Writing Mathematics at Advanced Level: Part I

Franco Vivaldi
School of Mathematical Sciences

October 2018

We develop writing techniques, from the particular to the general.

We develop writing techniques, from the particular to the general.

- This session: small-scale features
- words
- symbols
- formulae
- definitions

We develop writing techniques, from the particular to the general.

- This session: small-scale features
- words
- symbols
- formulae
- definitions
- Next session: structural features.
- target audience
- title
- abstract
- organisation

We develop writing techniques, from the particular to the general.

- This session: small-scale features
- words
- symbols
- formulae
- definitions
- Next session: structural features.
- target audience
- title
- abstract
- organisation
- Following two sessions: techniques for digital presentations.

Words: precision of expression

Words: precision of expression

BAD: the coordinates of a complex number

Words: precision of expression

BAD: the coordinates of a complex number
GOOD: the real and imaginary parts of a complex number

Words: precision of expression

BAD: the coordinates of a complex number
GOOD: the real and imaginary parts of a complex number
GOOD: the modulus and the argument of a complex number

Words: precision of expression

BAD: the coordinates of a complex number
GOOD: the real and imaginary parts of a complex number
GOOD: the modulus and the argument of a complex number
BAD: the tangent to the sine function

Words: precision of expression

BAD: the coordinates of a complex number
GOOD: the real and imaginary parts of a complex number
GOOD: the modulus and the argument of a complex number
BAD: the tangent to the sine function
GOOD: the tangent to the graph of the sine function

Words: precision of expression

BAD: the coordinates of a complex number
GOOD: the real and imaginary parts of a complex number
GOOD: the modulus and the argument of a complex number
BAD: the tangent to the sine function
GOOD: the tangent to the graph of the sine function
BAD: the equation $x^{2}-1=(x+1)(x-1)$

Words: precision of expression

BAD: the coordinates of a complex number
GOOD: the real and imaginary parts of a complex number
GOOD: the modulus and the argument of a complex number
BAD: the tangent to the sine function
GOOD: the tangent to the graph of the sine function
BAD: the equation $x^{2}-1=(x+1)(x-1)$
GOOD: the identity $x^{2}-1=(x+1)(x-1)$

Words: precision of expression

BAD: the coordinates of a complex number
GOOD: the real and imaginary parts of a complex number
GOOD: the modulus and the argument of a complex number
BAD: the tangent to the sine function
GOOD: the tangent to the graph of the sine function
BAD: the equation $x^{2}-1=(x+1)(x-1)$
GOOD: the identity $x^{2}-1=(x+1)(x-1)$
BAD: the function $f(x)$

Words: precision of expression

BAD: the coordinates of a complex number
GOOD: the real and imaginary parts of a complex number
GOOD: the modulus and the argument of a complex number
BAD: the tangent to the sine function
GOOD: the tangent to the graph of the sine function
BAD: the equation $x^{2}-1=(x+1)(x-1)$
GOOD: the identity $x^{2}-1=(x+1)(x-1)$
BAD: the function $f(x)$
GOOD: the function f

Words: precision of expression

BAD: the coordinates of a complex number
GOOD: the real and imaginary parts of a complex number
GOOD: the modulus and the argument of a complex number
BAD: the tangent to the sine function
GOOD: the tangent to the graph of the sine function
BAD: the equation $x^{2}-1=(x+1)(x-1)$
GOOD: the identity $x^{2}-1=(x+1)(x-1)$
BAD: the function $f(x)$
GOOD: the function f
BAD: the area of the unit circle

Words: precision of expression

BAD: the coordinates of a complex number
GOOD: the real and imaginary parts of a complex number
GOOD: the modulus and the argument of a complex number
BAD: the tangent to the sine function
GOOD: the tangent to the graph of the sine function
BAD: the equation $x^{2}-1=(x+1)(x-1)$
GOOD: the identity $x^{2}-1=(x+1)(x-1)$
BAD: the function $f(x)$
GOOD: the function f
BAD: the area of the unit circle
GOOD: the area of the unit disc

Exercises

Correct/improve the following expressions:

1. The discriminant is <0.
2. 127 is a prime number.
3. $\sin ^{2}$ is positive.
4. This function crosses the x-axis twice.
5. The solution of $x^{2}-1<0$.
6. Consider $\Theta_{n}, n<5$.
7. The proof splits into 4 cases.
8. Add p to $q k$ times.
9. The set \mathbb{Q} minus \mathbb{Z}.
10. When $x>3$, there is no solution.

Correct/improve the following expressions:

1. $x^{2}+1$ has no real solution.
2. The function g is a function of both x and y.
3. We note the fact that S has integer coefficients.
4. An example of a trigonometric function is \sin.
5. We square the equation.
6. Purely immaginary is when the real part is zero.
7. There are less solutions than for the previous case.
8. The solution is not independent of s.
9. Thus $x=\alpha$. (We assume that α is positive).
10. Remember to always check the sign.

