Sample slides
 Franco Vivaldi

Hamiltonian stability
 over discrete spaces

Franco Vivaldi
Queen Mary, University of London

Smooth area-preserving maps

Smooth area-preserving maps

integrable

Smooth area-preserving maps

foliation by
invariant curves

integrable

Smooth area-preserving maps

foliation by
invariant curves

integrable

near-integrable: stable

Smooth area-preserving maps

integrable

near-integrable: stable

Smooth area-preserving maps

foliation by
invariant curves
KAM curves

integrable

near-integrable: stable

strong perturbation: unstable

Smooth area-preserving maps

foliation by invariant curves

integrable

KAM curves

near-integrable: stable

strong perturbation: unstable

What happens if the space is discrete?

Smooth area-preserving maps

foliation by invariant curves

integrable

KAM curves ?

near-integrable: stable

strong perturbation: unstable

What happens if the space is discrete?

Some methods for discretizing space

Some methods for discretizing space

- Truncation (computer arithmetic).

Some methods for discretizing space

- Truncation (computer arithmetic).

Restricting coordinates to a discrete field (ring, module).

Some methods for discretizing space

- Truncation (computer arithmetic).

Restricting coordinates to a discrete field (ring, module).
Geometric discretization.

Some methods for discretizing space

- Truncation (computer arithmetic).

Restricting coordinates to a discrete field (ring, module).
Geometric discretization.
Reduction to a finite field.

Early investigations:

F. Rannou (I974)

Early investigations:

F. Rannou (1974)

Astron. \& Astrophys. 31, 289-301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings F. Rannou

Observatoire de Nice
Received August, 10, 1973

Early investigations:

F. Rannou (I974)

Astron. \& Astrophys. 31, 289 - 301 (1974)

Numerical Study of Discrete Plane Area-preserving Mappings F. Rannou

Observatoire de Nice
Received August, 10, 1973

First study of an invertible lattice map on the torus

Early investigations:

F. Rannou (I974)

Numerical Study of Discrete Plane Area-preserving Mappings F. Rannou

Observatoire de Nice
Received August, 10, 1973

First study of an invertible lattice map on the torus

$$
\begin{array}{ll}
x_{t+1}=x_{t}+y_{t}+\frac{m}{2 \pi}\left(1-\cos \frac{2 \pi}{m} y_{t}\right) & (\bmod m) \\
y_{t+1} & =y_{t}-\frac{\lambda m}{2 \pi}\left(\sin \frac{2 \pi}{m} x_{t+1}+1-\cos \frac{2 \pi}{m} x_{t+1}\right)
\end{array} \quad(\bmod m)
$$

Early investigations:

F. Rannou (I974)

Numerical Study of Discrete Plane Area-preserving Mappings F. Rannou

Observatoire de Nice
Received August, 10, 1973

First study of an invertible lattice map on the torus

$$
\begin{array}{lll}
x_{t+1}=x_{t}+y_{t}+\frac{m}{2 \pi}\left(1-\cos \frac{2 \pi}{m} y_{t}\right) & (\bmod m) \\
y_{t+1}=y_{t}-\frac{\lambda m}{2 \pi}\left(\sin \frac{2 \pi}{m} x_{t+1}+1-\cos \frac{2 \pi}{m} x_{t+1}\right) & (\bmod m)
\end{array}
$$

Early investigations:

F. Rannou (I974)

Numerical Study of Discrete Plane Area-preserving Mappings F. Rannou

Observatoire de Nice
Received August, 10, 1973

First study of an invertible lattice map on the torus

$$
\begin{array}{lll}
x_{t+1}=x_{t}+y_{t}+\left[\frac{m}{2 \pi}\left(1-\cos \frac{2 \pi}{m} y_{t}\right)\right] & (\bmod m) & \text { rounding to } \\
y_{t+1}=y_{t}-\left[\frac{\lambda m}{2 \pi}\left(\sin \frac{2 \pi}{m} x_{t+1}+1-\cos \frac{2 \pi}{m} x_{t+1}\right)\right](\bmod m) & \text { nearest integer }
\end{array}
$$

Early investigations:

F. Rannou (I974)

First study of an invertible lattice map on the torus

$$
\begin{aligned}
x_{t+1} & =x_{t}+y_{t}+\left[\frac{m}{2 \pi}\left(1-\cos \frac{2 \pi}{m} y_{t}\right)\right] & (\bmod m) & \text { rounding to } \\
y_{t+1} & =y_{t}-\left[\frac{\lambda m}{2 \pi}\left(\sin \frac{2 \pi}{m} x_{t+1}+1-\cos \frac{2 \pi}{m} x_{t+1}\right)\right] & (\bmod m) & \text { nearest integer }
\end{aligned}
$$

All orbits are periodic.

