MTH5117 Mathematical writing: Coursework 8

Franco Vivaldi

DEADLINE: Sunday of week 11, at 23.55.

ASSESSED PROBLEMS [with allocated marks].
Problem 1: 2, 3 [35]. Problem 2: [25]. Problem 3: (b) [40].

Problem 1. Each of the following statements is (equivalent to) an implication, which may be true or false. For each implication
i) state whether it is true or false;
if it is false, produce a counterexample;
ii) state the contrapositive, and whether it is true or false;
iii) state the converse, and whether it is true or false;
if it is false, produce a counterexample;
$i v)$ state the negation, and whether it is true or false.
[Make sure that the truth or falsehood of i), $i i$), $i v$) are consistent.]

1. Two integers that are coprime are also prime.
2. Two complex numbers whose sum is a real number must be complex conjugates of each other.
3. Any function with an increasing derivative is increasing. ${ }^{1}$
4. Every integer which is the product of two primes has four distinct divisors. ${ }^{2}$
[^0]
Problem 2.

The following definition has several flaws. (a) List them explicitly; (b) write a correct, clearer definition.

Let X be a subset of \mathbb{R}, and let $f(X)$ be the number of integers in X, namely

$$
f: \mathbb{R} \rightarrow \mathbb{N} \quad X \rightarrow \#((x \in X) \cap(x \in \mathbb{Z}))
$$

Problem 3.

Read carefully the text displayed on the next two pages. Then
(a) Ask three questions about this document.
[Avoid vague, general questions, or questions concerning specific examples, such as: "What is a rational number?" (too general), or "Are 16 and 27 co-prime?" (too specific).]
(b) Write a report on this document, comprising
i) a short title [$\not \subset]$;
ii) two or three concise key points [$\not \subset]$;
iii) a summary of the document [$\notin, 150]$.

The minimal distance between two distinct integers is 1 ; by contrast, there is no minimal distance between two distinct rational numbers ${ }^{3}$. Indeed if x is a rational number, by letting $y=x \pm 1 / n$, where n is a sufficiently large integer, we can make the distance between x and y as small as we please.

We analyse the properties of two rational numbers that are very close to each other. Let $x=a / b$ and $y=c / d$ (with $x \neq y$), and assume that the distance between x and y is small (in particular, less than 1). Then we can find a positive integer n such that

$$
\begin{equation*}
|x-y|=\frac{|a d-c b|}{|b d|} \leq \frac{1}{n} \tag{1}
\end{equation*}
$$

and we shall choose n to be as large as possible, namely

$$
\begin{equation*}
\frac{1}{n+1}<|x-y| \leq \frac{1}{n} \tag{2}
\end{equation*}
$$

Because $x \neq y$, the integer $a d-c b$ is non-zero, and hence $|a d-c b| \geq 1$. From (1), we then obtain

$$
\begin{equation*}
|b d| \geq|a d-c b| n \geq n \tag{3}
\end{equation*}
$$

which says that the product $b d$ of the denominators of x and y is at least as large as n, in absolute value. From (2) we see that as x approaches y, the integer n must approach infinity, and so must the product $b d$ of the denominators of our rationals, from (3). So the closer two rationals are to each other, the larger is the product of their denominators.
Let us consider a specific example. Let $x=16 / 27$. A rational very close to x is $y=x+1 / 10^{8}$, since we have $|x-y|=10^{-8}$. We compute y explicitly

$$
\begin{equation*}
y=\frac{16}{27}+\frac{1}{10^{8}}=\frac{1600000027}{2700000000} . \tag{4}
\end{equation*}
$$

While it was easy to find a rational very close to x, we paid a high price for it: the denominator of y has 10 digits. Is it possible to do the same with fewer digits? Inspecting (1) we see that, for a given distance, the product of the denominators of two rationals is minimal when $|a d-b c|=1$. The quantity

$$
|a d-b c|=|b d||x-y|=\mid \text { product of denominators } \mid \times \text { distance }
$$

[^1]may be regarded as a measure of the effectiveness of approximation process. In our example this quantity is equal to $27^{2}=729$, far from its optimal value 1 . To find an optimal set of values of $y=c / d$, we must therefore solve the equation
$$
|a d-b c|=|16 d-27 c|=1 .
$$

Now, the integers 16 and 27 are relatively prime, and hence this equation has lots of solutions -infinitely many of them. To find them, we first use Euclid's algorithm, to get the basic solution

$$
16 \cdot(-5)-27 \cdot(-3)=1 \quad(d=-5, c=-3)
$$

Then, adding and subtracting $16 \cdot 27 t$ from the left hand side, we find that, for all integers t

$$
16 \cdot(-5+27 t)-27 \cdot(-3+16 t)=1
$$

The expressions in parentheses are the desired integers d and c, giving one pair of solutions for each value of t. Now, to do better than in equation (4), we require

$$
27 d=27(-5+27 t)>10^{8},
$$

and the smallest solution is $t=137175$. This value of t gives the desired nearby rational:

$$
\frac{c}{d}=\frac{2194797}{3703720}, \quad\left|\frac{16}{27}-\frac{2194797}{3703720}\right|=\frac{1}{100000440}<\frac{1}{10^{8}} .
$$

We have done better than in (4) with only seven digits at denominator!
It should be clear that the above construction works with any rational a / b, not just $16 / 27$. The only requirement is that a and b must be coprime.

[^0]: ${ }^{1}$ Increasing here is intended in the strict sense (see notes).
 ${ }^{2}$ You may assume that all relevant integers are positive.

[^1]: ${ }^{3}$ The distance between two numbers x and y, real or complex, is defined to be $|x-y|$.