Words: expand your vocabulary

Words: expand your vocabulary
——VARIABLE

Words: expand your vocabulary
-VARIABLE
$f(x)=x^{2}+x+2$

Words: expand your vocabulary

- VARIABLE

$f(x)=x^{2}+x+2 \quad$ the argument of a function

Words: expand your vocabulary

$$
\begin{aligned}
& \text {-VARIABLE } \\
& f(x)=x^{2}+x+2 \quad \text { the argument of a function } \\
& f_{c}(x)=x^{2}+x+c
\end{aligned}
$$

Words: expand your vocabulary

- VARIABLE

$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c \quad$ the parameter c

Words: expand your vocabulary

$$
\begin{aligned}
& \text {-VARIABLE } \\
& f(x)=x^{2}+x+2 \quad \text { the argument of a function } \\
& f_{c}(x)=x^{2}+x+c \quad \text { the parameter } c \\
& x^{2}+x+2=0
\end{aligned}
$$

Words: expand your vocabulary

- VARIABLE
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation

Words: expand your vocabulary

- VARIABLE
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$

Words: expand your vocabulary

- Variable
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$ the indeterminate of a polynomial

Words: expand your vocabulary

-VARIABLE
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$ the indeterminate of a polynomial
—Set

Words: expand your vocabulary

-Variable
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$ the indeterminate of a polynomial
-Set
the family of Mersenne primes

Words: expand your vocabulary

-Variable
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$ the indeterminate of a polynomial
-SET
the family of Mersenne primes
the collection of the rational numbers in \mathcal{D}

Words: expand your vocabulary

-VARIABLE
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$ the indeterminate of a polynomial
-SET
the family of Mersenne primes
the collection of the rational numbers in \mathcal{D}
the space \mathbb{K}^{2} with a distance d [space=set with structure]

Words: expand your vocabulary

-Variable
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$ the indeterminate of a polynomial
-SET
the family of Mersenne primes
the collection of the rational numbers in \mathcal{D}
the space \mathbb{K}^{2} with a distance d [space=set with structure]
-Element

Words: expand your vocabulary

-VARIABLE
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$ the indeterminate of a polynomial
-SET
the family of Mersenne primes the collection of the rational numbers in \mathcal{D} the space \mathbb{K}^{2} with a distance d [space=set with structure]
-Element
a member of the family of continuous real functions

Words: expand your vocabulary

-VARIABLE
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$ the indeterminate of a polynomial
—Set
the family of Mersenne primes the collection of the rational numbers in \mathcal{D} the space \mathbb{K}^{2} with a distance d [space=set with structure]
-Element
a member of the family of continuous real functions
a point of an elliptic curve

Words: expand your vocabulary

-VARIABLE
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$ the indeterminate of a polynomial
—Set
the family of Mersenne primes the collection of the rational numbers in \mathcal{D} the space \mathbb{K}^{2} with a distance d [space=set with structure]

-Element

a member of the family of continuous real functions
a point of an elliptic curve
a term of the sequence $\left(\sigma_{0}, \sigma_{1}, \ldots\right)$

Words: expand your vocabulary

-VARIABLE
$f(x)=x^{2}+x+2$ the argument of a function
$f_{c}(x)=x^{2}+x+c$ the parameter c
$x^{2}+x+2=0 \quad$ the unknown of an equation
$p:=x^{2}+x+2$ the indeterminate of a polynomial
—Set
the family of Mersenne primes the collection of the rational numbers in \mathcal{D} the space \mathbb{K}^{2} with a distance d [space=set with structure]

-Element

a member of the family of continuous real functions
a point of an elliptic curve
a term of the sequence $\left(\sigma_{0}, \sigma_{1}, \ldots\right)$
the last component (or entry) of the vector \mathbf{v}

Exercises

Exercises

- Describe with words:

1. $\left\{1,-3,5, \ldots,(-1)^{n}(2 n+1), \ldots\right\}$
2. $\left\{\left(b_{1}, b_{2}\right),\left(b_{2}, b_{3}\right), \ldots,\left(b_{n-1}, b_{n}\right)\right\}$
3. $\int D(\alpha, \beta) \mathrm{d} \alpha$
4. $\frac{\partial H\left(\theta_{1}, \ldots, \theta_{n}\right)}{\partial \theta_{1}}+\cdots+\frac{\partial H\left(\theta_{1}, \ldots, \theta_{n}\right)}{\partial \theta_{n}}$
5. $\quad A_{1} \supset A_{2} \supset A_{3} \supset \cdots$
6. $\omega \mapsto\{\omega\}$
7. $\underbrace{f \circ f \circ \cdots \circ f}_{n}$

Exercises

- Describe with words:

1. $\left\{1,-3,5, \ldots,(-1)^{n}(2 n+1), \ldots\right\}$
2. $\left\{\left(b_{1}, b_{2}\right),\left(b_{2}, b_{3}\right), \ldots,\left(b_{n-1}, b_{n}\right)\right\}$
3. $\int D(\alpha, \beta) \mathrm{d} \alpha$
4. $\frac{\partial H\left(\theta_{1}, \ldots, \theta_{n}\right)}{\partial \theta_{1}}+\cdots+\frac{\partial H\left(\theta_{1}, \ldots, \theta_{n}\right)}{\partial \theta_{n}}$
5. $A_{1} \supset A_{2} \supset A_{3} \supset \cdots$
6. $\omega \mapsto\{\omega\}$
7. $\underbrace{f \circ f \circ \cdots \circ f}_{n}$

- Provide synonyms, specialisations, and attributes for the word function. Illustrate each item with an explanation/example.

Exercises

- Describe with words:

1. $\left\{1,-3,5, \ldots,(-1)^{n}(2 n+1), \ldots\right\}$
2. $\left\{\left(b_{1}, b_{2}\right),\left(b_{2}, b_{3}\right), \ldots,\left(b_{n-1}, b_{n}\right)\right\}$
3. $\int D(\alpha, \beta) \mathrm{d} \alpha$
4. $\frac{\partial H\left(\theta_{1}, \ldots, \theta_{n}\right)}{\partial \theta_{1}}+\cdots+\frac{\partial H\left(\theta_{1}, \ldots, \theta_{n}\right)}{\partial \theta_{n}}$
5. $\quad A_{1} \supset A_{2} \supset A_{3} \supset \cdots$
6. $\omega \mapsto\{\omega\}$
7. $\underbrace{f \circ f \circ \cdots \circ f}_{n}$

- Provide synonyms, specialisations, and attributes for the word function. Illustrate each item with an explanation/example.
- Provide attributes for the word equation.

