MAS/320 Number Theory: Coursework 1
 Franco VIVALDI
 http://www.maths.qmw.ac.uk/~fv/teaching/nt/nt.html

This coursework will be assessed and count towards your final mark for the course

DEADLINE: Wednesday of week 3, at 1:00 pm.
CONTENT: Simple continued fractions.

MicroESSAY: Write an essay on rational numbers (approximately 100 words, and no mathematical symbols).

Problem 1. Expand into simple continued fractions (with the last term >1):
a) $\frac{118}{303}$
b) $-\frac{21}{55}$
c) $\frac{10001}{10101}$
d) $\frac{12}{240005}$.

Problem 2. Compute the convergents of the following continued fractions
a) $[0 ; 2,4,1,5]$
b) $[-100 ; 1,100]$.

Problem 3. Find the general solution of the following equation, and characterize the solutions for which x and y are positive.

$$
75 x-131 y=19
$$

Problem 4. Let n be a positive integer. Expand into simple continued fractions:
a) $\frac{n+1}{n}$
b) $\frac{8 n+5}{5 n+3}$
c) $\frac{n-1}{n^{k}}, \quad n>1, \quad k \geq 1$.

Problem 5. Show by induction that if a_{0}, \ldots, a_{n} are positive integers, and $p_{n} / q_{n}=\left[a_{0} ; \ldots, a_{n}\right]$, then
a) $\frac{p_{n}}{p_{n-1}}=\left[a_{n} ; a_{n-1}, \ldots, a_{0}\right]$
b) $\frac{q_{n}}{q_{n-1}}=\left[a_{n} ; a_{n-1}, \ldots, a_{1}\right]$.

Problem 6. Let p and q be coprime positive integers, with $p>q$, and let $p / q=\left[a_{0} ; a_{1}, \ldots, a_{n}\right]$.
(a) Show that if the continued fraction is symmetric, that is, if $a_{0}=a_{n}, a_{1}=a_{n-1}, \ldots$, then p divides $q^{2}+(-1)^{n+1}$. [Hint: use problem 5.]
(b) White the continued fraction $[3 ; 1,1,2,2,1,1,2,1]$ in symmetric form, and verify the proposition in part (a).
(c) Conversely, prove that according as p divides $q^{2}+1$ or $q^{2}-1$, where $p>q>0$ and p and q are coprime, then p / q develops into a symmetric continued fraction with an even or an odd number of partial quotients. [Hint: show that $q_{n}=p_{n-1}$, where $p_{n}=p, q_{n}=q$. Then use problem 5.]
(d) Verify the proposition in part (c) for $q=13$ and p equal to the three largest divisors of $q^{2}+1$. Do the same for p equal to the three smallest divisors of $q^{2}-1$, which are greater than q.

Problem 7* 7^{*} Let $\left[a_{0} ; a_{1}, \ldots, a_{k}\right]$, with $a_{k}>1$, be the continued fraction expansion of a rational number x. We define a function τ by letting $\tau(x)=k$, the number of convergents in the fractional part of x.

Let F_{n} be the set of rational numbers between 0 and 1 , whose denominator is not greater than n. The set F_{n} contains a finite number of elements, e.g,

$$
F_{5}=\left\{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right\} .
$$

We let $\mathcal{T}(n)$ be the maximum value attained by $\tau(x)$ as x scans all the elements of the set F_{n}

$$
\mathcal{T}(n)=\max _{x \in F_{n}} \tau(x) .
$$

Because $3 / 4 \in F_{5}$, and $3 / 4=[0 ; 1,3]$, we obtain the estimate $\mathcal{T}(5) \geq 2$ (in fact, $\left.\mathcal{T}(5)=3\right)$.
Determine a lower bound for \mathcal{T} (10000). (The greater the bound, the greater the mark.)

