MAS/320 Number Theory: Coursework 3

Franco VIVALDI
http://www.maths.qmw.ac.uk/~fv/teaching/nt/nt.html

This coursework will be assessed and count towards your final mark for the course

DEADLINE: Wednesday of week 7, at 1:00 pm.
CONTENT: Periodic continued fractions and applications.

MicroESSAY: Write an essay on periodic continued fractions. (Approximately 100 words, and no mathematical symbols.)

Problem 1. For the following values of α, find a quadratic polynomial with integer coefficients having α as a root. Such coefficients must have no common factor.
a) $\frac{(\sqrt{n})^{3}-\sqrt{n}}{(\sqrt{n})^{5}+(\sqrt{n})^{6}}$
b) $(1+\sqrt{3})^{5}$
c) $2 \sum_{k=1}^{\infty}\left(\frac{1}{\sqrt{5}}\right)^{k}$

Problem 2. In the following cases
a) $\quad D=2$;
b) $D=5$;
c) $D=11$
list all pairs (P, Q) for which the quadratic expression $(\sqrt{D}+P) / Q$ is reduced, identifying those pairs for which $\left(D-P^{2}\right) / Q$ is an integer.

Problem 3. Write the following integers as a sum of two squares by using the Legendre construction.
a) 197 ;
b) 181 ;
c) 10733 .

Problem 4. In the following cases
a) $\quad D=23$;
b) $\quad D=13$;
c) $D=97$
find the fundamental solution of Pell's equation, and determine if the equation $x^{2}-D y^{2}=-1$ is also solvable. If so, find the fundamental solution.

Problem 5. Let $x=p, y=q$ be the fundamental solution to Pell's equation $x^{2}-D y^{2}=1$, and let $x=x_{i}, y=y_{i}$, for $i=m-1, m, m+1$ be three consecutive solutions.
(a) Prove that $x_{m+1}=p x_{m}+q D y_{m}$ and $y_{m+1}=q x_{m}+p y_{m}$.
(b) Prove that $x_{m+1}=2 p x_{m}-x_{m-1}$ and $y_{m+1}=2 p y_{m}-y_{m-1}$.
(c) Consider Pell's equation $x^{2}-2 y^{2}=1$. Find the fundamental solution, and hence use one of the above recursion formulae to find a solution for which both x and y are greater than 10^{6}.

Problem 6. We define the Fibonacci numbers F_{n} recursively as follows

$$
\begin{equation*}
F_{0}=0 \quad F_{1}=1 \quad F_{n+1}=F_{n}+F_{n-1}, \quad n \geq 1 \tag{1}
\end{equation*}
$$

The first terms in the Fibonacci sequence are: $0,1,1,2,3,5,8,13,21,34,55,89, \ldots$..
(a) Show that the convergents of

$$
\gamma=\frac{1+\sqrt{5}}{2}
$$

satisfy the relation

$$
\begin{equation*}
\frac{p_{n}}{q_{n}}=\frac{F_{n+2}}{F_{n+1}} \quad n \geq 0 \tag{2}
\end{equation*}
$$

(b) Prove the following formula

$$
\begin{equation*}
F_{n}=\frac{1}{\sqrt{5}}\left[\gamma^{n}-\left(\gamma^{\prime}\right)^{n}\right] \quad n \geq 0 \tag{3}
\end{equation*}
$$

where γ^{\prime} is the algebraic conjugate of γ.
[Hint: verify that the right hand side of the above equation satisfies (1).]
(c) Prove the Cassini identity:

$$
\begin{equation*}
F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n} \quad n \geq 1 \tag{4}
\end{equation*}
$$

(d) Prove (by induction on k) the following formula

$$
\begin{equation*}
F_{n+k}=F_{k} F_{n+1}+F_{k-1} F_{n} \quad n \geq 0, \quad k \geq 1 \tag{5}
\end{equation*}
$$

(e) Use (5) to prove by induction that for any integer $s \geq 0, F_{s n}$ is a multiple of F_{n}, for all $n \geq 0$.
(f)* The generating function G of the sequence F_{k} is the following power series

$$
\begin{equation*}
G(x)=\sum_{k=0}^{\infty} F_{k} x^{k}=x+x^{2}+2 x^{3}+3 x^{4}+3 x^{5}+\cdots . \tag{6}
\end{equation*}
$$

Prove that

$$
G(x)=\frac{x}{1-x-x^{2}},
$$

and hence, or otherwise, determine the radius of convergence of the power series (6).
[Hint: compute $G(x)-x G(x)-x^{2} G(x)$.]