Choosing symbols

Choosing symbols

- Do not introduce unnecessary symbols.

Choosing symbols

- Do not introduce unnecessary symbols.
- Define each symbol immediately before its first usage.

Choosing symbols

- Do not introduce unnecessary symbols.
- Define each symbol immediately before its first usage.
- Be consistent.

Choosing symbols

- Do not introduce unnecessary symbols.
- Define each symbol immediately before its first usage.
- Be consistent.
-Numbers

Choosing symbols

- Do not introduce unnecessary symbols.
- Define each symbol immediately before its first usage.
- Be consistent.

-Numbers

Integers: Lower-case Roman in range $i-n$. This is default for indices; for other purposes, also clustered Romans (a, b, c or x, y, z), but use p, q for primes.

Choosing symbols

- Do not introduce unnecessary symbols.
- Define each symbol immediately before its first usage.
- Be consistent.
-Numbers
Integers: Lower-case Roman in range $i-n$. This is default for indices; for other purposes, also clustered Romans (a, b, c or x, y, z), but use p, q for primes.
Rationals/reals: Lower-case Roman in $a-d,(e), p-z$, or Greek.

Choosing symbols

- Do not introduce unnecessary symbols.
- Define each symbol immediately before its first usage.
- Be consistent.

-Numbers

Integers: Lower-case Roman in range $i-n$. This is default for indices; for other purposes, also clustered Romans (a, b, c or x, y, z), but use p, q for primes.
Rationals/reals: Lower-case Roman in $a-d,(e), p-z$, or Greek. If there are both rationals and reals, combine Roman and Greek, or keep them far apart in the alphabet:

$$
\alpha=r+s \sqrt{2} \quad r, s \in \mathbb{Q} ; \quad a, b \in \mathbb{Q}, \quad u, v \in \mathbb{R} \backslash \mathbb{Q}
$$

Choosing symbols

- Do not introduce unnecessary symbols.
- Define each symbol immediately before its first usage.
- Be consistent.

-Numbers

Integers: Lower-case Roman in range $i-n$. This is default for indices; for other purposes, also clustered Romans (a, b, c or x, y, z), but use p, q for primes.
Rationals/reals: Lower-case Roman in $a-d,(e), p-z$, or Greek. If there are both rationals and reals, combine Roman and Greek, or keep them far apart in the alphabet:

$$
\alpha=r+s \sqrt{2} \quad r, s \in \mathbb{Q} ; \quad a, b \in \mathbb{Q}, \quad u, v \in \mathbb{R} \backslash \mathbb{Q} .
$$

Complex: Default is z, w.

$$
z=x+\mathrm{i} y \quad w=\rho e^{\mathrm{i} \theta}
$$

In analysis, one finds $u+\mathrm{i} v$; number theorists use $\sqrt{-1}$, not i .
-Functions:
-Functions:
Default is f, g, h, or Greek letters. Upper-case letters are appropriate for functions of several variables:

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

-Functions:
Default is f, g, h, or Greek letters. Upper-case letters are appropriate for functions of several variables:

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

-Composite objects (SET, GROUP, MATRIX, ETC):

-Functions:

Default is f, g, h, or Greek letters. Upper-case letters are appropriate for functions of several variables:

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

-COMPOSITE OBJECTS (SET, GROUP, MATRIX, ETC):
Upper-case Roman or Greek: Ω, G, M, with matching symbols for their elements: $g \in G, g \in \Gamma, \omega \in \Omega$.

-Functions:

Default is f, g, h, or Greek letters. Upper-case letters are appropriate for functions of several variables:

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

-COMPOSITE OBJECTS (SET, GROUP, MATRIX, ETC):
Upper-case Roman or Greek: Ω, G, M, with matching symbols for their elements: $g \in G, g \in \Gamma, \omega \in \Omega$.
-SEQUENCES:

-Functions:

Default is f, g, h, or Greek letters. Upper-case letters are appropriate for functions of several variables:

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

-COMPOSITE ObJECTS (SET, GROUP, MATRIX, ETC):
Upper-case Roman or Greek: Ω, G, M, with matching symbols for their elements: $g \in G, g \in \Gamma, \omega \in \Omega$.
—Sequences:
Vast choice of notation: select the most economical.
$\left(a_{k}\right)$
$\left(a_{k}\right)_{k \geqslant 0}$
$\left(a_{k}\right)_{k=0}^{n-1}$
$\left(a_{1}, \ldots, a_{n}\right)$
$\left(a_{1}, a_{2}, \ldots\right)$

Use matching symbols:

$$
A=\left(a_{1}, a_{2}, \ldots\right) \quad \zeta=\left(z_{1}, z_{2}, \ldots\right) \quad \mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)
$$

Use matching symbols:

$$
A=\left(a_{1}, a_{2}, \ldots\right) \quad \zeta=\left(z_{1}, z_{2}, \ldots\right) \quad \mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)
$$

Sequences of sequences require heavy notation:

$$
\begin{gathered}
V_{k}=\left(v_{1}^{(k)}, \ldots, v_{n}^{(k)}\right), \quad k=1,2, \ldots \\
V_{k}=\left(v_{j}^{(k)}\right) \quad 1 \leqslant j \leqslant n, \quad k \geqslant 1 .
\end{gathered}
$$