Early investigations:

F. Rannou (I974)

```
Numerical Study of Discrete Plane Area-preserving Mappings
F. Rannou
Observatoire de Nice
Received August, 10, 1973
```

First study of an invertible lattice map on the torus

$$
\begin{aligned}
& x_{t+1}=x_{t}+y_{t}+\left[\frac{m}{2 \pi}\left(1-\cos \frac{2 \pi}{m} y_{t}\right)\right] \quad(\bmod m) \\
& y_{t+1}=y_{t}-\left[\frac{\lambda m}{2 \pi}\left(\sin \frac{2 \pi}{m} x_{t+1}+1-\cos \frac{2 \pi}{m} x_{t+1}\right)\right](\bmod m)
\end{aligned}
$$

All orbits are periodic.

- Orbit representing curves develop some "thickness", but remain stable.

Early investigations:

F. Rannou (1974)

```
Numerical Study of Discrete Plane Area-preserving Mappings
F. Rannou
Observatoire de Nice

First study of an invertible lattice map on the torus
\[
\begin{aligned}
& x_{t+1}=x_{t}+y_{t}+\left[\frac{m}{2 \pi}\left(1-\cos \frac{2 \pi}{m} y_{t}\right)\right] \quad(\bmod m) \\
& y_{t+1}=y_{t}-\left[\frac{\lambda m}{2 \pi}\left(\sin \frac{2 \pi}{m} x_{t+1}+1-\cos \frac{2 \pi}{m} x_{t+1}\right)\right](\bmod m)
\end{aligned}
\]
- All orbits are periodic.
- Orbit representing curves develop some "thickness", but remain stable.
- In the chaotic regions the map behaves like a random permutation.


\section*{Early investigations:}

\section*{F. Rannou (I974)}

Numerical Study of Discrete Plane Area-preserving Mappings

\section*{F. Rannou}

Observatoire de Nice
Received August, 10, 1973

First study of an invertible lattice map on the torus
\[
\begin{aligned}
& x_{t+1}=x_{t}+y_{t}+\left[\frac{m}{2 \pi}\left(1-\cos \frac{2 \pi}{m} y_{t}\right)\right] \\
& y_{t+1}=y_{t}-\left[\frac{\lambda m}{2 \pi}\left(\sin \frac{2 \pi}{m} x_{t+1}+1-\cos \frac{2 \pi}{m} x_{t+1}\right)\right](\bmod m)
\end{aligned}
\]

All orbits are periodic.
- Orbit representing curves develop some "thickness", but remain stable. Why?
- In the chaotic regions the map behaves like a random permutation.


\section*{Renormalization} in parametrised families of polygon-exchange transformations

\author{
Franco Vivaldi \\ Queen Mary, University of London
}
with J H Lowenstein (New York)


\section*{Piecewise isometries}
\[
\Omega \subset \mathbb{R}^{n}
\]
the space:
\[
\Omega=\overline{\bigcup \Omega_{i}}
\]
a finite collection of pairwise disjoint open polytopes (intersection of open half-spaces),
 called the atoms.

\section*{Piecewise isometries}
\[
\Omega \subset \mathbb{R}^{n}
\]
the space:
\[
\Omega=\overline{\bigcup \Omega_{i}}
\]
a finite collection of pairwise disjoint open polytopes (intersection of open half-spaces),
 called the atoms.
the dynamics: \(\quad F:\left.\Omega \rightarrow \Omega \quad F\right|_{\Omega_{i}}\) is an isometry

\section*{Piecewise isometries}
\[
\Omega \subset \mathbb{R}^{n}
\]
the space:
\[
\Omega=\overline{\bigcup \Omega_{i}}
\]
a finite collection of pairwise disjoint open polytopes (intersection of open half-spaces),

\(\Omega\) called the atoms.
the dynamics: \(\quad F:\left.\Omega \rightarrow \Omega \quad F\right|_{\Omega_{i}}\) is an isometry
If \(F\) is invertible, then \(F\) is volume-preserving.

\section*{Piecewise isometries}
\[
\Omega \subset \mathbb{R}^{n}
\]
the space:
\[
\Omega=\overline{\bigcup \Omega_{i}}
\]
a finite collection of pairwise disjoint open polytopes (intersection of open half-spaces),

\(\Omega\) called the atoms.
the dynamics: \(\quad F:\left.\Omega \rightarrow \Omega \quad F\right|_{\Omega_{i}}\) is an isometry
If \(F\) is invertible, then \(F\) is volume-preserving.
Theorem (Gutkin \& Haydin 1997, Buzzi 200I)
The topological entropy of a piecewise isometry is zero.

Higher dimensions: topology


\section*{Higher dimensions: topology}

Iterate the boundary of the atoms: \(\partial \Omega=\bigcup \partial \Omega_{i}\)


\section*{Higher dimensions: topology}

Iterate the boundary of the atoms: \(\partial \Omega=\bigcup \partial \Omega_{i}\)
discontinuity set
\[
\mathscr{D}=\bigcup_{t \in \mathbb{Z}} F^{t}(\partial \Omega)
\]

\section*{Higher dimensions: topology}

Iterate the boundary of the atoms: \(\partial \Omega=\bigcup \partial \Omega_{i}\)
discontinuity set
\[
\mathscr{D}=\bigcup_{t \in \mathbb{Z}} F^{t}(\partial \Omega)
\]


\section*{Higher dimensions: topology}

