Sample slides Franco Vivaldí

Hamiltonian stability

over discrete spaces

Franco Vivaldi Queen Mary, University of London

integrable

foliation by invariant curves

integrable

foliation by invariant curves

integrable near-integrable: stable

integrable near-integrable: stable

near-integrable: stable

strong perturbation: unstable

integrable

What happens if the space is discrete?

What happens if the space is discrete?

Truncation (computer arithmetic).

Truncation (computer arithmetic).

Restricting coordinates to a discrete field (ring, module).

- Truncation (computer arithmetic).
- Restricting coordinates to a discrete field (ring, module).
- Geometric discretization.

- Truncation (computer arithmetic).
- Restricting coordinates to a discrete field (ring, module).
- Geometric discretization.
- Reduction to a finite field.

Astron. & Astrophys. 31, 289-301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings

F. Rannou Observatoire de Nice

Received August, 10, 1973

Astron. & Astrophys. 31, 289-301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings

F. Rannou Observatoire de Nice

Received August, 10, 1973

Astron. & Astrophys. 31, 289-301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings

F. Rannou
Observatoire de Nice

Received August, 10, 1973

$$x_{t+1} = x_t + y_t + \frac{m}{2\pi} \left(1 - \cos \frac{2\pi}{m} y_t \right) \pmod{m}$$

$$y_{t+1} = y_t - \frac{\lambda m}{2\pi} \left(\sin \frac{2\pi}{m} x_{t+1} + 1 - \cos \frac{2\pi}{m} x_{t+1} \right) \pmod{m}$$

Astron. & Astrophys. 31, 289-301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings

F. Rannou	
Observatoire de l	Nice

Received August, 10, 1973

$$\begin{aligned} & \text{lattice size} \\ x_{t+1} &= x_t + y_t + \frac{m}{2\pi} \left(1 - \cos \frac{2\pi}{m} y_t \right) & (\text{mod } m) \\ y_{t+1} &= y_t - \frac{\lambda m}{2\pi} \left(\sin \frac{2\pi}{m} x_{t+1} + 1 - \cos \frac{2\pi}{m} x_{t+1} \right) & (\text{mod } m) \end{aligned}$$

Astron. & Astrophys. 31, 289-301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings

F. Rannou	
Observatoire de	Nice

Received August, 10, 1973

Astron. & Astrophys. 31, 289-301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings

F. Rannou	
Observatoire de l	Nice

Received August, 10, 1973

First study of an invertible lattice map on the torus

All orbits are periodic.

Astron. & Astrophys. 31, 289-301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings

F. Rannou	
Observatoire de Nice	

Received August, 10, 1973

First study of an invertible lattice map on the torus

$$\begin{aligned} x_{t+1} &= x_t + y_t + \left[\frac{m}{2\pi} \left(1 - \cos\frac{2\pi}{m}y_t\right)\right] & (\mod m) \\ y_{t+1} &= y_t - \left[\frac{\lambda m}{2\pi} \left(\sin\frac{2\pi}{m}x_{t+1} + 1 - \cos\frac{2\pi}{m}x_{t+1}\right)\right] & (\mod m) \end{aligned}$$

All orbits are periodic.

Orbit representing curves develop some "thickness", but remain stable.

Astron. & Astrophys. 31, 289-301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings

F. Rannou	
Observatoire de Nice	

Received August, 10, 1973

First study of an invertible lattice map on the torus

$$x_{t+1} = x_t + y_t + \left[\frac{m}{2\pi} \left(1 - \cos\frac{2\pi}{m}y_t\right)\right] \qquad (\mod m)$$

$$y_{t+1} = y_t - \left[\frac{\lambda m}{2\pi} \left(\sin\frac{2\pi}{m}x_{t+1} + 1 - \cos\frac{2\pi}{m}x_{t+1}\right)\right] \pmod{m}$$

All orbits are periodic.

- Orbit representing curves develop some "thickness", but remain stable.
- In the chaotic regions the map behaves like a random permutation.

Astron. & Astrophys. 31, 289-301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings

lattice size

rounding to

nearest integer

F. Rannou	
Observatoire de Nice	

Received August, 10, 1973

First study of an invertible lattice map on the torus

$$x_{t+1} = x_t + y_t + \left[\frac{m}{2\pi} \left(1 - \cos\frac{2\pi}{m}y_t\right)\right] \pmod{m}$$

$$y_{t+1} = y_t - \left[\frac{\lambda m}{2\pi} \left(\sin\frac{2\pi}{m}x_{t+1} + 1 - \cos\frac{2\pi}{m}x_{t+1}\right)\right] \pmod{m}$$

All orbits are periodic.

- Orbit representing curves develop some "thickness", but remain stable. why?
- In the chaotic regions the map behaves like a random permutation.

Renormalization

in parametrised families of polygon-exchange transformations

Franco Vivaldi

Queen Mary, University of London

with J H Lowenstein (New York)

the space:

$$\Omega \subset \mathbb{R}^n$$
$$\Omega = \bigcup \Omega_i$$

a finite collection of pairwise disjoint open polytopes (intersection of open half-spaces), called the atoms.

the space:

$$\Omega \subset \mathbb{R}^n$$
$$\Omega = \bigcup \Omega_i$$

a finite collection of pairwise disjoint open polytopes (intersection of open half-spaces), called the atoms.

the dynamics:
$$F: \Omega \to \Omega$$
 $F|_{\Omega_i}$ is an isometry

the space:

$$\Omega \subset \mathbb{R}^n$$
$$\Omega = \overline{\bigcup \Omega_i}$$

 Ω_i Ω_i Ω

a finite collection of pairwise disjoint open polytopes (intersection of open half-spaces), called the atoms.

the dynamics:
$$F:\Omega o \Omega = F|_{\Omega_i}$$
 is an isometry

If F is invertible, then F is volume-preserving.

the space:

$$\Omega \subset \mathbb{R}^n$$
$$\Omega = \bigcup \Omega_i$$

 Ω_i Ω_i Ω

a finite collection of pairwise disjoint open polytopes (intersection of open half-spaces), called the atoms.

the dynamics: $F: \Omega \to \Omega$ $F|_{\Omega_i}$ is an isometry

If F is invertible, then F is volume-preserving.