Use matching symbols:

$$
A=\left(a_{1}, a_{2}, \ldots\right) \quad \zeta=\left(z_{1}, z_{2}, \ldots\right) \quad \mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)
$$

Sequences of sequences require heavy notation:

$$
\begin{gathered}
V_{k}=\left(v_{1}^{(k)}, \ldots, v_{n}^{(k)}\right), \quad k=1,2, \ldots \\
V_{k}=\left(v_{j}^{(k)}\right) \quad 1 \leqslant j \leqslant n, \quad k \geqslant 1 .
\end{gathered}
$$

Omit parentheses at the exponent if no ambiguity arises; alternatively, use double subscripts

$$
V_{k}=\left(v_{1, k}, \ldots, v_{n, k}\right), \quad k=1,2, \ldots
$$

Sums:

-Sums:

Summation ranges may be specified in many ways:

$$
\sum_{k=1}^{\infty} a_{k} \quad \sum_{k \geqslant 1} a_{k} \quad \sum_{k}\binom{n}{k} k
$$

—SUMS:

Summation ranges may be specified in many ways:

$$
\sum_{k=1}^{\infty} a_{k} \quad \sum_{k \geqslant 1} a_{k} \quad \sum_{k}\binom{n}{k} k
$$

For greater flexibility, use one or more boolean expressions:

$$
\sum_{|k+1|<n} a_{k} \quad \sum_{1 \leqslant j, k \leqslant n} a_{j, k} \quad \sum_{\substack{k \in \mathbb{Z} \\ g(k) \neq 0}} \frac{1}{g(k)}
$$

-Sums:

Summation ranges may be specified in many ways:

$$
\sum_{k=1}^{\infty} a_{k} \quad \sum_{k \geqslant 1} a_{k} \quad \sum_{k}\binom{n}{k} k
$$

For greater flexibility, use one or more boolean expressions:

$$
\sum_{|k+1|<n} a_{k} \quad \sum_{1 \leqslant j, k \leqslant n} a_{j, k} \quad \sum_{\substack{k \in \mathbb{Z} \\ g(k) \neq 0}} \frac{1}{g(k)}
$$

Example: defining Euler φ-function with a sum

$$
\varphi(n):=\sum_{\substack{1 \leq k \leqslant n \\ \operatorname{gccd}(k, n)=1}} 1, \quad n \geqslant 1 .
$$

Sums:

Summation ranges may be specified in many ways:

$$
\sum_{k=1}^{\infty} a_{k} \quad \sum_{k \geqslant 1} a_{k} \quad \sum_{k}\binom{n}{k} k
$$

For greater flexibility, use one or more boolean expressions:

$$
\sum_{|k+1|<n} a_{k} \quad \sum_{1 \leqslant j, k \leqslant n} a_{j, k} \quad \sum_{\substack{k \in \mathbb{Z} \\ g(k) \neq 0}} \frac{1}{g(k)}
$$

Example: defining Euler φ-function with a sum

$$
\varphi(n):=\sum_{\substack{1 \leq k \leqslant n \\ \operatorname{gccd}(k, n)=1}} 1, \quad n \geqslant 1 .
$$

The operators Π, \cap, \bigcup have the same syntax as \sum :

$$
n!=\prod_{k=1}^{n} k \quad \bigcup_{\substack{n \in \mathbb{N} \\ n \text { prime }}} \mathbb{Z}\left[n^{-1}\right]
$$

Exercises

Improve the notation.

1. $a=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{t}\right)$.
2. $f(x)=\frac{14 x-2 x^{3}-2 x^{2}+14}{-2 x-4}$
3. $\left\{k \in \mathbb{Q}: k=\frac{x}{x^{2}+1}, x \in \mathbb{Z}, x<0\right\}$
4. Let β_{α} be a one-parameter family of vectors in C.
5. Let A, B be sets, and let $p \in A, r \in B$.
6. $\mu: A \rightarrow B, \quad \mu(\lambda)=\sin (\lambda \pi)$
7. $h(x)=f \circ g(x)$
8. $\sum_{k=1}^{n+1} a_{k+1}$

Writing well

Writing well
-Lighten up notation

Writing well
——Lighten UP NOTATION
Let

$$
f_{\alpha, \beta}(x)=\frac{\sin (\alpha x-\beta)}{1+\beta^{2}} .
$$

Writing well

-Lighten up notation
Let

$$
f_{\alpha, \beta}(x)=\frac{\sin (\alpha x-\beta)}{1+\beta^{2}}
$$

(We omit reference to the parameters α, β whenever appropriate.)

Writing well

-Lighten up notation
Let

$$
f_{\alpha, \beta}(x)=\frac{\sin (\alpha x-\beta)}{1+\beta^{2}}
$$

(We omit reference to the parameters α, β whenever appropriate.)
——IIVIDE And conQuer

Writing well

-Lighten up notation
Let

$$
f_{\alpha, \beta}(x)=\frac{\sin (\alpha x-\beta)}{1+\beta^{2}}
$$

(We omit reference to the parameters α, β whenever appropriate.)
——IVIDE AND CONQUER
BAD: $\quad \mathcal{W}=x(a d-b c)-y(a d-b c)^{2}+z(a d-b c)^{3}$

Writing well

-Lighten up notation

Let

$$
f_{\alpha, \beta}(x)=\frac{\sin (\alpha x-\beta)}{1+\beta^{2}}
$$

(We omit reference to the parameters α, β whenever appropriate.)
-Divide and conquer
BAD: $\quad \mathcal{W}=x(a d-b c)-y(a d-b c)^{2}+z(a d-b c)^{3}$
GOOD: $\mathcal{W}=x \delta-y \delta^{2}+z \delta^{3} \quad \delta=a d-b c$.

