is the covariance éf andV'?

Exercise 1.20 Let X andY be independent random variables such that

X ~Exp(\) and Y ~ Exp()).
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(a) Find the joint probability density function @t/, '), where

U= andV = X +Y.

X+Y

(b) Are the variable$/ andV independent? Explain.
(c) Show thatl is uniformly distributed or{0, 1).

(d) What is the distribution of/?
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1.11 Random Sample and Sampling Distributions

Example 1.32 In a study on relation of the level of cholesterol in blood ama-
dents of heart attack 28 heart attack patients had theiestesbl level measured
two days and four days after the attack. Also, cholester@l$ewere recorded
for a control group of 30 people who did not have a heart attddike data are
available on the course web-page.

Various questions may be asked here. For example:

1. Whatis the population’s mean cholesterol level on theseday after heart
attack?

2. Is the difference in the mean cholesterol level on day 2anday 4 after
the attack statistically significant?

3. Is high cholesterol level a significant risk factor for afeattack?

Each numerical value in this example can be treated as aagah of a random
variable. For example, valug = 270 for patient one measured after two hours
of the heart attack is a realization of a K4 representing all possible values of
cholesterol level of patient one. Here we have 28 patierdacé we have 28
random variables(y, . .., Xog. These patients are only a small part (a sample) of
all people (a population) having a heart attack (at this tand area of living).
Here we come with a definition of a random sample.

Definition 1.21. The random variables X1, ..., X,, are called a random sample
of size n froma population if X1, ..., X,, are mutually independent, each having
the same probability distribution.

We say that such random variables are iid, thatestically, independently dis-
tributed.

The joint pdf (pmfin the discrete case) can be written as dycbof the marginal
pdfs, i.e.,

fx(@r, o) = [ fra(w),
=1

whereX = (X,...,X,) is the jointly continuous:.-dimensional random vari-
able.
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Note: In the Example 1.32 it can be assumed in that these evsatually in-
dependent (cholesterol level of one patient does not deparithe cholesterol
level of another patient). If we can assume that the disiobuwf the cholesterol
of each patient is the same, then the variablgs. . . , X3 constitute a random
sample.

To make sensible inference from the observed values (azatiain of a random
sample) we often calculate some summaries of the data, suble average or an
estimate of the sample variance. In general, such sumnaedsinctions of the
random sample and we write

Y =T(X1,...,X,)

Note thatY” itself is then a random variable. The distributionofcarries some

information about the population and it allows us make efee regarding some
parameters of the population. For example, about the eggeattolesterol level

and its variability in the population of people who suffesrir heart attack.

The distributions of many functior5( X}, ..., X,,) can be derived from the dis-
tributions of the variabled’;. Such distributions are callesdmpling distributions
and the functiorY’ is called astatistic.

FunctionsX = 13" | X, andS? =
statistics used in data analysis.

LS (X, — X)? are the most common

1.11.1 »?,¢, and F,,,, Distributions

These three distributions can be derived from distribimiid random variables.
They are commonly used in statistical hypothesis testidgmmterval estimation
of unknown population parameters.

X2 distribution

We have introduced the? distribution as a special case of the gamma distribution,

that isGamma (%, 1). We write

Y ~x2,
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if the rv Y has the chi-squared distribution withdegrees of freedomv is the
parameter of the distribution function. The pdfidf~ x2 is

fory>0,vr=1,2,...

and the mgf o is

1 \? 1
My(t) = [ —— t< =
r(t) <1—2t>’ =3

It is easy to show, using the derivatives of the mgf evaluated-= 0, that

EY =v and varY = 2v.

In the following example we will see that is the distribution of a function of iid
standard normal rvs.

Example 1.33 In Example 1.17 we have seen that square of a standard narmal r
hasy? distribution. Now, assume that, ~ A(0,1) andZ, ~ N(0, 1) indepen-
dently. What is the distribution of = Z? + Z3? Denote byy; = Z? and by
Y, = Z3.
To answer this question we can use the properties of the nfgflawss.

My =E (etY) -k [et(Y1+Y2):| - F |:etY1 eth} = My, (t) My, ()
as, by Theorem 1.18;, andY; are independent. Alsd;; ~ x? andY; ~ x3,
each with the mgf equal to

1
My (t) = ———7, 1=1,2.

Hence,

My (£) = My (6)My (1) = =

VAT IR T o2 (1= 2012 T (1= 21)

This is the mgf fory2. Hence, by the uniqueness of the mgf we can conclude that
Y =274+ 7Z3 ~ X3 .

