MTH5117 Mathematical writing: Coursework 4

Franco Vivaldi

DEADLINE: Sunday of week 6, at 23.55.

ASSESSED PROBLEMS [with allocated marks].			
Problem 1:	2,3,4,5 [20]. Problem 2: 5,9 [30].		
Problem 3:	2, 3 [30]. Problem 4: 2 [20].		

Problem 1. Describe each item accurately, with a short phrase. $[\notin]$

1)	$f^{-1}(0)$	2)	$f(0)^{-1}$
3)	$f^{-1}(\{0\})$	4)	$\left.f ight _{\mathbb{Z}}$
5)	$(f \circ g)^{-1}$	6)	$f(\mathbb{R}) \cap \mathbb{Q}.$

Problem 2. Consider the symbolic sentences:

1. $\exists n \in \mathbb{Z}, -n \notin \mathbb{Z}$ 2. $\forall n \in \mathbb{N}, 1/n \notin \mathbb{N}$ 3. $\forall x, y \in \mathbb{R}, xy = yx$ 4. $\forall n \in \mathbb{N}, \sqrt{n} \in \mathbb{R} \setminus \mathbb{Q}$ 5. $\forall n \in \mathbb{Z}, 2 \mid n(n+1)$ 6. $\exists x \in \mathbb{R}, e^x \in \mathbb{Q}$ 7. $\forall n, m \in \mathbb{Z}, (2 \nmid n \land 2 \restriction m) \Rightarrow 2 \mid (m+n)$ 8. $\forall x, y \in \mathbb{R}, (x < y) \Rightarrow (x^2 < y^2)$ 9. $\forall y \in \mathbb{Z}, \exists x \in \mathbb{R}, \log(x) = y.$

For each sentence

- (a) State whether it's true or false.
- (b) State it with words. $[\not]$
- (c) State its negation with symbols.
- (d) State its negation with words. $[\not\!\!e]$

Be concise.

Problem 3. Each function definition contains an error. Explain what is the error, and how it should be corrected.

1. $f : \mathbb{R} \to \mathbb{R}$	$x \mapsto \frac{1}{x^2 + x - 1}$
2 . $f : \mathbb{R} \to \mathbb{R}$	$x\mapsto \sqrt{x^2-1}$
3 . $f : \mathbb{N} \to \mathbb{N}$	$z \mapsto \# \left\{ \frac{a}{b} \in (0,1) : b \leqslant n \right\}$
4. $f: \mathbb{Z} \to \mathbb{Z}$	$n \mapsto n\mathbb{Z} \cap (n^2 + 1)\mathbb{Z}.$

Problem 4. Answer the questions as clearly as you can. [You may use symbols. Consider establishing some notation.]

- 1. Let A and B be sets. Why are the sets $(A \setminus B)^2$ and $A^2 \setminus B^2$ not necessarily equal? Under what conditions are they equal?
- **2**. Let $f: X \to Y$ be a function, and let A be a subset of X. Why are the sets A and $f^{-1}(f(A))$ not necessarily equal? Under what conditions are they equal?