Writing well

-Lighten up notation
Let

$$
f_{\alpha, \beta}(x)=\frac{\sin (\alpha x-\beta)}{1+\beta^{2}}
$$

(We omit reference to the parameters α, β whenever appropriate.)
-Divide and conquer
BAD: $\quad \mathcal{W}=x(a d-b c)-y(a d-b c)^{2}+z(a d-b c)^{3}$
GOOD: $\mathcal{W}=x \delta-y \delta^{2}+z \delta^{3} \quad \delta=a d-b c$.
BAD: $\quad z\left(x, y_{1}, y_{2}, \ldots\right)=\sum_{k=1}^{\infty} \sum_{y=1}^{y_{k}} k^{2} f(x+y-1)$

Writing well

-Lighten up notation
Let

$$
f_{\alpha, \beta}(x)=\frac{\sin (\alpha x-\beta)}{1+\beta^{2}}
$$

(We omit reference to the parameters α, β whenever appropriate.)
-Divide and conquer
BAD: $\quad \mathcal{W}=x(a d-b c)-y(a d-b c)^{2}+z(a d-b c)^{3}$
GOOD: $\mathcal{W}=x \delta-y \delta^{2}+z \delta^{3} \quad \delta=a d-b c$.
BAD: $\quad z\left(x, y_{1}, y_{2}, \ldots\right)=\sum_{k=1}^{\infty} \sum_{y=1}^{y_{k}} k^{2} f(x+y-1)$
GOOD: $\quad z(x, \mathbf{n})=\sum_{k=1}^{\infty} k^{2} \sum_{n=0}^{n_{k}-1} f(x+n), \quad \mathbf{n}=\left(n_{1}, n_{2} \ldots\right)$
-Economise symbols:
-Economise symbols:
A dummy variable has no intrinsic identity. So do not write $\sum_{k=1}^{n}$ and $\sum_{j=1}^{n}$ within the same document, unless there is a reason.
-Economise symbols:
A dummy variable has no intrinsic identity. So do not write $\sum_{k=1}^{n}$ and $\sum_{j=1}^{n}$ within the same document, unless there is a reason.
A quantified variable can always be made to disappear:
-Economise symbols:
A dummy variable has no intrinsic identity. So do not write $\sum_{k=1}^{n}$ and $\sum_{j=1}^{n}$ within the same document, unless there is a reason.
A quantified variable can always be made to disappear:
For all real functions f, if f is differentiable, then f is continuous.
-Economise symbols:
A dummy variable has no intrinsic identity. So do not write $\sum_{k=1}^{n}$ and $\sum_{j=1}^{n}$ within the same document, unless there is a reason.
A quantified variable can always be made to disappear:
For all real functions f, if f is differentiable, then f is continuous.
Every differentiable real function is continuous.
-Economise symbols:
A dummy variable has no intrinsic identity. So do not write $\sum_{k=1}^{n}$ and $\sum_{j=1}^{n}$ within the same document, unless there is a reason.
A quantified variable can always be made to disappear:
For all real functions f, if f is differentiable, then f is continuous.
Every differentiable real function is continuous.
A function mentioned just once does not require a symbol:
-Economise symbols:
A dummy variable has no intrinsic identity. So do not write $\sum_{k=1}^{n}$ and $\sum_{j=1}^{n}$ within the same document, unless there is a reason.
A quantified variable can always be made to disappear:
For all real functions f, if f is differentiable, then f is continuous.
Every differentiable real function is continuous.
A function mentioned just once does not require a symbol:
The function $x \mapsto|x| /\left(1+x^{2}\right)$ is differentiable everywhere, except at the origin.
-Economise symbols:
A dummy variable has no intrinsic identity. So do not write $\sum_{k=1}^{n}$ and $\sum_{j=1}^{n}$ within the same document, unless there is a reason.
A quantified variable can always be made to disappear:
For all real functions f, if f is differentiable, then f is continuous.
Every differentiable real function is continuous.
A function mentioned just once does not require a symbol:
The function $x \mapsto|x| /\left(1+x^{2}\right)$ is differentiable everywhere, except at the origin.

For closely related quantities, use symbol decorations and the vast array of $\mathrm{A} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts.
-Economise symbols:
A dummy variable has no intrinsic identity. So do not write $\sum_{k=1}^{n}$ and $\sum_{j=1}^{n}$ within the same document, unless there is a reason.
A quantified variable can always be made to disappear:
For all real functions f, if f is differentiable, then f is continuous.
Every differentiable real function is continuous.
A function mentioned just once does not require a symbol:
The function $x \mapsto|x| /\left(1+x^{2}\right)$ is differentiable everywhere, except at the origin.

For closely related quantities, use symbol decorations and the vast array of $\mathrm{A} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts.

Let \mathbb{K}^{*} be the set of non-zero elements in \mathbb{K}.
-Economise symbols:
A dummy variable has no intrinsic identity. So do not write $\sum_{k=1}^{n}$ and $\sum_{j=1}^{n}$ within the same document, unless there is a reason.
A quantified variable can always be made to disappear:
For all real functions f, if f is differentiable, then f is continuous.
Every differentiable real function is continuous.
A function mentioned just once does not require a symbol:
The function $x \mapsto|x| /\left(1+x^{2}\right)$ is differentiable everywhere, except at the origin.

