MAS/320 Number Theory: Coursework 1

Franco VIVALDI

http://www.maths.qmw.ac.uk/~fv/teaching/nt/nt.html

This coursework will be assessed and count towards your final mark for the course

DEADLINE: Wednesday of week 3, at 1:00 pm.

CONTENT: Simple continued fractions.

M*croESSAY : Write an essay on rational numbers (approximately 100 words, and no mathematical symbols).

Problem 1. Expand into simple continued fractions (with the last term > 1):

a)
$$\frac{118}{303}$$
 b) $-\frac{21}{55}$ c) $\frac{10001}{10101}$ d) $\frac{12}{240005}$.

Problem 2. Compute the convergents of the following continued fractions

a) [0; 2, 4, 1, 5] b) [-100; 1, 100].

Problem 3. Find the general solution of the following equation, and characterize the solutions for which x and y are positive.

$$75x - 131y = 19.$$

Problem 4. Let n be a positive integer. Expand into simple continued fractions:

a)
$$\frac{n+1}{n}$$
 b) $\frac{8n+5}{5n+3}$ c) $\frac{n-1}{n^k}$, $n > 1$, $k \ge 1$.

Problem 5. Show by induction that if a_0, \ldots, a_n are positive integers, and $p_n/q_n = [a_0; \ldots, a_n]$, then

a)
$$\frac{p_n}{p_{n-1}} = [a_n; a_{n-1}, \dots, a_0]$$
 b) $\frac{q_n}{q_{n-1}} = [a_n; a_{n-1}, \dots, a_1].$

2

Problem 6. Let p and q be coprime positive integers, with p > q, and let $p/q = [a_0; a_1, \ldots, a_n]$.

- (a) Show that if the continued fraction is symmetric, that is, if $a_0 = a_n, a_1 = a_{n-1}, \ldots$, then p divides $q^2 + (-1)^{n+1}$. [Hint: use problem 5.]
- (b) White the continued fraction [3; 1, 1, 2, 2, 1, 1, 2, 1] in symmetric form, and verify the proposition in part (a).
- (c) Conversely, prove that according as p divides $q^2 + 1$ or $q^2 1$, where p > q > 0 and p and q are coprime, then p/q develops into a symmetric continued fraction with an even or an odd number of partial quotients. [*Hint:* show that $q_n = p_{n-1}$, where $p_n = p$, $q_n = q$. Then use problem 5.]
- (d) Verify the proposition in part (c) for q = 13 and p equal to the three largest divisors of $q^2 + 1$. Do the same for p equal to the three smallest divisors of $q^2 1$, which are greater than q.

Problem 7^{*}. Let $[a_0; a_1, \ldots, a_k]$, with $a_k > 1$, be the continued fraction expansion of a rational number x. We define a function τ by letting $\tau(x) = k$, the number of convergents in the fractional part of x.

Let F_n be the set of rational numbers between 0 and 1, whose denominator is not greater than n. The set F_n contains a finite number of elements, e.g,

$$F_5 = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} \right\}.$$

We let $\mathcal{T}(n)$ be the maximum value attained by $\tau(x)$ as x scans all the elements of the set F_n

$$\mathcal{T}(n) = \max_{x \in F_n} \tau(x).$$

Because $3/4 \in F_5$, and 3/4 = [0; 1, 3], we obtain the estimate $\mathcal{T}(5) \ge 2$ (in fact, $\mathcal{T}(5) = 3$).

Determine a lower bound for $\mathcal{T}(10000)$. (The greater the bound, the greater the mark.)