MTH5117 Mathematical writing: Coursework 4

Franco Vivaldi

DEADLINE: Sunday of week 6, at 23.55.

ASSESSED PROBLEMS [with allocated marks].
Problem 1: 2,3,4,5 [20]. Problem 2: 5, 9 [30].
Problem 3: 2, 3 [30]. Problem 4: 2 [20].

Problem 1. Describe each item accurately, with a short phrase. [$\notin]$

1) $f^{-1}(0)$
2) $\quad f(0)^{-1}$
3) $f^{-1}(\{0\})$
4) $\left.\quad f\right|_{\mathbb{Z}}$
5) $(f \circ g)^{-1}$
6) $\quad f(\mathbb{R}) \cap \mathbb{Q}$.

Problem 2. Consider the symbolic sentences:

1. $\exists n \in \mathbb{Z},-n \notin \mathbb{Z}$
2. $\forall n \in \mathbb{N}, 1 / n \notin \mathbb{N}$
3. $\forall x, y \in \mathbb{R}, x y=y x$
4. $\forall n \in \mathbb{N}, \quad \sqrt{n} \in \mathbb{R} \backslash \mathbb{Q}$
5. $\forall n \in \mathbb{Z}, 2 \mid n(n+1)$
6. $\exists x \in \mathbb{R}, \quad e^{x} \in \mathbb{Q}$
7. $\forall n, m \in \mathbb{Z}, \quad(2 \nmid n \wedge 2 \nmid m) \Rightarrow 2 \mid(m+n)$
8. $\forall x, y \in \mathbb{R}, \quad(x<y) \Rightarrow\left(x^{2}<y^{2}\right)$
9. $\forall y \in \mathbb{Z}, \exists x \in \mathbb{R}, \log (x)=y$.

For each sentence
(a) State whether it's true or false.
(b) State it with words. [$\notin]$
(c) State its negation with symbols.
(d) State its negation with words. [$\phi]$

Be concise.

Problem 3. Each function definition contains an error. Explain what is the error, and how it should be corrected.

1. $f: \mathbb{R} \rightarrow \mathbb{R} \quad x \mapsto \frac{1}{x^{2}+x-1}$
2. $f: \mathbb{R} \rightarrow \mathbb{R} \quad x \mapsto \sqrt{x^{2}-1}$
3. $f: \mathbb{N} \rightarrow \mathbb{N} \quad z \mapsto \#\left\{\frac{a}{b} \in(0,1): b \leqslant n\right\}$
4. $f: \mathbb{Z} \rightarrow \mathbb{Z} \quad n \mapsto n \mathbb{Z} \cap\left(n^{2}+1\right) \mathbb{Z}$.

Problem 4. Answer the questions as clearly as you can.
[You may use symbols. Consider establishing some notation.]

1. Let A and B be sets. Why are the sets $(A \backslash B)^{2}$ and $A^{2} \backslash B^{2}$ not necessarily equal? Under what conditions are they equal?
2. Let $f: X \rightarrow Y$ be a function, and let A be a subset of X. Why are the sets A and $f^{-1}(f(A))$ not necessarily equal? Under what conditions are they equal?