For closely related quantities, use symbol decorations and the vast array of $\mathrm{A} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ fonts.

Let \mathbb{K}^{*} be the set of non-zero elements in \mathbb{K}.
Let $\mathbf{A}_{k}=\left\{A_{1}, \ldots, A_{k}\right\}$, and let $\mathbb{A}=\bigcap_{k \geqslant 1} \mathbf{A}_{k}$.
-UsE QUANTIFIERS SPARINGLY:
-UsE QUANTIFIERS SPARINGLY:
BAD: $\exists T>0, \forall x \in \mathbb{R}, f(x+T)=f(x)$
-USE QUANTIFIERS SPARINGLY:
BAD: $\exists T>0, \forall x \in \mathbb{R}, f(x+T)=f(x)$
GOOD: The function f is periodic.
-Use quantifiers sparingly:
BAD: $\exists T>0, \forall x \in \mathbb{R}, f(x+T)=f(x)$
GOOD: The function f is periodic.
BAD: $\exists \epsilon>0, \forall x, y,|x|,|y|<\epsilon \Rightarrow f(x)=f(y)$
-USE QUANTIFIERS SPARINGLY:
BAD: $\exists T>0, \forall x \in \mathbb{R}, f(x+T)=f(x)$
GOOD: The function f is periodic.
BAD: $\exists \epsilon>0, \forall x, y,|x|,|y|<\epsilon \Rightarrow f(x)=f(y)$
GOOD: The function f is constant in a neighbourhood of the origin.
-USE QUANTIFIERS SPARINGLY:
BAD: $\exists T>0, \forall x \in \mathbb{R}, f(x+T)=f(x)$
GOOD: The function f is periodic.
BAD: $\exists \epsilon>0, \forall x, y,|x|,|y|<\epsilon \Rightarrow f(x)=f(y)$
GOOD: The function f is constant in a neighbourhood of the origin.
-USE THE IMPLICATION OPERATOR SPARINGLY:
-USE QUANTIFIERS SPARINGLY:
BAD: $\exists T>0, \forall x \in \mathbb{R}, f(x+T)=f(x)$
GOOD: The function f is periodic.
BAD: $\exists \epsilon>0, \forall x, y,|x|,|y|<\epsilon \Rightarrow f(x)=f(y)$
GOOD: The function f is constant in a neighbourhood of the origin.
-USE THE IMPLICATION OPERATOR SPARINGLY:
BAD: $\therefore x>0 \Rightarrow x \in B$
-USE QUANTIFIERS SPARINGLY:
BAD: $\exists T>0, \forall x \in \mathbb{R}, f(x+T)=f(x)$
GOOD: The function f is periodic.
BAD: $\exists \epsilon>0, \forall x, y,|x|,|y|<\epsilon \Rightarrow f(x)=f(y)$
GOOD: The function f is constant in a neighbourhood of the origin.
-USE THE IMPLICATION OPERATOR SPARINGLY:
BAD: $\therefore x>0 \Rightarrow x \in B$
GOOD: Hence, if $x>0$, then $x \in B$.
-EXPLOIT IDIOMATIC EXPRESSIONS:

$$
\sum_{k \geqslant 0}\left|a_{k}\right|<\infty
$$

The sequence $\left(a_{k}\right)$ converges absolutely
-EXPLOIT IDIOMATIC EXPRESSIONS:
$\sum_{k=0}\left|a_{k}\right|<\infty$
The sequence $\left(a_{k}\right)$ converges absolutely
$\{0,1\}^{\mathbb{N}} \quad$ The set of all infinite binary sequences

$$
\sum_{k \geqslant 0}\left|a_{k}\right|<\infty \quad \text { The sequence }\left(a_{k}\right) \text { converges absolutely }
$$ $\{0,1\}^{\mathbb{N}} \quad$ The set of all infinite binary sequences

- Exploit high-Level constructs (images of sets under functions, Minkowsky sums/products of sets, etc).

$$
\sum_{k \geqslant 0}\left|a_{k}\right|<\infty \quad \text { The sequence }\left(a_{k}\right) \text { converges absolutely }
$$

$$
\{0,1\}^{\mathbb{N}} \quad \text { The set of all infinite binary sequences }
$$

- Exploit high-level constructs (images of sets under functions, Minkowsky sums/products of sets, etc).
$0 \in f(\mathbb{Z}) \quad$ The function f vanishes at (at least) one integer.

$$
\sum_{k \geqslant 0}\left|a_{k}\right|<\infty \quad \text { The sequence }\left(a_{k}\right) \text { converges absolutely }
$$

$$
\{0,1\}^{\mathbb{N}} \quad \text { The set of all infinite binary sequences }
$$

- Exploit high-level constructs (images of sets under functions, Minkowsky sums/products of sets, etc).
$0 \in f(\mathbb{Z}) \quad$ The function f vanishes at (at least) one integer.
$f(\mathbb{Z})=\{0\} \quad$ The function f vanishes at all integers.
(The zeros of f include all integers.).

$$
\sum_{k \geqslant 0}\left|a_{k}\right|<\infty \quad \text { The sequence }\left(a_{k}\right) \text { converges absolutely }
$$

$$
\{0,1\}^{\mathbb{N}} \quad \text { The set of all infinite binary sequences }
$$

- Exploit high-level constructs (images of sets under functions, Minkowsky sums/products of sets, etc).
$0 \in f(\mathbb{Z}) \quad$ The function f vanishes at (at least) one integer.
$f(\mathbb{Z})=\{0\} \quad$ The function f vanishes at all integers.
(The zeros of f include all integers.).
These expressions are concise and elegant -if cryptic.

