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We develop writing techniques, from the particular to the general.

• This session: small-scale features

I words

I symbols

I formulae

I definitions

• Next session: structural features.

I target audience

I title

I abstract

I organisation

• Following two sessions: techniques for digital presentations.
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Words: precision of expression

BAD: the coordinates of a complex number

GOOD: the real and imaginary parts of a complex number

GOOD: the modulus and the argument of a complex number

BAD: the tangent to the sine function

GOOD: the tangent to the graph of the sine function

BAD: the equation x2 − 1 = (x + 1)(x − 1)

GOOD: the identity x2 − 1 = (x + 1)(x − 1)

BAD: the function f (x)

GOOD: the function f

BAD: the area of the unit circle

GOOD: the area of the unit disc
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Exercises

Correct/improve the following expressions:

1. The discriminant is < 0.

2. 127 is a prime number.

3. sin2 is positive.

4. This function crosses the x-axis twice.

5. The solution of x2 − 1 < 0.

6. Consider Θn, n < 5.

7. The proof splits into 4 cases.

8. Add p to q k times.

9. The set Q minus Z.

10. When x > 3, there is no solution.



Correct/improve the following expressions:

1. x2 + 1 has no real solution.

2. The function g is a function of both x and y .

3. We note the fact that S has integer coefficients.

4. An example of a trigonometric function is sin.

5. We square the equation.

6. Purely immaginary is when the real part is zero.

7. There are less solutions than for the previous case.

8. The solution is not independent of s.

9. Thus x = α. (We assume that α is positive).

10. Remember to always check the sign.



Words: expand your vocabulary

—Variable
f (x) = x2 + x + 2 the argument of a function
fc(x) = x2 + x + c the parameter c
x2 + x + 2 = 0 the unknown of an equation
p := x2 + x + 2 the indeterminate of a polynomial

—Set
the family of Mersenne primes
the collection of the rational numbers in D

the space K2 with a distance d [space=set with structure]

—Element
a member of the family of continuous real functions
a point of an elliptic curve
a term of the sequence (σ0, σ1, . . .)
the last component (or entry) of the vector v
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Exercises

• Describe with words:

1. {1,−3, 5, . . . , (−1)n(2n + 1), . . .}
2. {(b1, b2), (b2, b3), . . . , (bn−1, bn)}

3.

∫
D(α, β)dα

4.
∂H(θ1, . . . , θn)

∂θ1
+ · · ·+ ∂H(θ1, . . . , θn)

∂θn
5. A1 ⊃ A2 ⊃ A3 ⊃ · · ·
6. ω 7→ {ω}
7. f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

n

• Provide synonyms, specialisations, and attributes for the word
function. Illustrate each item with an explanation/example.

• Provide attributes for the word equation.
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Choosing symbols

I Do not introduce unnecessary symbols.
I Define each symbol immediately before its first usage.
I Be consistent.

—Numbers
Integers: Lower-case Roman in range i–n. This is default for
indices; for other purposes, also clustered Romans (a, b, c or
x , y , z), but use p, q for primes.

Rationals/reals: Lower-case Roman in a–d , (e), p–z , or Greek.
If there are both rationals and reals, combine Roman and Greek, or
keep them far apart in the alphabet:

α = r + s
√

2 r , s ∈ Q; a, b ∈ Q, u, v ∈ R \Q.

Complex: Default is z ,w .

z = x + iy w = ρe iθ

In analysis, one finds u + iv ; number theorists use
√
−1, not i.
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indices; for other purposes, also clustered Romans (a, b, c or
x , y , z), but use p, q for primes.

Rationals/reals: Lower-case Roman in a–d , (e), p–z , or Greek.
If there are both rationals and reals, combine Roman and Greek, or
keep them far apart in the alphabet:
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—Functions:

Default is f , g , h, or Greek letters. Upper-case letters are
appropriate for functions of several variables:

F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

—Composite objects (set, group, matrix, etc):

Upper-case Roman or Greek: Ω,G ,M, with matching symbols for
their elements: g ∈ G , g ∈ Γ, ω ∈ Ω.

