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Truncation (computer arithmetic).

Restricting coordinates to a discrete field (ring, module).

Geometric discretization.

Reduction to a finite field.
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Early investigations:

All orbits are periodic.

Orbit representing curves develop some 
“thickness”, but remain stable.
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Orbit representing curves develop some 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One-parameter families of  
polygon-exchange transformations

type I

Hooper (2013)
Schwartz (2014)
Lowenstein & fv (2016)

quadratic rotation fields:

translation module:

O OO

rotate about O translate back to 
(parameter-dependent)

parameter: position of O 
along diagonal 

s:  parameter

Wi W ⇢ Rn W =
[
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Geometric discretization: strip maps

strip

A flow with a piecewise-constant 
vector field is diffracted by a line

replace the flow 
by a map, using 

the same vectors

flow and map differ 
within a strip

The lattice 
generated by the 

vectors is invariant 
under the map
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strip

closed polygon 
(integrable orbit)

Linked strip maps: outer billiards of polygons

perturbed 
orbit

piecewise-constant 
vector field



The arithmetic of chaos

Franco Vivaldi 
Queen Mary, University of London
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print(123123123123123123123123123123123123123123123)

print(123) 15 times

smart

dumb

print(3846264338327950288419716939937510582097494)

dumb

smart ?
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A number is random if the shortest program that 
can build its digits is the dumb program

Kolmogorov

non-random

output

smart 
program

random
dumb program

output
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do numbers have mass?

1 Kg

0 1

145 g

Lebesgue

The total mass of all fractions is zero
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Theorem: the random numbers account for the
total mass of the real number system.

Random numbers are               :

they can’t be defined individually, or talked about

they can’t be computed, or stored in computers

they can’t be proved to be random

Random numbers are not meant for humans.

dark



Thank you for your attention