Exercises

Describe with words

1. \mathbb{Q}^{3}
2. $\mathbb{N}^{\mathbb{Z}}$
3. $\bigcup \mathbb{N}^{n}$
$n \geqslant 1$
4. $a \mathbb{Z}+b \mathbb{Z}$
5. $\Gamma(z+1)=z \Gamma(z)$.
6. $X=\{1, X\}$
7. $\frac{1}{2} \mathbb{Z}$
8. $\mathbb{Z}\left[\frac{1}{2}\right]$

Translate the following sentences into words (f is a real function).

1. $4 \mathbb{Z} \subset 2 \mathbb{Z}$
2. $\# f(\mathbb{R})=1$
3. $\# f^{-1}(\{0\})<\infty$
4. $\forall \gamma, \delta \in \Omega, \gamma \delta=\delta \gamma$
5. $\forall r \in \mathbb{Q} \backslash\{0\}: f(r) \neq 0$
6. $\forall \alpha \in A, \forall \epsilon>0, \exists \beta \in B,|\alpha-\beta|<\epsilon$
7. $\exists a \in \mathbb{R}, \forall x \in \mathbb{R}^{+}, f(x+a)=f(a)$
8. $\#\{f(x): x \in \mathbb{Z}\}=\infty$
9. $f(\mathbb{R})=f(\mathbb{Z})$

Turn words into symbols: (f is a real function, unless specified otherwise)

1. The function f assumes only integer values.
2. The function f is not always positive.
3. The function $f: A \rightarrow B$ is not constant.
4. The polynomial $p(x)$ has no rational roots.
5. The function f vanishes for all sufficiently large arguments.
6. There are zeros of f arbitrarily close to the origin of the Cartesian plane.

Definitions

Definitions

Readers need time to absorb them.

Definitions

Readers need time to absorb them.

- Give the definition twice, first with words and then with symbols, or vice-versa.

Definitions

Readers need time to absorb them.

- Give the definition twice, first with words and then with symbols, or vice-versa.

For given ϵ, we let

$$
S_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leqslant \epsilon / \sqrt{2}\right\}
$$

Definitions

Readers need time to absorb them.

- Give the definition twice, first with words and then with symbols, or vice-versa.

For given ϵ, we let

$$
S_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leqslant \epsilon / \sqrt{2}\right\},
$$

Definitions

Readers need time to absorb them.

- Give the definition twice, first with words and then with symbols, or vice-versa.

For given ϵ, we let

$$
S_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leqslant \epsilon / \sqrt{2}\right\}, \quad ?
$$

that is, S_{ϵ} is a strip of width ϵ symmetrical with respect to the main diagonal in the Cartesian plane.

Definitions

Readers need time to absorb them.

- Give the definition twice, first with words and then with symbols, or vice-versa.

For given ϵ, we let

$$
S_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leqslant \epsilon / \sqrt{2}\right\},
$$

that is, S_{ϵ} is a strip of width ϵ symmetrical with respect to the main diagonal in the Cartesian plane.

- Support the definition with an example.

Definitions

Readers need time to absorb them.

- Give the definition twice, first with words and then with symbols, or vice-versa.

For given ϵ, we let

$$
S_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leqslant \epsilon / \sqrt{2}\right\}, \quad ?
$$

that is, S_{ϵ} is a strip of width ϵ symmetrical with respect to the main diagonal in the Cartesian plane.

- Support the definition with an example.

Let \mathcal{N} be the set of sequences of natural numbers, such that every natural number is listed infinitely often.

Definitions

Readers need time to absorb them.

- Give the definition twice, first with words and then with symbols, or vice-versa.

For given ϵ, we let

$$
S_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leqslant \epsilon / \sqrt{2}\right\}, \quad ?
$$

that is, S_{ϵ} is a strip of width ϵ symmetrical with respect to the main diagonal in the Cartesian plane.

- Support the definition with an example.

Let \mathcal{N} be the set of sequences of natural numbers, such that every natural number is listed infinitely often. ?

Definitions

Readers need time to absorb them.

- Give the definition twice, first with words and then with symbols, or vice-versa.

For given ϵ, we let

$$
S_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}:|x-y| \leqslant \epsilon / \sqrt{2}\right\}, \quad ?
$$

that is, S_{ϵ} is a strip of width ϵ symmetrical with respect to the main diagonal in the Cartesian plane.

- Support the definition with an example.

Let \mathcal{N} be the set of sequences of natural numbers, such that every natural number is listed infinitely often. ? For example, the sequence

$$
(1,1,2,1,2,3,1,2,3,4, \ldots)
$$

belongs to \mathcal{N}.

- Prepare the reader for a definition, by asking a question.
- Prepare the reader for a definition, by asking a question.

The absolute value is a function that associates to every integer x a number $|x|$ with the following properties
i) $|x|=0$ iff $x=0$
ii) $|x y|=|x||y|$
iii) $|x+y| \leqslant|x|+|y|$.

- Prepare the reader for a definition, by asking a question.

The absolute value is a function that associates to every integer x a number $|x|$ with the following properties

$$
\begin{aligned}
\text { i) } & |x|=0 \text { iff } x=0 \\
\text { ii) } & |x y|=|x||y| \\
\text { iii) } & |x+y| \leqslant|x|+|y| \text {. }
\end{aligned}
$$

Are there other functions $\mathbb{Z} \rightarrow \mathbb{R}$ with the same properties?

- Prepare the reader for a definition, by asking a question.