Iterate the boundary of the atoms: \(\partial \Omega=\bigcup \partial \Omega_{i}\)
discontinuity set
\[
\mathscr{D}=\bigcup_{t \in \mathbb{Z}} F^{t}(\partial \Omega)
\]
not dense, typically


\section*{Higher dimensions: topology}

Iterate the boundary of the atoms: \(\partial \Omega=\bigcup \partial \Omega_{i}\)
discontinuity set
\[
\mathscr{D}=\bigcup_{t \in \mathbb{Z}} F^{t}(\partial \Omega)
\]
not dense, typically
periodic set
\[
\Pi=\Omega \backslash \overline{\mathscr{D}}
\]


\section*{Higher dimensions: topology}

Iterate the boundary of the atoms: \(\partial \Omega=\bigcup \partial \Omega_{i}\)
discontinuity set
\[
\mathscr{D}=\bigcup_{t \in \mathbb{Z}} F^{t}(\partial \Omega)
\]
not dense, typically
periodic set
\[
\Pi=\Omega \backslash \overline{\mathscr{D}}
\]
(union of cells of positive measure)


\section*{Higher dimensions: topology}

Iterate the boundary of the atoms: \(\partial \Omega=\bigcup \partial \Omega_{i}\)
discontinuity set
\[
\mathscr{D}=\bigcup_{t \in \mathbb{Z}} F^{t}(\partial \Omega)
\]
not dense, typically
periodic set
\[
\Pi=\Omega \backslash \overline{\mathscr{D}}
\]
(union of cells of positive measure)
exceptional set
\[
\mathscr{E}=\overline{\mathscr{D}} \backslash \mathscr{D}
\]


\section*{Higher dimensions: topology}

Iterate the boundary of the atoms: \(\partial \Omega=\bigcup \partial \Omega_{i}\)
discontinuity set
\[
\mathscr{D}=\bigcup_{t \in \mathbb{Z}} F^{t}(\partial \Omega)
\]
not dense, typically
periodic set
\[
\Pi=\Omega \backslash \overline{\mathscr{D}}
\]
(union of cells of positive measure)
exceptional set
\[
\mathscr{E}=\overline{\mathscr{D}} \backslash \mathscr{D}
\]
(asymptotic phenomena)


\section*{One-parameter families of polygon-exchange transformations}
- Hooper (2013)
- Schwartz (2014)

Lowenstein \& fv (2016)

\section*{One-parameter families of} polygon-exchange transformations
- Hooper (2013)

Schwartz (2014)
Lowenstein \& fv (2016)

\section*{One-parameter families of polygon-exchange transformations}
\(\square\) Hooper (2013)
- Schwartz (2014)

Lowenstein \& fv (20|6)


\section*{One-parameter families of polygon-exchange transformations}
\(\square\) Hooper (2013)
- Schwartz (2014)

Lowenstein \& fv (2016)

rotate about \(O\)

\section*{One-parameter families of polygon-exchange transformations}
\(\square\) Hooper (20|3)
- Schwartz (2014)
\(\square\) Lowenstein \& fv (2016)

rotate about \(O\)

> translate back to \(\Omega\)
> (parameter-dependent)

\section*{One-parameter families of polygon-exchange transformations}
\(\square\) Hooper (2013)
\(\square\) Schwartz (2014)
\(\square\) Lowenstein \& fv (2016)

rotate about \(O \quad\) translate back to \(\Omega\)
(parameter-dependent)
quadratic rotation fields: \(\mathbb{Q}(\lambda)=\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{5})\)

\section*{One-parameter families of polygon-exchange transformations}
\(\square\) Hooper (2013)
\(\square\) Schwartz (2014)
\(\square\) Lowenstein \& fv (2016)

rotate about \(O \quad\) translate back to \(\Omega\) (parameter-dependent)
quadratic rotation fields: \(\mathbb{Q}(\lambda)=\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{5})\) translation module: \(\mathbb{Q}(\lambda)+s \mathbb{Q}(\lambda) \quad s\) : parameter

\section*{Geometric discretization: strip maps}

\section*{Geometric discretization: strip maps}

\section*{Geometric discretization: strip maps}
replace the flow by a map, using the same vectors

\section*{Geometric discretization: strip maps}

A flow with a piecewise-constant vector field is diffracted by a line

\section*{Geometric discretization: strip maps}

A flow with a piecewise-constant vector field is diffracted by a line

Linked strip/maps: outer billiards of polygons

Linked strip maps: outer billiards of polygons


\title{
The arithmetic of chaos
}

\author{
Franco Vivaldi \\ Queen Mary, University of London
}

\section*{God}

"God gave us the integers, the rest is the work of man"
L Kronecker

"God gave us the integers, the rest is the work of man"
L Kronecker

the work of man

the work of man

the work of man

the work of man


\section*{the work of man}


\section*{computer programs to build numbers}
```