—Sequences:

Vast choice of notation: select the most economical.

(ak) (ak)k>0 (ak)n−1k=0 (a1, . . . , an) (a1, a2, . . .)
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Use matching symbols:

A = (a1, a2, . . .) ζ = (z1, z2, . . .) v = (v1, . . . , vn)

Sequences of sequences require heavy notation:

Vk = (v
(k)
1 , . . . , v

(k)
n ), k = 1, 2, . . .

Vk = (v
(k)
j ) 1 6 j 6 n, k > 1.

Omit parentheses at the exponent if no ambiguity arises;
alternatively, use double subscripts

Vk = (v1,k , . . . , vn,k), k = 1, 2, . . .
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—Sums:

Summation ranges may be specified in many ways:
∞∑
k=1

ak
∑
k>1

ak
∑
k

(
n

k

)
k .

For greater flexibility, use one or more boolean expressions:∑
|k+1|<n

ak
∑

16j ,k6n

aj ,k
∑
k∈Z

g(k)6=0

1

g(k)

Example: defining Euler ϕ-function with a sum

ϕ(n) :=
∑
16k6n

gcd(k,n)=1

1, n > 1.

The operators
∏
,
⋂
,
⋃

have the same syntax as
∑

:

n! =
n∏

k=1

k
⋃
n∈N

n prime

Z[n−1]
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Exercises

Improve the notation.

1. a = (a1, a2, a3, . . . , at).

2. f (x) =
14x − 2x3 − 2x2 + 14

−2x − 4

3.

{
k ∈ Q : k =

x

x2 + 1
, x ∈ Z, x < 0

}
4. Let βα be a one-parameter family of vectors in C .

5. Let A,B be sets, and let p ∈ A, r ∈ B.

6. µ : A→ B, µ(λ) = sin(λπ)

7. h(x) = f ◦ g(x)

8.
n+1∑
k=1

ak+1



Writing well

—Lighten up notation

Let

fα,β(x) =
sin(αx − β)

1 + β2
.

(We omit reference to the parameters α, β whenever appropriate.)

—Divide and conquer

BAD: W = x(ad − bc)− y(ad − bc)2 + z(ad − bc)3

GOOD: W = xδ − yδ2 + zδ3 δ = ad − bc.

BAD: z(x , y1, y2, . . .) =
∞∑
k=1

yk∑
y=1

k2f (x + y − 1)

GOOD: z(x ,n) =
∞∑
k=1

k2
nk−1∑
n=0

f (x + n), n = (n1, n2 . . .)
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—Economise symbols:

A dummy variable has no intrinsic identity. So do not write
∑n

k=1

and
∑n

j=1 within the same document, unless there is a reason.

A quantified variable can always be made to disappear:

For all real functions f , if f is differentiable, then f is
continuous.
Every differentiable real function is continuous.

A function mentioned just once does not require a symbol:

The function x 7→ |x |/(1+x2) is differentiable everywhere,
except at the origin.

For closely related quantities, use symbol decorations and the vast
array of LATEX fonts.

Let K∗ be the set of non-zero elements in K.

Let Ak = {A1, . . . ,Ak}, and let A =
⋂

k>1 Ak .
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—Use quantifiers sparingly:

BAD: ∃T > 0, ∀x ∈ R, f (x + T ) = f (x)

GOOD: The function f is periodic.

BAD: ∃ε > 0, ∀x , y , |x |, |y | < ε ⇒ f (x) = f (y)

GOOD: The function f is constant in a neighbourhood of the origin.

—Use the implication operator sparingly:

BAD: ∴ x > 0⇒ x ∈ B

GOOD: Hence, if x > 0, then x ∈ B.
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—Exploit idiomatic expressions:∑
k>0

|ak | <∞ The sequence (ak) converges absolutely

{0, 1}N The set of all infinite binary sequences

—Exploit high-level constructs (images of sets under
functions, Minkowsky sums/products of sets, etc).

0 ∈ f (Z) The function f vanishes at (at least) one integer.

f (Z) = {0} The function f vanishes at all integers.