The absolute value is a function that associates to every integer x a number $|x|$ with the following properties
i) $|x|=0$ iff $x=0$
ii) $|x y|=|x||y|$
iii) $|x+y| \leqslant|x|+|y|$.

Are there other functions $\mathbb{Z} \rightarrow \mathbb{R}$ with the same properties?
(The definition of p-adic absolute values then follows.)

Exercise: re-write for a beginning undergraduate

Let

$$
\ln (x)=\int_{1}^{x} \frac{1}{t} \mathrm{~d} t \quad x>0
$$

Then

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (x)=\frac{1}{x} \quad \Rightarrow \quad \frac{\mathrm{~d}}{\mathrm{~d} x} \ln (u(x))=\frac{1}{u} \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

for any differentiable $u(x)>0$. Then

$$
\begin{aligned}
& \quad u(x):=a x \Rightarrow \frac{d}{d x} \ln (a x)=\frac{1}{a x} \frac{d}{d x}(a x)=\frac{1}{a x} \cdot a=\frac{1}{x} . \\
& \Rightarrow \ln (x)^{\prime}=\ln (a x)^{\prime}, \text { so that } \ln (a x)=\ln (x)+C, \text { and } \\
& \quad x=1 \Rightarrow \ln (a \cdot 1)=\ln (a)=\ln (1)+C=0+C \\
& \Rightarrow C=\ln (a), \text { giving } \ln (a x)=\ln (a)+\ln (x) .
\end{aligned}
$$

A solution

A solution

The natural logarithm of a positive real number x is defined as the number

$$
\ln (x):=\int_{1}^{x} \frac{1}{t} \mathrm{~d} t \quad x>0
$$

(Note that this definition makes no reference to exponentiation.)

A solution

The natural logarithm of a positive real number x is defined as the number

$$
\ln (x):=\int_{1}^{x} \frac{1}{t} \mathrm{~d} t \quad x>0
$$

(Note that this definition makes no reference to exponentiation.) The logarithm of x is positive if $x>1$, zero if $x=1$, and negative if $0<x<1$.

A solution

The natural logarithm of a positive real number x is defined as the number

$$
\ln (x):=\int_{1}^{x} \frac{1}{t} \mathrm{~d} t \quad x>0
$$

(Note that this definition makes no reference to exponentiation.) The logarithm of x is positive if $x>1$, zero if $x=1$, and negative if $0<x<1$.
By definition, the logarithmic function is differentiable and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (x)=\frac{1}{x} \tag{1}
\end{equation*}
$$

Being differentiable, this function is also continuous.

A solution

The natural logarithm of a positive real number x is defined as the number

$$
\ln (x):=\int_{1}^{x} \frac{1}{t} \mathrm{~d} t \quad x>0
$$

(Note that this definition makes no reference to exponentiation.) The logarithm of x is positive if $x>1$, zero if $x=1$, and negative if $0<x<1$.
By definition, the logarithmic function is differentiable and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (x)=\frac{1}{x} \tag{1}
\end{equation*}
$$

Being differentiable, this function is also continuous. The chain rule of differentiation extends to equation (1) to give

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (u(x))=\frac{1}{u} \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

for any positive differentiable function $u(x)$.

Consider now the function $u(x)=a x$, for some positive real number a. Applying the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (a x)=\frac{1}{a x} \frac{\mathrm{~d}}{\mathrm{~d} x}(a x)=\frac{1}{a x} \cdot a=\frac{1}{x} .
$$

Consider now the function $u(x)=a x$, for some positive real number a. Applying the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (a x)=\frac{1}{a x} \frac{\mathrm{~d}}{\mathrm{~d} x}(a x)=\frac{1}{a x} \cdot a=\frac{1}{x} .
$$

Therefore the functions $\ln (x)$ and $\ln (a x)$ have the same derivative. Integration gives

$$
\begin{equation*}
\ln (a x)=\ln (x)+C \tag{2}
\end{equation*}
$$

for some constant C.

Consider now the function $u(x)=a x$, for some positive real number a. Applying the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (a x)=\frac{1}{a x} \frac{\mathrm{~d}}{\mathrm{~d} x}(a x)=\frac{1}{a x} \cdot a=\frac{1}{x} .
$$

Therefore the functions $\ln (x)$ and $\ln (a x)$ have the same derivative. Integration gives

$$
\begin{equation*}
\ln (a x)=\ln (x)+C \tag{2}
\end{equation*}
$$

for some constant C. The above equation holds for all positive values of x, so it must hold for $x=1$. Hence

$$
\ln (a \cdot 1)=\ln (a)=\ln (1)+C=0+C
$$

giving $C=\ln (a)$.

Consider now the function $u(x)=a x$, for some positive real number a. Applying the chain rule we get

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \ln (a x)=\frac{1}{a x} \frac{\mathrm{~d}}{\mathrm{~d} x}(a x)=\frac{1}{a x} \cdot a=\frac{1}{x} .
$$

Therefore the functions $\ln (x)$ and $\ln (a x)$ have the same derivative. Integration gives

$$
\begin{equation*}
\ln (a x)=\ln (x)+C \tag{2}
\end{equation*}
$$

for some constant C. The above equation holds for all positive values of x, so it must hold for $x=1$. Hence

$$
\ln (a \cdot 1)=\ln (a)=\ln (1)+C=0+C
$$

giving $C=\ln (a)$. Substituting this in equation (2) gives

$$
\begin{equation*}
\ln (a x)=\ln (a)+\ln (x) \tag{3}
\end{equation*}
$$

which is the basic property of the logarithmic function.