print(123123123123123123123123123123123123123123123)

```
print(123) 15 times

\section*{computer programs to build numbers}

print(123123123123123123123123123123123123123123123)
dumb
print(123) 15 times
smart

\section*{computer programs to build numbers}

```

print(123123123123123123123123123123123123123123123)
dumb
print(123) 15 times
smart
print(3846264338327950288419716939937510582097494)
dumb

```

\section*{computer programs to build numbers}

```

print(123123123123123123123123123123123123123123123)
dumb
print(123) 15 times
smart
print(3846264338327950288419716939937510582097494)
dumb

```


\section*{random numbers}

A number is random if the shortest program that can build its digits is the dumb program


Kolmogorov

\section*{random numbers}

A number is random if the shortest program that can build its digits is the dumb program


Kolmogorov

\section*{random}
\begin{tabular}{|c|}
\hline dumb program \\
\hline Output \\
\hline
\end{tabular}

\section*{random numbers}

A number is random if the shortest program that can build its digits is the dumb program


Kolmogorov

\section*{random}
dumb program
output

\section*{non-random}


> output

\section*{do numbers have mass?}

\section*{do numbers have mass?}


Lebesgue

\section*{0}

1

\section*{do numbers have mass?}


1 Kg

\section*{do numbers have mass?}


\title{
do numbers have mass?
}

\(\square\) The total mass of all fractions is zero

\section*{DARK MATTER}

\section*{DARK MATTER}


\section*{DARK MATTER}


Theorem:

Theorem: the random numbers account for the total mass of the real number system.

Theorem: the random numbers account for the total mass of the real number system.

Random numbers are 4 渞

Theorem: the random numbers account for the total mass of the real number system.

they can't be defined individually, or talked about

Theorem: the random numbers account for the total mass of the real number system.


-
they can't be defined individually, or talked about
they can't be computed, or stored in computers

Theorem: the random numbers account for the total mass of the real number system.


-
they can't be defined individually, or talked about
they can't be computed, or stored in computersthey can't be proved to be random

Theorem: the random numbers account for the total mass of the real number system.
they can't be defined individually, or talked about
they can't be computed, or stored in computersthey can't be proved to be random

Random numbers are not meant for humans.

Thank you for your attention```