Note: This result can be easily extendedittndependent standard normal rvs.
Thatis, if Z; ~ N(0,1) fori = 1, ..., n independently, then

Y = zn:Zf ~ X
=1
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From this result we can draw a useful conclusion.

Corollary 1.1. A sum of independent randomvariablesT = Zf":l Y;, where each
component has a chi-squared distribution, i.e., Y; ~ x2 , is a random variable

having a chi-squared distribution with v = Zle v; degrees of freedom.

Note thatl" in the above corollary can be written as a sum of squaredaiudstird
normal rvs, hence it must have a chi-squared distribution.

Example 1.34 Let X, ..., X, be iid random variables, such that
Xi~N(p, 0%, i=1,...,n.
Then

and so

n n 2
Yz=y B e
=1 =1
This is a useful result, but it depends on two parametersse/alues are usu-
ally unknown (when we analyze data). Here we will see whapkap when we
replacey with X = 1 3" | X;. We can write

i=1 =1

= (X=X 4> (X =p?+2X - p))d (Xi—X)
i=1 i=1 i=1

— Z(XZ — X))+ n(X — p)?

=1

Hence, dividing this by we get

zn: (XiU—Q M)2 _ (n — 1)52 + (7— M)27 (1.19)

=1 n

whereS? = L5 (X; — X))

We know that (Intro to Stats)

2

YNN(M,%), souwf\/(o,l).
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Hence,
2

Also

=1
Furthermore, it can be shown th&tand.S? are independent.

Now, equation (1.19) is a relation of the fofi¥i = U + V, wherel? ~ x2 and
V ~ x2. Since herd/ andV are independent, we have

My (t) = My (t) My (t).

That is
C My(t) (-2t 1

C My(t) (120712 (1 —2t)/

My (1)

The last expression is the mgf of a random variable wit a distribution. That

IS
(n—1)57 2

2 ~ Xn—1-

Equivalently,

Studentt, distribution

A derivation of the t-distribution was published in 1908 byll&m Sealy Gosset
when he worked at the Guinness Brewery in Dublin. Due to petgny issues,
the paper was written under the pseudonym Student. Thebdistn is used in
hypothesis testing and the test functions having a t digioh are often called
t-tests.

We write
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if the rv Y has the t distribution withv degrees of freedomu is the parameter of
the distribution function. The pdf is given by

0 ()Y
fY(y)—W(le;) , yeER, v=1,2,3,....

The following theorem is widely applied in statistics to ldunypotheses tests.
Theorem 1.19.Let Z and X be independent random variables such that
Z ~N(0,1) and X ~ x2.

Therandomvariable P

VX /v

has Sudent ¢ distribution with v degrees of freedom.

Proof. Here we will apply Theorem 1.17. We will find the joint diswifion of
(Y, W), whereY = \/JZT andW = X, and then we will find the marginal

v

density function forY’, as required.

The densities of standard normal and chi-squared rvs, cagely, are

N

T, z2€eR

1
—6 s
2T

fz(2) =

and .
Tr2 e
fX(x) - T ) , T & R+

2
Z and X are independent, so the joint pdf(@f, X) is equal to the product of the
marginal pdfsf,(z) and fx(z). Thatis,

[SIN
(ML

[\]
[SIN

fz.x(2 ) L -goies
Z2,x) = e 2 —
“x Var 2i0(%)
Here we have the transformation
and w = x,

which gives the inverses

z=yy/w/rv and z = w.
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Then, Jacobian of the transformation is

J:det( Vuw/v 2\/%):\/@
0 1 v

Hence, the joint pdf fotY, V) is

! ( ) 1 _ij wrle 2 [w
w) = e vV —— —_
yw\Y, /_271' 25T %) v

w VJer *1e_w% (H'%)

VIR L (5)

The range of Z, X) is {(z,x) : —00 < z < 00,0 < x < oo} and so the range of
(Y, W)is{(y,w) : —oo <y < 00,0 < w < 0o}.

To obtain the marginal pdf for we need to integrate the joint pdf foY,, V') over

the range of¥/. This is an easy task when we notice similarities of this fiomc
with the pdf of Gamma(«, \) and use the fact that a pdf over the whole range
integrates to 1.

