MAS/320 Number Theory: Coursework 5

Franco VIVALDI

http://www.maths.qmw.ac.uk/~fv/teaching/nt/nt.html
This coursework will be assessed and count towards your final mark for the course

DEADLINE: Wednesday of week 12, at 1:00 pm.
CONTENT: Modular arithmetic.

MîcroESSAY: Write an essay on quadratic residues. (Approximately 100 words, and no mathematical symbols.)

Problem 1. Construct a reduced residue system modulo 15 consisting entirely of (a) prime numbers; (b) composite numbers.

Problem 2. Calculate $\phi(m)$ for the following values of m
a) 512 ;
b) 1155 ;
c) 10 !.

Problem 3. Let $\Psi(n)=\phi(n) / n$, for $n \geq 1$.
(a) Show that the value of $\Psi(n)$ depends only on the prime divisors of n.
(b) Find the least n such that $\Psi(n)<1 / 4$.
(c) Construct an infinite sequence n_{k} of positive integers for which $\phi\left(n_{k}\right)<n_{k} / 5$, whence determine an integer $n>10^{6}$ with the same property. Such n should be as small as possible, and in any case smaller than $2 \cdot 10^{6}$.

Problem 4. In each case, construct the set of positive integers m with the stated property.
a) $\phi(m) \not \equiv 0(\bmod 4)$;
b) $\phi(m) \mid m$.

Problem 5. For the following values of m find all primitive roots modulo m
a) 13 ;
b) 23 ;
c) 26 .

Problem 6. Compute the quantity

$$
\frac{7}{13}(\bmod 23)
$$

in two ways:
(a) Determine $1 / 13$ by solving $x \cdot 13 \equiv 1(\bmod 23)$, using continued fractions.
(b) Determine $1 / 13$ as $13^{-1}=13^{t-1}$, where t is the order of 13 modulo 23 .

Problem 7*. Let $r=p / q$ be a rational number, with p and q coprime, and q coprime to 10 . It can be shown that the decimal digits of r are periodic. Prove that the length of the period is equal to the order of 10 modulo q.

Problem 8. Compute the value of the following Legendre symbols
a) $\left(\frac{43}{59}\right)$;
b) $\left(\frac{35}{113}\right)$;
c) $\left(\frac{365}{1847}\right)$.

Problem 9. Let p be a prime >3. Show that

$$
(3 / p)= \begin{cases}1 & \text { if } p \equiv \pm 1(\bmod 12) \\ -1 & \text { if } p \equiv \pm 5(\bmod 12)\end{cases}
$$

Problem 10. Prove that the product of the quadratic residues of p is congruent to $(-1)^{(p+1) / 2}$ modulo p. [Hint: use a primitive root.]

Problem 11. Prove that if p is an odd prime and $\operatorname{gcd}(a, p)=1$, we have

$$
\sum_{k=1}^{p-1}\left(\frac{k a}{p}\right)=0
$$

[Hint: use a primitive root.]

Problem 12*. Show that if p and $q=4 p+1$ are both primes, then 2 is a primitive root modulo q.

