# MAS/320 Number Theory: Coursework 2 

## Franco VIVALDI

http://www.maths.qmw.ac.uk/~fv/teaching/nt/nt.html
This coursework will be assessed and count towards your final mark for the course

DEADLINE: Wednesday of week 5, at 1:00 pm.
CONTENT: Infinite continued fractions.

MîcroESSAY: Write an essay on continued fractions. (Approximately 100 words, and no mathematical symbols.)

Problem 1. (Warm-ups on radicals.) Show that the value of each of the following expressions is an integer.
a) $\left(7 \frac{\sqrt{42}}{\sqrt{7}}+\frac{6 \sqrt{18}}{\sqrt{3}}-2 \sqrt{30} \sqrt{5}\right) \frac{2-\sqrt{6}}{\sqrt{54}-9}$
b) $\frac{(7-\sqrt{79})(3-\sqrt{10})^{2}(19+6 \sqrt{10})}{(9-\sqrt{79})(8+\sqrt{79})}$
c) $\left(2+\sqrt{-1}\left(\frac{1+\sqrt{5}}{2}\right)\right)\left(2-\sqrt{-1}\left(\frac{1+\sqrt{5}}{2}\right)\right)\left(2+\sqrt{-1}\left(\frac{1-\sqrt{5}}{2}\right)\right)\left(2-\sqrt{-1}\left(\frac{1-\sqrt{5}}{2}\right)\right)$.

Problem 2. Find the simple continued fraction of each of the following quadratic surds
a) $\frac{4-\sqrt{7}}{2}$
b) $\sqrt{61}$
c) $\sqrt{\frac{17}{3}}$

Problem 3. Let $n$ be a positive integer. Find the simple continued fraction of each of the following expressions
a) $\sqrt{n^{2}+1}$
b) $\sqrt{n^{2}+n}$
c) $\sqrt{n^{2 k}+n}, \quad k \geq 1$.

Problem 4. Determine the value of the following continued fractions
a) $[\overline{11}]$
b) $[3 ; 3, \overline{1,5,2}]$
c) $[n ; \overline{k, 2 n}], \quad k \geq 1$.

## Problem 5.

(a) Let $x=[\overline{a ; 2 b}]$. Compute the continued fraction of $2 x$ from that of $x$.
(b) Compute the continued fraction of $n x$, where

$$
x=\left[a_{0} ; n a_{1}, a_{2}, n a_{3}, \ldots, a_{2 k}, n a_{2 k+1}, \ldots\right] \quad n \geq 1
$$

Problem 6. In this exercise all estimates must be derived from the approximation theorem.
(a) Given that

$$
\pi=[3 ; 7,15,1,292,1, \ldots]
$$

find upper and lower bounds for the error involved in using $C_{1}$ and $C_{3}$ for $\pi$.
(b) Given that

$$
e=[2 ; 1,2,1,1,4,1,1,6,1,1,8,1, \ldots]
$$

show that in the interval $(e-\delta, e+\delta)$, with $\delta=5 \cdot 10^{-8}$, there are no rationals with less than four decimal digits at denominator.

Problem 7. Let $\alpha=\left[0 ; a_{1}, a_{2}, \ldots\right]$ be a real number, chosen at random in the interval $(0,1)$.
(a) What is the probability that $a_{1} \geq m$ ?
(b) What is the probability that $a_{1}=m$ ?
(c) Show that the probability that $a_{2} \geq m$ is

$$
\sum_{a=1}^{\infty} \frac{1}{a(m a+1)}
$$

(d)* Use $(c)$ to find the probability that $a_{2}=1$, in closed form.
[In each case, the numbers with the stated property form an interval, or a collection of disjoint intervals. The probability is defined as the total length of such intervals.]