Theorem (Gutkin & Haydin 1997, Buzzi 2001) The topological entropy of a piecewise isometry is zero.

Iterate the boundary of the atoms: $\partial \Omega = \bigcup \partial \Omega_i$

Iterate the boundary of the atoms: $\partial \Omega = \bigcup \partial \Omega_i$

discontinuity set

$$\mathscr{D} = \bigcup_{t \in \mathbb{Z}} F^t(\partial \Omega)$$

Iterate the boundary of the atoms: $\partial \Omega = \bigcup \partial \Omega_i$

discontinuity set

$$\mathscr{D} = \bigcup_{t \in \mathbb{Z}} F^t(\partial \Omega)$$

Iterate the boundary of the atoms: $\partial \Omega = \bigcup \partial \Omega_i$

discontinuity set

$$\mathscr{D} = \bigcup_{t \in \mathbb{Z}} F^t(\partial \Omega)$$

not dense, typically

Iterate the boundary of the atoms: $\partial \Omega = \bigcup \partial \Omega_i$

discontinuity set

$$\mathscr{D} = \bigcup_{t \in \mathbb{Z}} F^t(\partial \Omega)$$

not dense, typically

periodic set

$$\Pi = \Omega \setminus \overline{\mathscr{D}}$$

Higher dimensions: topology

Iterate the boundary of the atoms: $\partial \Omega = \bigcup \partial \Omega_i$

discontinuity set

$$\mathscr{D} = \bigcup_{t \in \mathbb{Z}} F^t(\partial \Omega)$$

not dense, typically

periodic set

$$\Pi = \Omega \setminus \overline{\mathscr{D}}$$

(union of cells of positive measure)

Higher dimensions: topology

Iterate the boundary of the atoms: $\partial \Omega = \bigcup \partial \Omega_i$

discontinuity set

$$\mathscr{D} = \bigcup_{t \in \mathbb{Z}} F^t(\partial \Omega)$$

not dense, typically

periodic set

$$\Pi = \Omega \setminus \overline{\mathscr{D}}$$

(union of cells of positive measure)

exceptional set

$$\mathscr{E} = \overline{\mathscr{D}} \setminus \mathscr{D}$$

Higher dimensions: topology

Iterate the boundary of the atoms: $\partial \Omega = \bigcup \partial \Omega_i$

discontinuity set

$$\mathscr{D} = \bigcup_{t \in \mathbb{Z}} F^t(\partial \Omega)$$

not dense, typically

periodic set

$$\Pi = \Omega \setminus \overline{\mathscr{D}}$$

(union of cells of positive measure)

exceptional set

$$\mathscr{E} = \overline{\mathscr{D}} \setminus \mathscr{D}$$

(asymptotic phenomena)

Hooper (2013)
Schwartz (2014)
Lowenstein & fv (2016)

Hooper (2013)
 Schwartz (2014)
 Lowenstein & fv (2016)

Hooper (2013)
Schwartz (2014)
Lowenstein & fv (2016)

parameter: position of *O* along diagonal

rotate about O

Hooper (2013)
 Schwartz (2014)
 Lowenstein & fv (2016)

quadratic rotation fields: $\mathbb{Q}(\lambda) = \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{5})$

quadratic rotation fields: $\mathbb{Q}(\lambda) = \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{5})$ translation module: $\mathbb{Q}(\lambda) + s \mathbb{Q}(\lambda)$ s: parameter

A flow with a piecewise-constant vector field is diffracted by a line

replace the flow by a map, using the same vectors

flow and map differ within a strip

x

x

The arithmetic of chaos

Franco Vivaldi

Queen Mary, University of London

God

"God gave us the integers, the rest is the work of man" *L Kronecker*

"God gave us the integers, the rest is the work of man" *L Kronecker*

30384347391847329111084745934789430006108457350897213087523809

COMPUTER PROGRAMS to build numbers

print(123) 15 times

computer programs to build numbers

dumb

print(123) 15 times

smart

computer programs to build numbers

dumb

print(123) 15 times

smart

print(3846264338327950288419716939937510582097494)

dumb
computer programs to build numbers

dumb

print(123) 15 times

smart

print(3846264338327950288419716939937510582097494)

dumb

smart

random numbers

A number is **random** if the **shortest** program that can build its digits is the **dumb** program

Kolmogorov

random numbers

A number is **random** if the **shortest** program that can build its digits is the **dumb** program

Kolmogorov

random

random numbers

A number is **random** if the **shortest** program that can build its digits is the **dumb** program

Kolmogorov

random

Lebesgue

The total mass of all fractions is <u>zero</u>

DARK MATTER

DARK MATTER

DARK MATTER

Random numbers are

Random numbers are

they can't be defined individually, or talked about

Random numbers are

they can't be defined individually, or talked about

they can't be computed, or stored in computers

Random numbers are

they can't be defined individually, or talked about

they can't be computed, or stored in computers

they can't be proved to be random

Random numbers are

they can't be defined individually, or talked about

they can't be computed, or stored in computers

they can't be proved to be random

Random numbers are not meant for humans.

Thank you for your attention