cwork5b.tex $8 / 11 / 2013$

# MTH5117 Mathematical writing: Coursework 5 

Franco Vivaldi

DEADLINE: Sunday of week 8, at 23.55.

ASSESSED PROBLEMS [with allocated marks].
Problem 1: 1, 2 [10]. Problem 2: 4, 7 [30].
Problem 3: 1, 3 [20]. Problem 5: [40].

Problem 1. Write with symbols, using at least one quantifier.

1. The reciprocal of an integer may still be an integer.
2. The equations $f(x)=0$ and $g(x)=0$ have no real solutions in common.

Problem 2. Consider the following implications $(A, B$ are sets, $f$ is a real function).

1. If $A \subset B$, then $A \backslash B$ is the empty set.
2. If $x \in(A \backslash B)^{\prime}$, then $x \notin B$.
3. If $(x, x) \in A \times A$, then $x \in A$.
4. If $f$ is even, then $|f|$ is also even.
5. If $f$ is decreasing, then $-f$ is increasing.
6. If $|f|$ is increasing, then $f$ is monotonic.
7. If $n$ and $m$ are coprime, then $m n$ is not a square.

Of each implication:
(a) state the converse, and decide whether it's true or false.
(b) state the contrapositive, and decide whether it's true or false.
[You may use symbols.]

Problem 3. Describe the behaviour of the following functions. [ $\notin, 30]$.
1)

2)

3)

4)


Problem 4. Let $\mathbf{P}(X)$ denote the power set of a set $X$. What is $\mathbf{P}(\mathbf{P}(\mathbf{P}(\emptyset)))$ ? Explain in detail.

Problem 5. Read the text displayed on the next two pages ${ }^{1}$. Then write a report on this document, comprising

- a short title [ $\not \subset, 5]$;
- two/three very concise key points, highlighting the most important concepts [ $\not \subset, 10]$;
- a summary of the document [ $\notin, 150]$.

[^0]The function $y=\sin (x)$ is not one-to-one: it runs through its full range of values from -1 to 1 twice on every interval of length $2 \pi$. However, if we restrict the domain of the sine to the interval from $-\pi / 2$ to $\pi / 2$, we find that the restricted function

$$
y=\sin (x), \quad-\pi / 2 \leq x \leq \pi / 2
$$

is one-to-one. It therefore has an inverse, which we denote as

$$
y=\sin ^{-1}(x) \quad \text { or } \quad y=\arcsin (x)
$$

Thus if $x=\sin (y)$, then $y$ is the arc on the unit circle whose sine is $x$. For every value of $x$ in the interval $[-1,1], y=\sin ^{-1}(x)$ is the number in the interval $[-\pi / 2, \pi / 2]$ whose sine is $x$.
The superscript -1 in $\sin ^{-1}(x)$ is not an exponent: it means 'inverse', rather than 'reciprocal'. The reciprocal of $\sin (x)$ is

$$
\sin (x)^{-1}=\frac{1}{\sin (x)}=\csc (x)
$$

The function $\sin ^{-1}$ is odd, meaning that

$$
\sin ^{-1}(-x)=-\sin ^{-1}(x)
$$

which is valid for every $x$ in the domain of the arc sine.
Like the sine function, the cosine function $y=\cos (x)$ is not one-to-one, but its restriction to the interval $[0, \pi]$ is one-to-one. The restricted function therefore has an inverse,

$$
y=\cos ^{-1}(x)
$$

which we call the arc cosine of $x$. It is possible to show that

$$
\cos ^{-1}(x)+\cos ^{-1}(-x)=\pi
$$

and that

$$
\sin ^{-1}(x)+\cos ^{-1}(-x)=\pi / 2
$$

The other four basic trigonometric functions, tangent, secant, cosecant, and cotangent, also have inverses, when suitably restricted. The inverse of

$$
\tan (x) \quad-\pi / 2 \leq 0 \leq \pi / 2
$$

is denoted by

$$
\tan ^{-1}(x)
$$

The domain of the arc-tangent is the entire real line, and the co-domain is the open interval $(-\pi / 2, \pi / 2)$. Like the arc sine, the arc tangent is an odd function

$$
\tan ^{-1}(x)=-\tan ^{-1}(-x)
$$

The inverses of the restricted functions

$$
\begin{array}{ll}
y=\cot (x) & 0<x<\pi \\
y=\sec (x) & 0 \leq x \leq \pi, \quad x \neq \pi / 2 \\
y=\csc (x) & -\pi / 2 \leq x \leq \pi / 2, \quad x \neq 0
\end{array}
$$

are chosen in such a way as to satisfy the relationships

$$
\begin{align*}
\cot ^{-1}(x) & =\pi / 2-\tan ^{-1}(x) \\
\sec ^{-1}(x) & =\cos ^{-1}(1 / x)  \tag{1}\\
\csc ^{-1}(x) & =\sin ^{-1}(1 / x)
\end{align*}
$$

We remark that the above choices are not unique. For instance, some authors choose $\sec ^{-1}(x)$ to lie between 0 and $\pi / 2$, when $x$ is positive, and between $-\pi$ and $-\pi / 2$ when $x$ is negative. This has the advantage of simplifying the formula for the derivative of $\sec ^{-1}$, but the disadvantage of failing to satisfy the identity (1) when $x$ is negative.


[^0]:    ${ }^{1}$ Source: R L Finney and G B Thomas, Calculus, Addison-Wesley, Reading MA (1990).