The pdf of a gamma random variableis

Uafl )\aef)\v

= ")

Denote

v+1 1 y?
T 2(+y)

Then, multiplying and dividing the joint pdf fofY, W) by A* and byI'(«), we
get

f ( w) B wa—le—kw y )\ar(a>
YW= e (%) © AT (a)
wa—l)\ae—kw F(Oé)

T(a)  yum2eD(Z)xe
Then, the marginal pdf foY” is

[P wr A e () w
Jr() _/0 Do) Vomzer(2pae"

B F(Oé) ></oo waflAaef)\wdw
IRVZ NV ()
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as the second factor is treated as a constant when we irdegtatrespect tav.
The first factor has a form of a gamma pdf, hence it integratés This gives the
pdf for Y equal to

I A )
N = Jrmser(gpa
L(“3)
- +1 2 V-gl
Vm2 = (%) [% 1+y7>}

e LY —F

V(%) v
which is the pdf of a random variable having the Studedtstribution with v
degrees of freedom. 0
Example 1.35 Let X;,i = 1,...,n, be iid normal random variables with mean

and variance. We often write this fact in the following way
X; %N(u,(ﬂ), i=1,...,n.

Then

a

) _
— X —
XNN(M,U—), soU=>""FA0,1).
n
NG

Also, as shown in Example 1.34, we have

(n—1)52 5

2 ~ Xn-1-

V:

[

Furthermore X andS? are independent, henégandV are also independent (by
Theorem 1.18). Hence, by Theorem 1.19, we have

B U
Vin—-1 "
That is o
X—p _
T_ a

O

Note: The functionl’ in Example 1.35 is used for testing hypothesis about the
population meam when the variance of the population is unknown. We will be
using this function later on in this course.
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F,, ., Distribution

Another sampling distribution very often used in statsigthe Fisher-Snedecor
F distribution. We write

Y ~ Fyl,uga

if the rv Y hasF distribution withz;, andv, degrees of freedom. The degrees of
freedom are the parameters of the distribution functiore ptif is quite compli-

cated. Itis given by
v y%
2_2) <_1) v tvg ) Yy S R-i-'
2 < 2

1+Z—;y)

(

ij

(

This distribution is related to chi-squared distributiarthe following way.

Theorem 1.20.Let X and Y be independent random variables such that
X ~ X,2,1 and Y Nsz.

Then the random variable

X/V1
Y/VQ

has Fisher’s F distribution with »; and v, degrees of freedom.

F =

Proof. This result can be shown in a similar way as the result of Ténaot.19.

Take the transformatiof’ = ifﬁl andW =Y and use Theorem 1.17. O
Example 1.36 Let X1,..., X, andYy,...,Y,, be two independent random sam-

ples such that
X; ~N(py,07) and Y ~ N(pg,03), i=1,....,n; j=1,....m

and letS? andS? be the sample variances of the random samjiles. . , X,, and
Y1, ..., Y, respectively. Then (see Example 1.34),

(n — 1)512 2

2 ~ Xn—l‘
01

Similarly, )
(m —1)S; 2

) ~ X
—1-
2 "
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Hence, by Theorem 1.20, the ratio

n—1)S?
B2 /n=1)  g2/02 .
= = ~ —1,m—1-
DS jm —1)  SF/o5 T
2

This statistic is used in testing hypotheses regardingmass of two independent
normal populations. ]

Exercise 1.21 LetY ~ Gamma(a, \), thatis,Y has the pdf given by

ya—l)\ae—ky

fr(y) = ['(a)

0, otherwise

, fory>0;

fora > 0and\ > 0.

(&) Show that for any: € R such that + a > 0 the expectation oY * is

E(Y*) = FA(&riU;)

(b) ObtainE(Y") andvar(Y"). Hint: Useresult given in point (a) and the itera-
tive property of gamma function, i.e., I'(z) = (z — 1)['(z — 1).

(c) Let X ~ x2. Use (1) to obtair(X) andvar(X).

Exercise1.22 LetY,. .., Y; be arandom sample of size 5 from a standard normal
population, that i¥; ~ N(0,1),i=1,...,5, and denote by” the sample mean,

that isY = %Zle Y;. LetY; be another independent standard normal random
variable. What is the distribution of

(@) W=30,Y??

(b) U=30,(Yi-Y)*?

() U+YE?

(d) VBYs/VIW 2

Explain each of your answers.