(The zeros of f include all integers.).

These expressions are concise and elegant —if cryptic.
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Exercises

Describe with words

1. Q3

2. NZ

3.
⋃
n>1

Nn

4. aZ + bZ
5. Γ(z + 1) = zΓ(z).

6. X = {1,X}

7.
1

2
Z

8. Z
[

1

2

]



Translate the following sentences into words (f is a real function).

1. 4Z ⊂ 2Z
2. #f (R) = 1

3. #f −1({0}) <∞
4. ∀γ, δ ∈ Ω, γδ = δγ

5. ∀r ∈ Q \ {0} : f (r) 6= 0

6. ∀α ∈ A, ∀ε > 0, ∃β ∈ B, |α− β| < ε

7. ∃a ∈ R, ∀x ∈ R+, f (x + a) = f (a)

8. #{f (x) : x ∈ Z} =∞
9. f (R) = f (Z)



Turn words into symbols: (f is a real function, unless specified
otherwise)

1. The function f assumes only integer values.

2. The function f is not always positive.

3. The function f : A→ B is not constant.

4. The polynomial p(x) has no rational roots.

5. The function f vanishes for all sufficiently large arguments.

6. There are zeros of f arbitrarily close to the origin of the
Cartesian plane.



Definitions

Readers need time to absorb them.

• Give the definition twice, first with words and then with symbols,
or vice-versa.

For given ε, we let

Sε = {(x , y) ∈ R2 : |x − y | 6 ε/
√

2}, ?

that is, Sε is a strip of width ε symmetrical with respect to the
main diagonal in the Cartesian plane.

• Support the definition with an example.

Let N be the set of sequences of natural numbers, such that every
natural number is listed infinitely often. ? For example, the
sequence

(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . .)

belongs to N.
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• Prepare the reader for a definition, by asking a question.

The absolute value is a function that associates to every integer x
a number |x | with the following properties

i) |x | = 0 iff x = 0

ii) |xy | = |x | |y |
iii) |x + y | 6 |x |+ |y |.

Are there other functions Z→ R with the same properties?

(The definition of p-adic absolute values then follows.)
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Exercise: re-write for a beginning undergraduate

Let

ln(x) =

∫ x

1

1

t
dt x > 0.

Then
d

dx
ln(x) =

1

x
⇒ d

dx
ln(u(x)) =

1

u

du

dx

for any differentiable u(x) > 0. Then

u(x) := ax ⇒ d

dx
ln(ax) =

1

ax

d

dx
(ax) =

1

ax
· a =

1

x
.

⇒ ln(x)′ = ln(ax)′, so that ln(ax) = ln(x) + C , and

x = 1 ⇒ ln(a · 1) = ln(a) = ln(1) + C = 0 + C

⇒ C = ln(a), giving ln(ax) = ln(a) + ln(x).



A solution

The natural logarithm of a positive real number x is defined as the
number

ln(x) :=

∫ x

1

1

t
dt x > 0.

(Note that this definition makes no reference to exponentiation.)
The logarithm of x is positive if x > 1, zero if x = 1, and negative
if 0 < x < 1.
By definition, the logarithmic function is differentiable and

d

dx
ln(x) =

1

x
. (1)

Being differentiable, this function is also continuous. The chain
rule of differentiation extends to equation (1) to give

d

dx
ln(u(x)) =

1

u

du

dx

for any positive differentiable function u(x).
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Consider now the function u(x) = ax , for some positive real
number a. Applying the chain rule we get

d

dx
ln(ax) =

1

ax

d

dx
(ax) =

1

ax
· a =

1

x
.

Therefore the functions ln(x) and ln(ax) have the same derivative.
Integration gives

ln(ax) = ln(x) + C (2)

for some constant C . The above equation holds for all positive
values of x , so it must hold for x = 1. Hence

ln(a · 1) = ln(a) = ln(1) + C = 0 + C

giving C = ln(a). Substituting this in equation (2) gives

ln(ax) = ln(a) + ln(x) (3)

which is the basic property of the logarithmic function.
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